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Abstract. We investigate the temporal extension of the description
logic DL-Lite(RN)

bool with the until operator on concepts, rigid (time-inde-
pendent) and local (time-dependent) roles, and rigid TBox axioms. Using
an embedding into the one-variable fragment of first-order temporal logic
and the quasimodel technique, we prove that (i) the satisfiability problem
for the resulting logic is PSpace-complete, and that (ii) by weakening
until to sometime in the future we obtain an NP-complete logic, which
matches the complexities of the propositional linear-time temporal logics
with the corresponding temporal operators.

1 Introduction

Numerous temporal extensions of various description logics (DLs) have been
constructed and investigated since 1993, when K. Schild published his seminal
paper [19]. (We refer the reader to the monograph [15] and survey papers [3, 9,
17], where the history of the development of both interval- and point-based tem-
poralised DLs is discussed in full detail.) There are various ways of introducing
a temporal dimension in a DL. Temporal operators can be used as constructs
for concepts, roles, TBox and ABox axioms—such concepts, roles or axioms are
called temporalised. Alternatively, one may declare that a certain concept, role
or axiom is rigid in the sense that its interpretation does not change in time. A
number of complexity results have been obtained for different combinations of
temporal operators and DLs. For instance, the following is known for combina-
tions of ALC with the linear-time temporal logic LT L: the satisfiability problem
for the temporal ALC is

– undecidable if temporalised concepts together with rigid axioms and roles
are allowed in the language is enough); see [15] and references therein;

– 2ExpTime-complete if the language allows rigid concepts and roles with
temporalised axioms [10];

– ExpSpace-complete if the language allows temporalised concepts and ax-
ioms (but no rigid or temporalised roles) [15];

– ExpTime-complete if the language allows only temporalised concepts and
rigid axioms (but no rigid or temporalised roles) [19, 4].



In other words, as long as one wants to express the temporal behaviour of only
axioms and concepts (but not roles), the resulting combination is likely to be
decidable. As soon as the combination allows reasoning about the temporal be-
haviour of binary relations, it becomes undecidable, unless we limit the means
to describe the temporal behaviour of concepts. Furthermore, we notice that a
better computational behaviour is exhibited in cases where rigid axioms are used
instead of more general temporalised ones.

In this paper, we are interested in the scenario where axioms are rigid, con-
cepts are temporalised and roles may be rigid or local (i.e., may change arbi-
trarily). To regain decidability in this case, one has to restrict either the tem-
poral [8] or the DL component [7]. A decidable (in fact, 2ExpTime-complete)
logic S5ALCQI [8] is obtained by combining the modal logic S5 with ALCQI.
This approach weakens the temporal dimension to the much simpler S5, but can
nevertheless represent rigid concepts and roles and allows one to state that con-
cept and role memberships change in time (but without discriminating between
changes in the past and future).

Temporal extensions of ‘weak’ DLs from the recently introduced DL-Lite
and EL families with rigid roles and temporalised axioms and concepts were
investigated in [7]. It was shown that even in this case the resulting temporal DLs
turn out to be very complex: ExpSpace-complete for tractable DL-LiteNhorn and
undecidable for tractable EL. An inspection of the lower bound proofs reveals,
however, that they do not go through without the use of temporal and Boolean
operators on TBox axioms. To find out the complexity of temporal DL-Lite
logics without these constructs is the main aim of this paper.

Our most expressive DL-Lite logic DL-Lite(RN)

bool [2] features non-qualified
number restrictions and role inclusion axioms (with limited interaction), full
Booleans on concepts as well as some other constructs. In DL-Lite(RN)

bool , the satis-
fiability problem is NP-complete for combined complexity, while instance check-
ing is in AC0 for data complexity. We also consider the fragment DL-Lite(RN)

core of
DL-Lite(RN)

bool with primitive concept inclusion axioms, for which satisfiability is
NLogSpace-complete for combined complexity and answering positive existen-
tial queries is in AC0 for data complexity. (Because of this low data complexity
of query answering, DL-Lite logics form the basis of OWL 2 QL, one of the three
profiles of OWL 2; see http://www.w3.org/TR/owl2-profiles/.)

We consider two temporal extensions, T3DL-Lite(RN)

bool and TUDL-Lite(RN)

bool ,
of DL-Lite(RN)

bool . Both logics weaken TDL-Litebool of [7] by allowing only rigid ax-
ioms; the temporalised concepts of TUDL-Lite(RN)

bool can be built using temporal
operators until U , next-time © and their derivatives, while in T3DL-Lite(RN)

bool

they are limited to sometime in the future 3 and always in the future 2. We
show that the satisfiability problem is NP-complete for T3DL-Lite(RN)

bool and
PSpace-complete for TUDL-Lite(RN)

bool , which matches the complexity of the com-
ponent logics. (Note, however, that they are not simple fusions of their compo-
nents.) The lower bounds hold also for the core fragments of T3DL-Lite(RN)

bool and
TUDL-Lite(RN)

bool .



2 Temporal DL-Lite Logics

We begin by defining temporal extensions TUDL-Lite(RN)

bool and T3DL-Lite(RN)

bool

of the description logic DL-Lite(RN)

bool [1, 2], which, in turn, extends the original
DL-Liteu,F language [11–13] with full Booleans over concepts as well as cardi-
nality restrictions on roles and role inclusion axioms with limited interaction.

The language of TUDL-Lite(RN)

bool contains object names a0, a1, . . . , concept
names A0, A1, . . . , local role names P0, P1, . . . and rigid role names G0, G1, . . . ;
role names S, roles R, basic concepts B and concepts C are defined as follows:

S ::= Pi | Gi, R ::= S | S−,

B ::= ⊥ | Ai | ≥ q R,
C ::= B | ¬C | C1 u C2 | ≥ q R.C | C1 U C2,

where q ≥ 1 is a natural number. The language T3DL-Lite(RN)

bool is a proper
sub-language of TUDL-Lite(RN)

bool in which the until operator U can occur only
in concepts of the form > U C, where > = ¬⊥. As usual in temporal logic, we
denote >U C by 3C, and also write 2C for ¬3¬C and ©C for ⊥U C (so, © is
a TUDL-Lite(RN)

bool concept construct). Other standard abbreviations we use are
as follows: C1 t C2 = ¬(¬C1 u ¬C2), ∃R = (≥ 1R) and ≤ q R = ¬(≥ q + 1R).

A TUDL-Lite(RN)

bool TBox T is a finite set of concept inclusions, role inclusions,
and role disjointness, irreflexivity and reflexivity constraints of the form:

C1 v C2, R1 v R2, Dis(R1, R2), Irr(S) and Ref(S).

We write inv(R) for S− if R = S, and for S if R = S−. Denote by v∗T the
reflexive and transitive closure of {(R,R′), (inv(R), inv(R′)) | R v R′ ∈ T }. Say
that R′ is a proper sub-role of R in T if R′ v∗T R and R 6v∗T R′. The following
syntactic conditions, limiting the interaction between number restrictions and
role inclusions, are imposed on TUDL-Lite(RN)

bool TBoxes T (cf. [18, 2]):

(inter) if R has a proper sub-role in T then T contains no negative occurrences1

of number restrictions ≥ q R or ≥ q inv(R) with q ≥ 2;
(exists) T may contain only positive occurrences of ≥ q R.C, and if ≥ q R.C

occurs in T then T does not contain negative occurrences of ≥ q′R or
≥ q′ inv(R), for q′ ≥ 2.

It follows that no TBox can contain both a functionality constraint ≥ 2R v ⊥
and an occurrence of ≥ q R.C, for some q ≥ 1 and some role R. (These conditions
are required for NP-completeness of satisfiability in DL-Lite(RN)

bool .)
An ABox A consists of assertions of the form:

©nB(a), 2B(a), ©nS(a, b), 2S(a, b), ©n¬S(a, b) and 2¬S(a, b),

1 An occurrence of a concept on the right-hand (left-hand) side of a concept inclusion is
called negative if it is in the scope of an odd (even) number of negations ¬; otherwise
the occurrence is called positive.



where B is a basic concept, S a (local or rigid) role name, a,b object names and
©n denotes the sequence of n next-time operators ©, for n ≥ 0 (inverse roles
could also be allowed in the ABoxes, but they are just syntactic sugar). The
TBox and ABox together form the knowledge base (KB) K = (T ,A).

A TUDL-Lite(RN)

bool interpretation I is a function on natural numbers N:

I(n) =
(
∆I , aI0 , . . . , A

I(n)
0 , . . . , P

I(n)
0 , . . . , G

I(n)
0 , . . .

)
,

where ∆I is a non-empty set, the domain of I, aIi ∈ ∆I , AI(n)
i ⊆ ∆I and

P
I(n)
i , G

I(n)
i ⊆ ∆I ×∆I , for all i and all n ∈ N. Furthermore, aIi 6= aIj for i 6= j

(which means that we adopt the unique name Assumption) and GI(n)
i = G

I(m)
i ,

for all n,m ∈ N. The role and concept constructs are interpreted in I as follows:
for each moment of time n ∈ N,

(S−)I(n) =
{

(y, x) ∈ ∆I ×∆I | (x, y) ∈ SI(n)}, ⊥I(n) = ∅,

(≥ q R.C)I(n) =
{
x ∈ ∆I | ]{y ∈ CI | (x, y) ∈ RI(n)} ≥ q

}
, (¬C)I(n) = ∆I \ CI(n),

(C uD)I(n) = CI(n) ∩DI(n), (≥ q R)I(n) = (≥ q R.¬⊥)I(n),

(C U D)I(n) =
⋃

k>n

(
DI(k) ∩

⋂
n<m<k C

I(m)
)
,

where ]X is the cardinality of X. The satisfaction relation |= is defined as follows:

I |= C1 v C2 iff C
I(n)
1 ⊆ CI(n)

2 for all n ≥ 0,

I |= R1 v R2 iff R
I(n)
1 ⊆ RI(n)

2 for all n ≥ 0,

I |= Dis(R1, R2) iff ∀n ≥ 0 (R
I(n)
1 ∩RI(n)

2 = ∅) (R1 and R2 are disjoint),

I |= Irr(S) iff ∀x ∈ ∆I ∀n ≥ 0 (x, x) /∈ SI(n) (S is irreflexive),

I |= Ref(S) iff ∀x ∈ ∆I ∀n ≥ 0 (x, x) ∈ SI(n) (S is reflexive),

I |= ©nB(a) iff aI ∈ BI(n), I |= 2B(a) iff ∀n > 0 aI ∈ BI(n),

I |= ©nS(a, b) iff (aI , bI) ∈ SI(n), I |= 2S(a, b) iff ∀n > 0 (aI , bI) ∈ SI(n),

I |= ©n¬S(a, b) iff (aI , bI) 6∈ SI(n), I |= 2¬S(a, b) iff ∀n > 0 (aI , bI) 6∈ SI(n).

We say that I is a model of a KB K if I |= α for all α in K; in this case we also
write I |= K. A concept A (role R) is satisfiable w.r.t. K if there are a model I of
K and n ≥ 0 such that AI(n) 6= ∅ (RI(n) 6= ∅). Note that role symmetry Sym(S)
and asymmetry Asym(S) constraints are syntactic sugar in this language: they
can be equivalently replaced with S− v S and Dis(S, S−), respectively.

It should be noted that TUDL-Lite(RN)

bool is not a simple fusion of DL-Lite(RN)

bool

and LT L. Indeed, consider K = ({3∃R− v ⊥,∃R v 3∃R}, {∃R(a)}). Clearly, K
is not satisfiable in TUDL-Lite(RN)

bool . However, it is satisfiable both in DL-Lite(RN)

bool

(if we substitute the temporal concepts by fresh DL-Lite(RN)

bool concepts) and in
LT L (by substituting ∃R concepts with fresh atomic propositions).

3 TUDL-Lite(RN)

bool and First-Order Temporal Logic

For a TUDL-Lite(RN)

bool KB K = (T ,A), let ob(A) be the set of all object names
occurring in A. Let role±(K) be the set of rigid and local role names, together



with their inverses, occurring in K and grole±(K) its subset of rigid roles. For
R ∈ role±(K), let QR

K be the set of natural numbers containing 1 and all the
numerical parameters q for which ≥ q R or ≥ q R.C occurs in K.

With every object name a ∈ ob(A) we associate the individual constant a
of QT L1, the one-variable fragment of first-order temporal logic over (N, <),
and with every concept name A the unary predicate A(x) from the signature of
QT L1. For each R ∈ role±(K), we also introduce |QR

K| fresh unary predicates
EqR(x), for q ∈ QR

K. Intuitively, for each n ≥ 0, E1R(x) and E1R
−(x) repre-

sent the domain and range of R at moment n (i.e., E1R(x) and E1R
−(x) are

interpreted by the sets of points with at least one R-successor and at least one
R-predecessor at moment n, respectively), while EqR(x) and EqR

−(x) repre-
sent the sets of points with at least q distinct R-successors and at least q distinct
R-predecessors at moment n.

Let us consider first the sub-language of TUDL-Lite(RN)

bool without qualified
number restrictions and role constraints; we denote it by TUDL-Lite(RN)−

bool . With-
out loss of generality, we will assume that QR

K ⊆ QR′

K whenever R v∗T R′ (for if
this is not the case we can always add the missing numbers to QR′

K by introduc-
ing fictitious concept inclusions of the form ⊥ v ≥ q R′). By induction on the
construction of a TUDL-Lite(RN)−

bool concept C we define the QT L1- formula C∗:

⊥∗ = ⊥, (A)∗ = A(x),
(≥ q R)∗ = EqR(x), (¬C)∗ = ¬C∗(x),

(C1 u C2)∗ = C∗1 (x) ∧ C∗2 (x), (C1 U C2)∗ = C∗1 (x) U C∗2 (x),

and then extend this translation to TUDL-Lite(RN)−

bool TBoxes T by taking:

T ∗ =
∧

C1vC2∈T

2+∀x
(
C∗1 (x)→ C∗2 (x)

)
∧

∧
RvR′∈T or

inv(R)vinv(R′)∈T

∧
q∈QR

K

2+∀x
(
EqR(x)→ EqR

′(x)
)
,

where 2+ϕ = ϕ ∧2ϕ. For R ∈ role±(K), we need two QT L1-sentences:

εR = ∃xE1R(x) → ∃x inv(E1R)(x), (1)

δR =
∧

q,q′∈QR
K, q′>q

q′>q′′>q for no q′′∈QR
K

∀x
(
Eq′R(x)→ EqR(x)

)
, (2)

where inv(E1R) is the predicate E1S
−(x) if R = S and E1S(x) if R = S−, for

a role name S. Sentence (1) says that if the domain of R is non-empty then its
range is non-empty either; the meaning of (2) should be obvious.

Now we define ‘temporal slices’ of the ABox A.2 Denote by NA the maximum
n with ©nB(a) ∈ A, ©nS(a, b) ∈ A or ©n¬S(a, b) ∈ A (or 0 if there are no such
2 We slightly abuse notation and, for R ∈ role±(K), write ©nR(ai, aj) ∈ A to indicate

that ©nS(ai, aj) ∈ A if R = S, or ©nS(aj , ai) ∈ A if R = S−, where S is a (local
or rigid) role name; similarly for 2R(ai, aj) ∈ A.



assertions in A). For a rigid role R ∈ role±(K), we take:

A2
R =

{
R(a, b) | ©nR′(a, b) ∈ A or 2R′(a, b) ∈ A, and R′ v∗T R

}
and An

R = A2
R, for all n, 0 ≤ n ≤ NA. For a local role R ∈ role±(K), we take:

A2
R =

{
R(a, b) | 2R′(a, b) ∈ A, for R′ v∗T R

}
∪
{
R(a, b) | R′(a, b) ∈ A2

R′ , for R′ v∗T R
}
,

An
R =

{
R(a, b) | ©nR′(a, b) ∈ A, for R′ v∗T R

}
∪
{
R(a, b) | R′(a, b) ∈ A2

R′ , for R′ v∗T R
and either R′ ∈ grole±(K) or n > 0

}
.

We also set A2 =
⋃

R∈role±(K)A
2
R and An =

⋃
R∈role±(K)A

n
R, for 0 ≤ n ≤ NA.

The QT L1 translation of the ABox A is defined as follows:

A∗ =
∧

©nB(a)∈A

©nB∗(a) ∧
∧

R(a,b)∈An

©nEqR,a,AnR(a) ∧
∧

R(a,b)∈A2

2EqR,a,A2R(a)

∧
∧

©n¬S(a,b)∈A

(©n¬S(a, b))⊥ ∧
∧

2¬S(a,b)∈A

(2¬S(a, b))⊥,

where, for a role R, an ABox A′ and a ∈ ob(A′),

qR,a,A′ = max({0} ∪ {q ∈ QR
K | R(a, ai) ∈ A′, 1 ≤ i ≤ q & ai1 6= ai2 if i1 6= i2}),

and (©n¬S(a, b))⊥ = ⊥ if S(a, b) ∈ An and > otherwise, and (2¬S(a, b))⊥ = ⊥
if S(a, b) ∈ A2 or S(a, b) ∈ An, for 0 < n ≤ NA, and > otherwise. Finally, let

K‡ = T ∗ ∧
∧

R∈role±(K)

2+
(
εR∧δR

)
∧

∧
T∈grole±(K)

∧
q∈QT

K

2+∀x
(
EqT (x)↔ 2EqT (x)

)
∧ A∗.

Observe that the length of K‡ is linear in length of K. It can be shown in a way
similar to [7, Theorem 2 and Corollary 3]) that we have:

Lemma 1. A TUDL-Lite(RN)−

bool KB K = (T ,A) is satisfiable iff the QT L1-
sentence K‡ is satisfiable.

Proof. (⇐) Let M be a first-order temporal model with a countable domain
D and let (M, 0) |= K‡ (if K‡ is satisfiable then such an M clearly exists). We
denote the interpretations of unary predicates P in M at moment n by PM,n

and the interpretations of constants a in M by aM (without loss of generality
we assume that the aM are all distinct). We are going to construct a model I of
K based on the domain ∆ =

⋃∞
m=0Wm, where

W0 =
{
aM | a ∈ ob(A)

}
⊆ D and Wm+1 = Wm ∪ (D × N× {m}).

The interpretations of object names in I are given by their interpretations in
M: aI(n) = aM ∈ W0. The interpretations AI(n) of concept names A in I are



set to be AI(n) =
{
w ∈ ∆ | (M, n) |= A∗[cp(w)]

}
, where cp : ∆ → D is defined

by taking:

cp(w) =

{
w, if w ∈W0,

d, if w = (d, k,m) ∈ D × N× N.

We call w a copy of cp(w).
It remains to define SI(n) for each role S in K and n ∈ N. Let us first consider

a minimal role S for which R v∗T S implies S v∗T R, for every R ∈ role±(K).
Let [S] = {R ∈ role±(K) | R v∗T S and S v∗T R}. Consider first the case when
[S] ∩ grole±(K) = ∅ (i.e., S is not equivalent to a rigid role). Fix some n ∈ N.
We set SI(n) =

⋃∞
m=0 S

n,m, where Sn,m ⊆ Wm ×Wm are defined inductively
(on m ≥ 0) as follows. For the basis of induction, set

Sn,0 =
{

(aM, bM) ∈W0 ×W0 | S(a, b) ∈ An, n ≤ NA, or S(a, b) ∈ A2, n > 0
}
.

Suppose the Sn,m have been defined. Given R = S or S−, the required R-rank
rn(R, d) of d ∈ D at moment n is max

(
{0} ∪ {q ∈ QR

K | (M, n) |= EqR[d]}
)
.

By (2), if rn(R, d) = q then, for every q′ ∈ QR
K, we have (M, n) |= Eq′R[d]

whenever q′ ≤ q and (M, n) |= ¬Eq′R[d] whenever q < q′. The actual R-rank
rn
m(R,w) of w ∈ ∆ at moment n and step m is ]{w′ ∈ Wm | (w,w′) ∈ Rn,m},

where Rn,m = Sn,m if R = S and Rn,m = {(w,w′) | (w′, w) ∈ Sn,m} if R = S−.
It will follow from our construction that rn

m(S,w) ≤ rn(S, cp(w)), for all w ∈Wm

(we leave the easy inductive proof to the reader). Consider now the two sets of
defects Λn,m

S and Λn,m
S− in Sn,m, where

Λn,m
R =

{
w ∈Wm | rn

m(R,w) < rn(R, cp(w))
}
.

The purpose of Λn,m
R is to identify those ‘defective’ points w ∈ Wm from which

precisely rn(R, cp(w)) distinct R-arrows should start (according to M), but some
arrows are missing (only rn

m(R,w) many arrows exist). To ‘cure’ these defects,
we need a pool Fm ⊆ Wm+1 \ Wm of witnesses that can be used at step m
of the unravelling construction: more precisely, it contains, for each role R, a
countably infinite supply of points w (witnesses for R) such that cp(w) = d
and (M, n) |= inv(E1R)[d], provided that (M, n) |= ∃x

(
E1R(x) ∨ inv(E1R)(x)

)
(by (1), either both E1R(x) and inv(E1R)(x) are empty or both are non-empty).
It should be emphasised that this set will be the same for all roles R and all
moments of time n. We extend Sn,m to Sn,m+1 according to the following rules:

(Λn,m
S ) If w ∈ Λn,m

S , then let q = rn(S, d) − rn
m(S,w) and d = cp(w). We have

(M, n) |= Eq′S[d] for some q′ ∈ QS
K. By (2), (M, n) |= E1S[d]. In this case

we take q fresh witnesses w1, . . . , wq ∈ Fm for S, remove them from Fm and
then add the pairs (w,wi), 1 ≤ i ≤ q, to Sn,m+1; we also add the pairs
(wi, w), 1 ≤ i ≤ q, to Sn,m+1 if S− ∈ [S].

(Λn,m
S− ) The mirror image of (Λn,m

S ).

In a way similar to [2, Section 5.3] one can show that, for all n ≥ 0 and R = S, S−

(M, n) |= EqR[cp(w)] iff w ∈ (≥ q R)I(n). (3)



Once we have defined SI(n) for S, we set (S′)I(n) = SI(n) for all S′ ∈ [S]
and n ≥ 0 (observe that A2

S = A2
S′ and An

S = An
S′ , for all n, if S′ ∈ [S]).

If [S] ∩ grole±(K) 6= ∅, then we perform the above unravelling procedure at
moment 0 and set SI(n) = SI(0) for all n > 0, and (S′)I(n) = SI(n), for all
S′ ∈ [S] and n ≥ 0 (observe that A2

S = A2
S′ = An

S = An
S′ , for all n, if S′ ∈ [S]).

Suppose now that S has a proper sub-role and we have already defined the
RI(n) for all such proper sub-roles R. For S with [S]∩grole±(K) = ∅, the unrav-
elling procedure is analogous to the one described above: the basis of induction
is defined as above; then, at every step, we first expand Sn,m with the pairs that
belong to its proper sub-roles, i.e.,

⋃
Rv∗T S,S 6v∗T RR

n,m, and only after that start
curing the defects (remember that a point in Fm can never be used twice as a
witness). As the actual rank may be greater than the required rank, we have the
following: for all n ≥ 0 and R = S, S−,

if (M, n) |= EqR[cp(w)] then w ∈ (≥ q R)I(n). (4)

If [S] ∩ grole±(K) 6= ∅ then we perform the unravelling procedure only for the
moment 0 and, at each step, first expand S0,m with the pairs that belong to its
proper sub-roles at any moment of time (i.e.,

⋃
Rv∗T S,S 6v∗T R

⋃∞
n=0R

n,m) and only
after that cure the defects (yet again a point in Fm can never be used twice as
a witness). Finally, we set SI(n) = SI(0), for all n > 0, and (S′)I(n) = SI(n), for
all S′ ∈ [S] and n ≥ 0.

It remains to show that the constructed interpretation I is indeed a model
of K. It follows from the construction that I |= R1 v R2, for each R1 v R2 ∈ T .
It also follows that (3) holds for every role without proper sub-roles and, for a
role that has proper sub-roles, (4) is enough in view of (inter): by induction
on the structure of concepts, one can show that, for each concept inclusion
C1 v C2 ∈ T , we have I |= C1 v C2 whenever (M, n) |= ∀x (C∗1 (x) → C∗2 (x)),
for all n ≥ 0. Thus, I |= T . We also have I |= A and thus I |= K.

For (⇒) we refer the reader to [7, Theorem 2 and Corollary 3]. q

Denote by T0
UDL-LiteNbool the fragment of TUDL-Lite(RN)−

bool such that (i) it
has no rigid roles, (ii) its TBoxes contain only concept inclusions and (iii) its
ABoxes contain only assertions of the form ©nB(a) and 2B(a).

Lemma 2. Given a TUDL-Lite(RN)

bool KB K, one can construct (in polynomial
time) an equisatisfiable T0

UDL-LiteNbool KB K′.

Proof. As a first step, one can construct a TUDL-Lite(RN)−

bool KB such that it is
equisatisfiable with K. The proof is based on the forest model property (cf. [2,
Remark 5.15]) and is similar to that of [2, Lemma 5.17]. It shows how to get
rid of qualified number restrictions, role disjointness, reflexivity and irreflex-
ivity constraints. So, without loss of generality we may assume that K is a
TUDL-Lite(RN)−

bool KB.
Next, we set K′ = ({> v ⊥}, ∅) if ©n¬S(a, b) ∈ A and S(a, b) ∈ An, or

2¬S(a, b) ∈ A and S(a, b) ∈ A2 or S(a, b) ∈ An, 0 < n ≤ NA. Otherwise,
let A0 be the part of A with assertions of the form ©nB(a) and 2B(a) only



and let T0 be the part of T that contains no role inclusion axioms. Consider
K′ = (T0 ∪ T ′′,A0 ∪ A′′), where

T ′′ =
{
2(≥ q T ) v (≥ q T ), (≥ q T ) v 2(≥ q T ) | q ∈ QT

K, T ∈ grole±(K)
}

∪
{

(≥ q R) v (≥ q R′) | q ∈ QR
K, R v R′ ∈ T or inv(R) v inv(R′) ∈ T

}
,

A′′ ={©n(≥ qR,a,An R)(a) |R(a, b) ∈ An} ∪ {2(≥ qR,a,A2 R)(a) |R(a, b) ∈ A2}.

Clearly, K‡ = (K′)‡. The claim follows immediately from Lemma 1. q

4 Satisfiability of TUDL-Lite(RN)

bool KBs is PSpace-complete

It follows from Lemma 2 that satisfiability of TUDL-Lite(RN)

bool KBs is reducible
to satisfiability of T0

UDL-LiteNbool KBs. Our plan is as follows. First, we define
a notion of quasimodel for a T0

UDL-LiteNbool KB and prove that such a KB is
satisfiable iff there exists a quasimodel for it. Then we show that if there is a
quasimodel for a KB then there exists an ultimately periodic quasimodel such
that both the length of the prefix and the length of the period are exponential
in the length of the KB. The existence of such a quasimodel can be checked in
non-deterministic polynomial space, which together with Lemma 2 provides us
with a PSpace upper complexity bound for satisfiability in TUDL-Lite(RN)

bool ; the
matching lower bound follows from the complexity of LT L.

Let K = (T ,A) be a T0
UDL-LiteNbool KB. We assume ob(A) 6= ∅. Denote by

ev(K) the set of all concepts of the form C U D occurring in K. We introduce,
for every C U D ∈ ev(K), a fresh concept name FCUD, the surrogate of C U D,
and then, for a concept C, denote by C the result of replacing each C ′ U D′
in C, which is not in the scope of another U , with the surrogate FC′UD′ . For a
T0
UDL-LiteNbool TBox T , denote by T the DL-LiteNbool TBox obtained by replacing

every concept C in T with C.
Let cl(K) be the closure under negation of all concepts occurring in T together

with the ∃R, for R ∈ role±(K), and the B, for ©nB(a) ∈ A or 2B(a) ∈ A. A
type for K is a subset t of cl(K) such that

– C uD ∈ t iff C,D ∈ t, for every C uD ∈ cl(K);
– ¬C ∈ t iff C 6∈ t, for every C ∈ cl(K).

A type t for K is realisable if the concept uC∈tC is satisfiable w.r.t. T .
A function r mapping N to types for K is called a coherent and saturated run

for K if the following conditions are satisfied:

(real) r(i) is realisable, for every i ≥ 0,
(coh) for all 0 ≤ j < i and C U D ∈ ev(K), if D ∈ r(i) and C ∈ r(k), for all k,

j < k < i, then C U D ∈ r(j);
(sat) for all i ≥ 0 and C U D ∈ ev(K), if C U D ∈ r(i) then there is j > i such

that D ∈ r(j) and C ∈ r(k) for all k, i < k < j.



Given a model I of K and d ∈ ∆I , let runI(d) : i 7→ {C ∈ cl(K) | d ∈ CI(i)}.
Clearly, each runI(d) is a coherent and saturated run for K. For a run r and
a finite sequence s = (s(0), . . . , s(n)) of types for K, we denote by sk the k
repetitions of s and let

r<i = (r(0), . . . , r(i− 1)), sω = (s(0), . . . , s(n), s(0), . . . , s(n), . . . ),

r≥i = (r(i), r(i+ 1), . . . ), s · r = (s(0), . . . , s(n), r(0), r(1), . . . ).

A witness for K is a pair of the form (r, Ξ), where r is a coherent and sat-
urated run for K, Ξ ⊆ N and |Ξ| ≤ 1. A quasimodel for K is a quadruple
Q = 〈W,K,K0, L〉, where W is a set of witnesses for K and K,K0, L are natural
numbers with 0 ≤ K < K0 < L such that:

(run) W = {(ra, ∅) | a ∈ ob(A)}∪{(rR, {iR}) | R ∈ Ω}, for some Ω ⊆ role±(K);
(rep) rR(K) = rR(K0), for each (rR, {iR}) ∈W ;
(obj) if ©nB(a) ∈ A then B ∈ ra(n); if 2B(a) ∈ A then B ∈ ra(i) for all i > 0;
(role) for all i ≥ 0 and R ∈ role±(K), if ∃R− ∈ r(i), for some (r, Ξ) ∈W , then

(rR, {iR}) ∈W , ∃R ∈ rR(iR) and either i ≤ iR < K or K ≤ iR < L.

Theorem 1. A T0
UDL-LiteNbool KB K is satisfiable iff there is a quasimodel Q =

〈W,K,K0, L〉 for K with L ≤ NA+2|cl(K)|·|role±(K)| ·(|role±(K)|+1)+2|cl(K)|+2.

Proof. Suppose I |= K. For m ≥ 0, let

Fm =
{
R ∈ role±(K) | there is i ≥ m with RI(i) 6= ∅

}
.

Lemma 3. For all n, v ≥ 0, there exists m such that n ≤ m ≤ n+ v · |F0| and,
for every role R ∈ F0, either R ∈ Fm+v+1 or R /∈ Fm+1.

Proof. If a role R is non-empty infinitely often then R ∈ Fm+v+1, for any m.
So we have to consider only those roles that are non-empty finitely many times.
Let FG =

{
R ∈ role±(K) | there is i ≥ 0 with R /∈ Fi

}
. For R ∈ FG ∩ F0, let

iR = min
{
i | R /∈ Fi+1

}
(i.e., iR is the last moment when R is non-empty). If

max{iR | R ∈ FG} ≤ n + v · |F0|, we take m = max({n} ∪ {iR | R ∈ FG}).
Clearly, FG ∩ Fm+1 = ∅ (so all roles in FG are empty after m). Otherwise,
FG ∩ F0 6= ∅ and without loss of generality we may assume that FG ∩ F0 =
{R1, . . . , Rs} and iR1 ≤ iR2 ≤ · · · ≤ iRs . If iR1 > n + v, we take m = n; then
FG∩F0 ⊆ Fm+v+1 (all roles in FG∩F0 are non-empty after m+v). Otherwise,
iR1 ≤ n + v and iRs

> n + v · |F0|, whence iRs
− iR1 > (v − 1) · |F0|. Let j0

be the smallest j, 1 ≤ j < s, such that iRj
≥ n and iRj+1 − iRj

> v (it exists
as s ≤ |F0|), and let m = iRj0

. We then clearly have R1, . . . , Rj0 /∈ Fm+1 and
Rj0+1, . . . , Rs ∈ Fm+v+1. q

Let V = 2|cl(K)|·|role±(K)|. By Lemma 3, there is M , NA ≤M ≤ NA+V · |F0|,
such that, for every role R ∈ F0, either R ∈ FM+V +1 or R /∈ FM+1. We set

iR =

{
min{i ≥M + V + 1 | RI(i) 6= ∅}, R ∈ FM+V +1,

max{i | RI(i) 6= ∅}, R ∈ F0 \ FM+1.



Clearly, for each R ∈ F0, either iR ≤ M or iR ≥ M + V + 1. We fix some
dR ∈ (∃R)I(iR) and set rR = runI(dR), for each R ∈ F0. For a ∈ ob(A) , set
ra = runI(aI). Let

W =
{

(ra, ∅) | a ∈ ob(A)
}
∪
{

(rR, {iR}) | R ∈ F0
}
.

Clearly, (run) and (obj) hold for W . Also, ∃R− ∈ r(i) iff ∃R ∈ rR(iR) and
(rR, {iR}) ∈W , for all (r, Ξ) ∈W and i ≥ 0.

Observe that there are K,K0 such that M < K < K0 ≤ M + V + 1 and
rR(K) = rR(K0), for all (rR, {iR}) ∈ W . Let L = K0 + T + 1. Next, for each
(rR, {iR}) ∈ W with iR ≥ L, we construct a new witness (r′R, {i′R}) such that
∃R ∈ r′R(i′R) and i′R < L: we remove every part (rR(n), . . . , rR(n′)) of the run
rR such that rR(n) = rR(n′ + 1), for K0 < n < n′ < iR. Let (r′R, {i′R}) be the
result of this operation. It should be clear that r′R is a coherent and saturated
run for K and, as there are only T different types for K, we have i′R < L. Denote
by W ′ the resulting set of witnesses. It is as an exercise for the reader to check
that Q = 〈W ′,K,K0, L〉 is a quasimodel for K.

(⇐) Let Q = 〈W,K,K0, L〉 be a quasimodel for K. We construct a model for
K‡ which, by Theorem 1, will show that K is satisfiable. Let

R =
{
ra | (ra, ∅) ∈W

}
∪{(

r<K
R · (rR(K), . . . , rR(K0 − 1))i · r≥K0

R

)≥j | (rR, {iR}) ∈W, i > 0, j ≥ 0
}
.

Clearly, each r ∈ R is a coherent and saturated run for K. Moreover, if we have
(rR, {iR}) ∈ W and iR < K then, for all i, 0 ≤ i ≤ iR, there is r′ ∈ R with
∃R ∈ r′(i). And if (rR, {iR}) ∈W and iR ≥ K then, for all i ≥ 0, there is r′ ∈ R
with ∃R ∈ r′(i). As follows from (role), for each R ∈ Ω, we have R− ∈ Ω and
either iR ≥ K and iR− ≥ K or iR = iR− < K. So, for all i ≥ 0 and r ∈ R,

if ∃R− ∈ r(i) then there is r′ ∈ R such that ∃R ∈ r′(i).

We construct a first-order temporal model M based on the domain D = R by
taking aM = ra, for each a ∈ ob(A), and (B∗)M,i = {r ∈ R | B ∈ r(i)}, for each
B ∈ cl(K) and i ≥ 0. It should be clear that (M, 0) |= K‡. q

Theorem 2. If there is a quasimodel Q = 〈W,K,K0, L〉 for K then there is
an ultimately periodic quasimodel Q′ = 〈W ′,K,K0, L

′〉 for K, that is, there are
L′ ≤ L+2N and P ≤ N ·2N , where N = |W | · |cl(K)|, such that r′(i+P ) = r′(i),
for all i ≥ L′ and (r′, Ξ ′) ∈W ′.

Proof. The proof is a straightforward modification of the standard LT L con-
struction (see, e.g., [14]) with the set of propositions being cl(K)×W . q

It follows from Lemma 2 and Theorems 1 and 2 that we have the following:

Theorem 3. Satisfiability of TUDL-Lite(RN)

bool KBs is PSpace-complete.



5 Satisfiability of T3DL-Lite(RN)

bool KBs is NP-complete

We notice that Lemma 2 holds for T3DL-Lite(RN)

bool and its respective fragment
T0

3DL-LiteNbool. Thus, to prove that satisfiability of T3DL-Lite(RN)

bool KBs is in NP,
it is enough to consider T0

3DL-LiteNbool KBs. We proceed as in Section 4. First
we prove that a T0

3DL-LiteNbool KB is satisfiable iff there exists a quasimodel
for it. Then we show that if there is a quasimodel for K then there exists an
ultimately periodic quasimodel for K such that both the length of the prefix
and the length of the period are polynomial in the length of K. As the existence
of such a quasimodel can be checked in non-deterministic polynomial time, we
obtain the NP upper bound. The matching lower bound will be shown for a sub-
logic T3DL-Litecore of T3DL-Lite(RN)

bool with rather primitive concept inclusions.
Let K = (T ,A) be a T0

3DL-LiteNbool KB. We say that a type t for K is stutter-
invariant if ¬3C ∈ t implies ¬C ∈ t, for each 3C ∈ ev(K). A quasimodel for
K is a triple Q = 〈W,K,L〉, where W is a set of witnesses for K and K,L are
natural numbers with 0 ≤ K ≤ L such that they satisfy (run), (obj), (role)
and the following condition

(stuttr) r(K) and the r(i), for i ≥ L, are stutter-invariant for each (r, Ξ) ∈W .

Theorem 4. A T0
3DL-LiteNbool KB K is satisfiable iff there is a quasimodel Q =

〈W,K,L〉 for K such that L ≤ NA + |ev(K)| · (|role±(K)|+ 2) + 3.

Proof. (⇒) Suppose I |= K. Let V = |ev(K)|. By Lemma 3, there exists M
with NA ≤M ≤ NA + V · |F0| such that, for every role R ∈ F0, either R ∈ FK

or R /∈ FM+1, where K = M + V + 1. We then set

iR =

{
min{i ≥ K | RI(i) 6= ∅}, R ∈ FK ,

max{i | RI(i) 6= ∅}, R ∈ F0 \ FM+1.

Clearly, for R ∈ F0, either iR ≤ M or iR ≥ K. For each R ∈ F0, we fix some
dR ∈ (∃R)I(iR) and set rR = runI(dR). For a ∈ ob(A), set ra = runI(aI). Let

W =
{

(ra, ∅) | a ∈ ob(A)
}
∪
{

(rR, {iR}) | R ∈ F0
}
.

Clearly, (run) and (obj) hold. Also, we have ∃R− ∈ r(i) iff ∃R ∈ rR(iR) and
(rR, {iR}) ∈W , for all (r, Ξ) ∈W and i ≥ 0.

We now transform W by expanding and pruning runs in such a way that the
r(i) are never thrown out for (r, Ξ) ∈W and i ∈ Ξ.

Lemma 4. For each coherent and saturated run r,∣∣{i | r(i) is not stutter-invariant}
∣∣ ≤ ∣∣ev(K)

∣∣.
Proof. Suppose that there are 0 ≤ i1 < · · · < in such that n > |ev(K)|
and r(i1), . . . , r(in) are not stutter-invariant, i.e., there are 3Cj ∈ ev(K) with
¬3Cj , Cj ∈ r(ij). Then there is 3C ∈ ev(K) such that ¬3C,C ∈ r(ij), r(ij′)



for some 0 ≤ ij < ij′ . As C ∈ r(ij′), we have, by (coh), 3C ∈ r(ij), contrary
to ¬3C ∈ r(ij). q

Step 1. By Lemma 4, for each (r, Ξ) ∈ W , there is jr, M < jr ≤ K, such
that r(jr) is stutter-invariant. Set

r′ = r<jr · r(jr)K−jr · r≥jr ,

Ξ ′ = {i | i ∈ Ξ, i ≤ jr} ∪ {i+K − jr | i ∈ Ξ, i > jr}.

Clearly, r′ is a coherent and saturated run. Denote by W ′ the set of all (r′, Ξ ′)
constructed as above. Then, for each (r′, Ξ ′) ∈ W ′, r′(K) is stutter-invariant.
It is easy to see that, for each R ∈ F0, (r′R, {i′R}) ∈ W ′ and either i′R ≤ M or
i′R ≥ K.

Step 2. For (r′, Ξ ′) ∈ W ′, let Ξ0 = {i > K | r′(i) is not stutter-invariant}.
By Lemma 4, |Ξ0| ≤ |ev(K)|. If Ξ0 ∪ Ξ ′ 6= ∅, we prune the run r′ by removing
all stutter-invariant r′(i) with K < i < max(Ξ0 ∪Ξ ′). The resulting function r′′

is a coherent and saturated run for K. Set

Ξ ′′ = {i | i ∈ Ξ ′, i ≤ K} ∪ {K + ]{j ∈ Ξ0 ∪Ξ ′ | j ≤ i} | i ∈ Ξ ′, i > K}.

Let W ′′ be the set of all witnesses (r′′, Ξ ′′) constructed as above and L = K +
V + 2. Clearly, for each (r′′, Ξ ′′) ∈W ′′, all the types r′′(i) are stutter-invariant,
for i ≥ L. Thus, (stuttr) holds. It is easy to see that, for each R ∈ F0, we
have (r′′R, {i′′R}) ∈ W ′′ and K ≤ i′′R < L if R ∈ FK , and i′′R ≤ M if R /∈ FM+1.
So (role) holds as well. It is readily seen now that Q = 〈W ′′,K, L〉 is as required.

(⇐) Let Q = 〈W,K,L〉 be a quasimodel for K. We construct a model for K‡
which, by Theorem 1, will show that K is satisfiable. Let

R =
{
ra | (ra, ∅) ∈W

}
∪
{
r≥i
R | (rR, {iR}) ∈W, 0 ≤ i ≤ iR

}
∪{

r<K
R · (rR(K))i−iR · r≥K

R | (rR, {iR}) ∈W, i > iR ≥ K
}
.

Clearly, each r ∈ R is a coherent and saturated run for K. Moreover, if we have
(rR, {iR}) ∈ W and iR < K then, for all i, 0 ≤ i ≤ iR, there is r′ ∈ R with
∃R ∈ r′(i). And if (rR, {iR}) ∈W and iR ≥ K then, for all i ≥ 0, there is r′ ∈ R
with ∃R ∈ r′(i). As follows from (role), for each R ∈ Ω, we have R− ∈ Ω and
either iR ≥ K and iR− ≥ K or iR = iR− < K. So, for all i ≥ 0 and r ∈ R,

if ∃R− ∈ r(i) then there is r′ ∈ R such that ∃R ∈ r′(i).

We construct a first-order temporal model M based on the domain D = R by
taking aM = ra, for each a ∈ ob(A), and (B∗)M,i = {r ∈ R | B ∈ r(i)}, for each
B ∈ cl(K) and i ≥ 0. It should be clear that (M, 0) |= K‡. q

Theorem 5. If there is a quasimodel Q = 〈W,K,L〉 for K then there is an
ultimately periodic quasimodel Q′ = 〈W ′,K, L〉, that is, there is P ≤ |ev(K)|
such that r′(i+ P ) = r′(i), for all i > L and (r′, Ξ ′) ∈W ′.



Proof. We begin the proof with the following observation:

Lemma 5. Let r be a coherent and saturated run for K and let l ≥ 0 be such
that every r(i), i ≥ l, is stutter-invariant. Then there are i1, . . . , i|ev(K)| ≥ l such
that r′ = r≤l ·

(
r(i1) · . . . · r(i|ev(K)|)

)ω is a coherent and saturated run for K.

Proof. First we show that

r(l) ∩ ev(K) = r(j) ∩ ev(K), for all j > l. (5)

Suppose that there is j > l and 3C ∈ r(l) such that 3C 6∈ r(j). As r(j) is stutter-
invariant, C 6∈ r(j) and, by (coh), 3C 6∈ r(j − 1). By repeating this argument
sufficiently many times, we obtain 3C 6∈ r(l), contrary to our assumption. The
converse direction—i.e., for each j > l, if 3C ∈ r(j) then 3C ∈ r(l)—follows
from (coh).

For each 3C ∈ ev(K), we can select an i, i ≥ l, such that C ∈ r(i) whenever
3C ∈ r(l). Let i1, . . . , i|ev(K)| be all such i. It remains to show that r′ is coherent
and saturated. For coherency of r′, let C ∈ r′(i), for i ≥ 0. By (coh) for r, we
have 3C ∈ r′(j), for each 0 ≤ j < i such that j ≤ l. It remains to consider j with
l < j < i. It follows that r′(i) = r(ik), for some 1 ≤ k ≤ |ev(K)|, from which,
by (coh) for r, 3C ∈ r(l) = r′(l) and, by (5), 3C ∈ r′(j). For saturation of r′,
let 3C ∈ r′(i), for i ≥ 0. If 3C ∈ r(l) then C ∈ r(ik) for 1 ≤ k ≤ |ev(K)| and,
by the construction of r′, there is j > i such that r′(j) = r(ik). Thus C ∈ r′(j).
If 3C 6∈ r(l) then, by (5), i < l, from which 3C ∈ r(i). By (sat) for r, there is
j > i with C ∈ r(j) and, by (5), j ≤ l. Thus C ∈ r(j) = r′(j). q

Let P = |ev(K)|. For each (r, Ξ), we take r′ = r≤L ·(r(i1)·. . . r(iP ))ω provided
by Lemma 5. Denote the set of all (r′, Ξ) by W ′. It follows that Q′ = 〈W ′,K, L〉
is an ultimately periodic quasimodel for K (with period P ). q

It is now easy to devise an NP algorithm which can check whether there exists
a quasimodel for a T0

3DL-LiteNbool KB. By Lemma 2 and Theorems 4 and 5, this
means that satisfiability of T3DL-Lite(RN)

bool KBs is in NP. We prove the matching
lower bound for the fragment T3DL-Litecore of T3DL-Lite(RN)

bool that allows only
concept inclusions of the form A1 v A2, A1 v ¬A2, 3A1 v A2 or A1 v 3A2,
where A1 and A2 are concept names.

Lemma 6. The satisfiability problem for T3DL-Litecore KBs is NP-hard.

Proof. We prove this by reduction of the graph 3-colourability (3-Col) problem,
which is formulated as follows: given a graph G = (V,E), decide whether there
is an assignment of colours {1, 2, 3} to vertices V such that no two vertices
ai, aj ∈ V sharing the same edge, (ai, aj) ∈ E, have the same colour. Let X0,
X1, X2, V , U and Ai, for Ai ∈ V , be concept names and a an object name.
Consider the following KB KG:

V (a), V v 3Ai, Ai v X3, for all Ai ∈ V,
Ai v ¬Aj , for all (Ai, Aj) ∈ E,
V v ¬U, 3X0 v U, 3X1 v X0, 3X2 v X1, 3X3 v X2.



It is easy to see that KG is satisfiable iff G is 3-colourable. q

Thus we obtain the following theorem:

Theorem 6. The satisfiability problem for T3DL-Lite(RN)

bool KBs isNP-complete.

It is also of interest to note that the fragment TUDL-Litecore of T0
UDL-LiteNbool

with concept inclusions of the form A1 v A2, A1 v ¬A2 or A1 v A2UA3 (the Ai

concept names) turns out to be as complex as the whole logic TUDL-Lite(RN)

bool :

Theorem 7. The satisfiability problem for TUDL-Litecore KBs is PSpace-hard.

The proof can be found in the full version of the paper available online at
http://www.dcs.bbk.ac.uk/~roman/.

6 Conclusions

The obtained complexity results look encouraging in view of possible applications
for reasoning about temporal conceptual data models [4]. On the one hand, the
logic DL-LiteNbool was shown to be adequate for representing different aspects of
conceptual models: ISA, disjointness and covering for classes, domain and range
of relationships, n-ary relationships, attributes and participation constraints [6].
On the other hand, the approach of [8] shows that rigid axioms and roles with
temporalised concepts are enough to capture temporal data models.

The logic T3DL-Litebool presented in this paper can capture some form of
evolution constraints [5, 20, 16] thanks to the 3 operator. Furthermore, it also
captures snapshot classes—i.e., classes whose instances do not change over time.
However, by restricting the temporal component only to 3 and 2, we lose the
ability to capture temporary entities and relationships whose instances have
a limited lifespan. To overcome this limitation, we plan to extend the logics
presented here with either past temporal operators or with a special kind of
axioms that hold over finite prefix.
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A Proof of Theorem 7

Theorem 7. The satisfiability problem for TUDL-Litecore KBs is PSpace-hard.

Proof. We show that the unsatisfiability problem for TUDL-Litecore KBs is
PSpace-hard. The proof is by reduction of the halting problem of deterministic
Turing machines that require polynomial space s(n) given an input of length
n. Without loss of generality, assume s(n) is computable in time polynomial of
n and that the Turing machine M halts on all inputs (either in accepting or
rejecting state) and never runs outside the first s(n) tape cells (we also assume
it never goes to the left of the input).

Let M = 〈Q,Σ, Γ, δ, q0,#, qa, qr〉, where Q is a finite set of states, Γ is a set
of tape symbols, # ∈ Γ is the blank symbol, Σ ⊆ Γ is a set of input symbols,
δ : (Q \ {qr, qa}) × Γ → Q × Γ × {L,R} is a transition function, q0, qr, qa ∈ Q
are the initial, accepting and rejecting states, respectively.

Let a = a1 . . . an be an input for M . We define a KB τ(M,a) that is unsat-
isfiable iff M accepts a. We use the following concept names, for 1 ≤ i ≤ s(n),

– Hiq, q ∈ Q, with the intended meaning that Hiq is true iff the head points
to the cell i and the current control state is q;

– Sia, a ∈ Γ , with the intended meaning that Sia is true iff the tape cell i
contains symbol a;

– Di with the intended meaning that Dj is false, for all j 6= i, if in the previous
configuration the head pointed to the cell i

– Piq, q ∈ Q, with the intended meaning that Piq is true if in the previous
configuration the head pointed to the cell i and the state was q; Piq has the
opposite meaning.

Consider the TBox T containing the following concept inclusions, for all
a, a′ ∈ Γ , q ∈ Q \ {qr, qa}, q′ ∈ Q and 1 ≤ i ≤ s(n),

Hiq v ⊥ U Piq, (6)

Piq v ¬Piq, (7)
Piq v ¬Dj for all 1 ≤ j ≤ s(n), j 6= i, (8)
Sia v Sia U Di, (9)

Sia v Sia
′ U Piq, if δ(q, a) = (q′, a′, R) or δ(q, a) = (q′, a′, L), (10)

Sia v Hi+1q
′ U Piq, if δ(q, a) = (q′, a′, R) and i < s(n), (11)

Sia v Hi−1q
′ U Piq, if δ(q, a) = (q′, a′, L) and i > 1, (12)

and the following ABox A:

H1q0(d), Siai(d), 1 ≤ i ≤ n, Si#(d), n < i ≤ s(n), 2R(d).

Note that although ⊥ is not available in TUDL-Litecore, it can be easily intro-
duced as a concept name B with the following concept inclusions: B v A and
B v ¬A, for some fresh concept name A. Let

τ(M,a) = (T ∪ {R v ¬Hiqa | 1 ≤ i ≤ s(n)},A).



We are going to show that τ(M,a) is unsatisfiable iff M accepts a. We represent
configurations of M as tuples of the form c = 〈b1 . . . bs(n), i, q〉, where b1 . . . bs(n)

is the contents of the first s(n) tape cells (bj ∈ Γ , for 1 ≤ j ≤ s(n)), i is the
head position, 1 ≤ i ≤ s(n), and q is the control state, q ∈ Q. We say that a
point d ∈ ∆I encodes a configuration c = 〈b1 . . . bs(n), i, q〉 at moment k in I if
d ∈ (Hiq)I(k) and d ∈ (Sjbj)I(k), for all 1 ≤ j ≤ s(n).

Claim. Let c0, . . . , cm be a sequence of configurations representing a partial com-
putation of M on a. Then for any model I of (T ,A), dI encodes ck at moment
k in I, for all 0 ≤ k ≤ m.

Proof. The proof is by induction on k. For k = 0 the claim follows from I |= A.
For the induction step, let dI encode ck = 〈b1 . . . bi . . . bs(n), i, q〉 at moment k
in I and let ck+1 = 〈b1 . . . b′i . . . bs(n), i

′, q′〉. Consider first δ(q, bi) = (q′, b′i, L), in
which case i > 1 and i′ = i− 1. Then dI ∈ Hiq

I(k) for q 6∈ {qr, qa} and, by (6),
dI ∈ Piq

I(k+1). By (7), dI /∈ Piq
I(k+1)

, and, as dI ∈ Sib
I(k)
i , we obtain, by (12),

dI ∈ Hi′q
′I(k+1) and, by (10), dI ∈ Sib

′I(k+1)
i . Let bj for j 6= i, 1 ≤ j ≤ s(n).

By (8), dI /∈ DI(k+1)
j , and so, since dI ∈ Sjb

I(k)
j , we get, by (9), dI ∈ Sjb

I(k+1)
j .

Hence, dI encodes ck+1 at moment k + 1 in I. The case of δ(q, bi) = (q′, b′i, R)
is similar. q

It follows that if M accepts a then τ(M,a) is unsatisfiable. Indeed, if M
accepts a then the computation is a sequence of configurations c0, . . . , ck such
that ck = 〈b1 . . . bi . . . bs(n), i, qa〉. Suppose τ(M,a) is satisfiable, i.e., there is a
model I of τ(M,a), which is also a model of (T ,A). By the above claim, we
have dI ∈ Hiq

I(k)
a , which implies dI /∈ RI(k) contrary to our assumption.

Conversely, if M rejects a then τ(M,a) is satisfiable. Let c0, . . . , cm be a
sequence of configurations representing the rejecting computation of M on a,
ck = 〈b1,k, . . . , bs(n),k, ik, qk〉, for 0 ≤ k ≤ m. We define an interpretation I with
domain ∆I = {w}. Let dI = w. For every 0 ≤ k ≤ m, 1 ≤ j ≤ s(n), a ∈ Γ ,
q ∈ Q, we set

– RI(k) = ∆I ,
– Hjq

I(k) = ∆I if j = ik and q = qk, ∅ otherwise,
– Sja

I(k) = ∆I if a = bj,k and ∅ otherwise,
– Pjq

I(0) = ∅ and Pjq
I(k+1) = Hjq

I(k) if k+ 1 ≤ m, Pjq
I(k)

= ∆I \Pjq
I(k),

– D
I(k)
j =

⋃
q′∈Q Pjq

′I(k),

For every k > m, 1 ≤ j ≤ s(n), a ∈ Γ , q ∈ Q, we set

– RI(k) = ∆I ,
– Hjq

I(k) = ∆I if q = qr and ∅ otherwise,
– Sja

I(k) = ∅,
– Pjq

I(k) = ∅ and Pjq
I(k)

= ∆I ,
– D

I(k)
j = ∆I .

It can be easily verified that I |= τ(M,a). q



B Decision procedure for T0
UDL-LiteN

bool

First we guess and store in binary numbers K, K0, L′ and P such that

0 < K < K0 < L′ ≤ NA + T |role
±(K)| · (|role±(K)|+ 1) + T + 2 + 2N ,

0 < P ≤ N · 2N ,

where N ≤ (|role±(K)|+ |ob(A)|) · |cl(K)|. Then we guess a set Ω ⊆ role±(K) and
numbers {iR | R ∈ Ω} such that iR < L′, for each R ∈ Ω. Let ∆ = Ω ∪ ob(A).

Let {rx(i) | x ∈ ∆} be a state of an ultimately periodic quasimodel (cf.
Theorem 2). Consider the following conditions:

1. B ∈ ra(i), for all ©iB(a) ∈ A; B ∈ ra(i), for all 2B(a) ∈ A;
2. rx(i) is realisable, for all x ∈ Ω ∪ ob(A);
3. for all R ∈ role±(K), if iR = i then ∃R ∈ rR(i).

It should be clear that these conditions can be verified in polynomial space. In
particular, condition 2 can be verified by calling a satisfiability checking algo-
rithm for the concept uC∈rx(i)C w.r.t. the TBox T , which can be done in NP [1,
2]. We assume that at every step of the algorithm presented below these con-
ditions are checked after a quasimodel state is guessed, and if any of them fails
the algorithm terminates with the negative answer.

Our algorithm works as follows. We guess an initial state {rx(0) | x ∈ ∆}.
Then we guess another state {rx(1) | x ∈ ∆} and check the suitability condition
for each pair of types (rx(0), rx(1)): for all C U D ∈ ev(K), C U D ∈ rx(0) iff
either C U D,C ∈ rx(1) or D ∈ rx(1) (if it fails the algorithm answers ‘no’).
Then, for all R ∈ role±(K), we check: if ∃R = rx(1), for some x, then iR− ≥ 1
(if not, the algorithm terminates with the negative answer). After that we erase
the previous state {rx(0) | x ∈ ∆}.

We continue in such a fashion until we reach step K. From now on the check
on roles is different: for all R ∈ role±(K), if ∃R ∈ rx(K) then iR− ≥ K. After
checking the suitability condition we erase the state K−1 of the quasimodel and
guess {rx(K+1) | x ∈ ∆}. Then we verify: for all R ∈ role±(K), if ∃R ∈ rx(K+1)
then iR− ≥ K. We never erase {rx(K) | x ∈ ∆} from the memory.

We proceed in this way until we reach step L′. (At step K0 we need to
verify whether {rx(K0) | x ∈ ∆} is equal to {rx(K) | x ∈ ∆}). We perform
all the same checks as at the previous steps. Now, for every x, we store the set
evx = {D ∈ cl(K) | CUD ∈ rx(L′)}. After that we guess {rx(L′+1) | x ∈ ∆} and
perform the same checks as before. If D ∈ rx(L′+1) and D ∈ evx then we update
evx = evx \ {D}. Next we guess {rx(L′ + 2) | x ∈ ∆} and perform the same
checks and the same update of evx as before. Then erase {rx(L′ + 1) | x ∈ ∆}.
We proceed like that until step P . Now, the algorithm answers ‘yes’ if evx = ∅
and rx(L′) = rx(P ) for all x ∈ ∆.

Soundness of the presented algorithm follows from Theorem 1 and complete-
ness from Theorems 1 and 2. It is easy to see that the algorithm runs in poly-
nomial space.



C Decision procedure for T0
3
DL-LiteN

bool

Our algorithm for checking satisfiability of T0
3DL-LiteNbool KB K = (T ,A) es-

sentially guesses the ‘prefix’ of length L + 1 and the period of length P of an
ultimately periodical quasimodel Q′ = 〈W ′,K, L〉 for K as in Theorem 5, and
then checks whether conditions (runs), (stuttr), (obj) in Section 4 hold and
whether the types in positions L + 1 and L + P + 1 of the prefix coincide for
every run.

More precisely, first we guess and store some numbers L, K and P such that
L ≤ NK+ |ev(K)| · (|role±(K)|+2)+3, K ≤ L and P ≤ |ev(K)|. Then we guess a
set Ω ⊆ role±(K) and numbers {iR | R ∈ Ω} such that iR < L, for each R ∈ Ω.
For every R ∈ Ω, we then guess a sequence rR of length L+ P + 2 of types for
K and, for every a ∈ ob(A), a sequence ra of length L+ P + 2 of types for K.

Let W0 = {(rR, {iR}) | R ∈ Ω} ∪ {(ra, ∅) | a ∈ ob(A)}. The set W0 can be
regarded as a finite representation of the witnesses W ′ from Q′. Now we check
that the following conditions hold:

1. r(K) and the r(i), for L ≤ i ≤ L + P + 1, are stutter-invariant for each
(r, Ξ) ∈W0;

2. if ©nB(a) ∈ A then B ∈ ra(n); if 2B(a) ∈ A then B ∈ ra(i), for all
0 < i ≤ L+ P + 1;

3. for all i ≤ L+P + 1 and R ∈ role±(K), if ∃R− ∈ r(i), for some (r, Ξ) ∈W0,
then (rR, {iR}) ∈W0, ∃R ∈ rR(iR) and either i ≤ iR < K or K ≤ iR < L;

4. r(L+ 1) = r(L+ P + 1), for all (r, Ξ) ∈W0;
5. r(i) is realisable, for all (r, Ξ) ∈W0 and i ≤ L+ P + 1;
6. for all (r, Ξ) ∈W0, i ≤ L+ P + 1 and 3C ∈ r(i),

– if i ≤ L then there is j, i < j ≤ L+ P + 1, such that C ∈ r(j);
– if L < i ≤ L + P + 1 then there is j, L < j ≤ L + P + 1, such that
C ∈ r(j);

7. for all (r, Ξ) ∈ W0, 3C ∈ ev(K) and all i ≤ L + P + 1, if C ∈ r(i) then
3C ∈ r(j), for all j < i.

The algorithm returns ‘yes’ iff all the conditions above are satisfied.
The presented algorithm is sound: indeed, if conditions 1–7 are satisfied we

can construct an ultimately periodical quasimodel for K which, by Theorem 4,
means that K is satisfiable. The algorithm is also complete: if K is satisfiable
then, by Theorems 4 and 5, there exists an ultimately periodical quasimodel
Q = 〈W ′,K, L〉 with period P and K, L, P bounded by polynomial functions
in |K| as above; then W0 consisting of the prefixes of length L + P + 2 of runs
in W ′ satisfies conditions 1–7 and thus the algorithm returns ‘yes.’ Finally, it is
easy to see that L, K, P and W0 can be constructed and conditions 1–7 checked
by a non-deterministic algorithm that runs in time polynomial in |K|.


