Skip to main content

Modelling Nanorobot Control Using Swarm Intelligence: A Pilot Study

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 248))

Abstract

Advances in the development of nanotechnology gradually bring the field into its next generation involving systems of nanosystems. These bring about opportunities for computer science researchers to contribute their work as guidelines for the realisation and development of nanorobot systems in the near future. It is anticipated that an early version of future nanorobots may potentially contain only essential characteristics and exhibit only simple behaviours. It is similar to social insects in nature; collaborative behaviour among such simple individual exhibits a remarkable degree of intelligence. Hence, swarm intelligence techniques inspired by social insects could potentially be applied for nanorobot control mechanism in self-assembly. This study models an early version of future nanorobots and a control mechanism using swarm intelligence, especially PPSO (the modification of PSO for physical applications), for self-assembly and self-repair to examine the minimal characteristics and functionality for future nanorobots.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roco, M.C.: Nanoscale science and engineering: Unifying and transforming tools. American Institute of Chemical Engineers 50, 890–897 (2004)

    Google Scholar 

  2. Wolfe, J.: Top 10 nanotech products of 2004. Forbes/Wolfe Nanotech Report 3, 1–3 (2004)

    Google Scholar 

  3. Paull, R.: The top ten nanotech products of 2003. Forbes/Wolfe Nanotech Report (2003)

    Google Scholar 

  4. Keren, K., Berman, R.S., Buchstab, E., Sivan, U., Braun, E.: DNA-templated carbon nanotube field-effect transistor. Science 302, 1380–1382 (2003)

    Article  Google Scholar 

  5. Nguyen, T.D., Tseng, H.R., Celestre, P.C., Flood, A.H., Liu, Y., Stoddart, J.F., Zink, J.I.: A reversible molecular valve. Proceedings of the National Academy of Sciences of the United States of America 102, 10029–10034 (2005)

    Article  Google Scholar 

  6. Falvo, M.R., Clary, G.J., Taylor II, R.M., Chi, V., Brooks, F.P., Washburn, S., Superfine, R.: Bending and buckling of carbon nanotubes under large strain. Nature 389, 582–584 (1997)

    Article  Google Scholar 

  7. Levit, C., Bryson, S.T., Henze, C.E.: Virtual mechanosynthesis. In: Proceedings of the Fifth Foresight Conference on Molecular Nanotechnology (1997)

    Google Scholar 

  8. Kaewkamnerdpong, B., Bentley, P.J.: Computer science for nanotechnology: Needs and opportunities. In: Proceedings of the Fifth International Conference on Intelligent Processing and Manufacturing of Materials (2005)

    Google Scholar 

  9. Kaewkamnerdpong, B., Bentley, P.J., Bhalla, N.: Programming nanotechnology: Learning from nature. In: Advance in Computers, vol. 71, pp. 1–37. Elsevier, Amsterdam (2007)

    Google Scholar 

  10. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  11. Feynman, R.P.: There’s plenty of room at the bottom: An invitation to enter a new field of physics. In: Gilbert, H.D. (ed.) Miniaturization, Reinhold (1961)

    Google Scholar 

  12. Drexler, K.E.: Engines of Creation: The Coming Era of Nanotechnology. Anchor Press (1986)

    Google Scholar 

  13. Drexler, K.E.: Nanosystems: Molecular Machinery, Manufacturing, and Computation. John Wiley & Sons, Chichester (1992)

    Google Scholar 

  14. Shirai, Y., Osgood, A.J., Zhao, Y., Kelly, K.F., Tour, J.M.: Directional control in thermally driven single-molecule nanocars. Nano Letters 5, 2330–2334 (2005)

    Article  Google Scholar 

  15. Liao, S., Seeman, N.C.: Translation of DNA signals into polymer assembly instructions. Science 306, 2072–2074 (2004)

    Article  Google Scholar 

  16. Sherman, W.B., Seeman, N.C.: A precisely controlled DNA biped walking device. Nano Letters 4, 1203–1207 (2004)

    Article  Google Scholar 

  17. Seeman, N.C.: From genes to machines: DNA nanomechanical devices. Trends in Biochemical Sciences 30, 119–125 (2005)

    Article  Google Scholar 

  18. Cavalcanti, A., Freitas Jr., R.A.: Nanosystem design with dynamic collision detection for autonomous nanorobot motion control using neural networks. In: Proceedings of the International Conference on Computer Graphics and Vision (2002)

    Google Scholar 

  19. Cavalcanti, A., Freitas Jr., R.A.: Nanorobotics control design: A collective behavior approach for medicine. IEEE Transactions on NanoBioScience 4, 133–140 (2005)

    Article  Google Scholar 

  20. Cavalcanti, A.: Assembly automation with evolutionary nanorobots and sensor-based control applied to nanomedicine. IEEE Transactions on Nanotechnology 2, 82–87 (2003)

    Article  Google Scholar 

  21. Holland, O.E., Melhuish, C.R.: Getting the most from the least lessons for the nanoscale from minimal mobile agents. In: Proceedings of the Fifth International Workshop on Aritificial Life (1996)

    Google Scholar 

  22. Blackwell, T.M., Bentley, P.J.: Improvised music with swarms. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 2, pp. 1462–1467 (2002)

    Google Scholar 

  23. Schoonderwoerd, R., Holland, O., Bruten, J.: Ant-like agents for load balancing in telecommunication networks. In: Proceedings of the First International Conference on Autonomous Agents, pp. 209–216 (1997)

    Google Scholar 

  24. Ujjin, S., Bentley, P.J.: Particle swarm optimization recommender system. In: Proceedings of the IEEE Swarm Intelligence Symposium, pp. 124–131 (2003)

    Google Scholar 

  25. Whitesides, G.M., Grzybowski, B.: Self-assembly at all scales. Science 295, 2418–2421 (2002)

    Article  Google Scholar 

  26. Ball, P.: The Self-Made Tapestry: Pattern Formation in Nature. Oxford Press, Oxford (1999)

    MATH  Google Scholar 

  27. Goodsell, D.S.: Bionanotechnology: Lessons from Nature. Wiley, Chichester (2004)

    Google Scholar 

  28. Sendova-Franks, A.B., Franks, N.R.: Self-assembly, self-organization and division of labour. Philosophical Transactions: Biological Sciences 354, 1395–1405 (1999)

    Article  Google Scholar 

  29. Flores, H., Lobaton, E., Méndex-Diez, S., Tlupova, S., Cortez, R.: A study of bacterial flagellar bundling. Bulletin of Mathematical Biology 67, 137–168 (2005)

    Article  MathSciNet  Google Scholar 

  30. Soong, R.K., Bachand, G.D., Neves, H.P., Olkhovets, A.G., Craighead, H.G., Montemagno, C.D.: Powering an inorganic nanodevice with a biomolecular motor. Science 290, 1555–1558 (2000)

    Article  Google Scholar 

  31. Daniels, R., Vanderleyden, J., Michiels, J.: Quorum sensing and swarming migration in bacteria. FEMS Microbiology Reviews 28, 261–289 (2004)

    Article  Google Scholar 

  32. Anglerfish. Encyclopædia Britannica (2007), http://search.eb.com/eb/article-9007571

  33. Bioluminescence. Encyclopædia Britannica (2007), http://search.eb.com/eb/article-8261

  34. Costa-Fernandez, J.M.: Optical sensors based on luminescent quantum dots. Analytical and Bioanalytical Chemistry 384, 37–40 (2006)

    Article  Google Scholar 

  35. Kuo, M.D., Waugh, J.M., Elkins, C.J., Wang, D.S.: Translating nanotechnology to vascular disease. In: Greco, R.S., Prinz, F.B., Smith, R.L. (eds.) Nanoscale Technology in Biological Systems. CRC Press, Boca Raton (2005)

    Google Scholar 

  36. Wagner, P.: Nanobiotechnology. In: Greco, R.S., Prinz, F.B., Smith, R.L. (eds.) Nanoscale Technology in Biological Systems. CRC Press, Boca Raton (2005)

    Google Scholar 

  37. Norton, J.A.: Nanotechnology and cancer. In: Greco, R.S., Prinz, F.B., Smith, R.L. (eds.) Nanoscale Technology in Biological Systems. CRC Press, Boca Raton (2005)

    Google Scholar 

  38. Winfree, E.: DNA computing by self-assembly. The Bridge 33, 31–38 (2003)

    Google Scholar 

  39. Seeman, N.C.: Biochemistry and structural DNA nanotechnology: An evolving symbiotic relationship. Biochemistry 42, 7259–7269 (2003)

    Article  Google Scholar 

  40. Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Programmable and autonomous computing machine made of biomolecules. Nature 414, 430–434 (2001)

    Article  Google Scholar 

  41. Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous molecular computer for logical control of gene expression. Nature 429, 423–429 (2004)

    Article  Google Scholar 

  42. Gardner, T.S., Cantor, C.R., Collins, J.J.: Construction of a genetic toggle switch in. Escherichia Coli 403, 339–342 (2000)

    Google Scholar 

  43. Gardner, T.S.: Genetic applets: Biological integrated circuits for cellular control. In: IEEE International Solid-State Circuits Conference: Digest of Technical Papers, vol. 44, pp. 112–113 (2001)

    Google Scholar 

  44. Payton, D., Daily, M., Estowski, R., Howard, M., Lee, C.: Pheromone robotics. Autonomous Robot. 11, 319–324 (2001)

    Article  MATH  Google Scholar 

  45. Kaewkamnerdpong, B., Bentley, P.J.: Perceptive particle swarm optimisation. In: Proceedings of the Seventh International Conference on Adaptive and Natural Computing Algorithms, pp. 259–263 (2005)

    Google Scholar 

  46. Kaewkamnerdpong, B., Bentley, P.J.: Perceptive particle swarm optimisation: An investigation. In: Proceedings of the IEEE Swarm Intelligence Symposium (2005)

    Google Scholar 

  47. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence from Natural to Artificial Systems. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  48. Stevens, B.L., Lewis, F.L.: Aircraft Control and Simulation, 2nd edn. Wiley Interscience, Hoboken (2003)

    Google Scholar 

  49. Speroff, L., Fritz, M.A.: Clinical Gynecologic Endocrinology and Infertility: The Cervical Spine Research Society. Lippincott Williams & Wilkins (2004)

    Google Scholar 

  50. Hildebrand, H.F., Blanchemain, N., Mayer, G., Chai, F., Lefebvre, M., Boschin, F.: Surface coatings for biological activation and functionalization of medical devices. Surface & Coatings Technology 200, 6318–6324 (2006)

    Article  Google Scholar 

  51. Kaewkamnerdpong, B.: Modelling Nanorobot Control using Swarm Intelligence. PhD thesis, University College London (2009)

    Google Scholar 

  52. Weisstein, E.W.: Exponential growth (MathWorld–A Wolfram Web Resource), http://mathworld.wolfram.com/ExponentialGrowth.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kaewkamnerdpong, B., Bentley, P.J. (2009). Modelling Nanorobot Control Using Swarm Intelligence: A Pilot Study. In: Lim, C.P., Jain, L.C., Dehuri, S. (eds) Innovations in Swarm Intelligence. Studies in Computational Intelligence, vol 248. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04225-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04225-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04224-9

  • Online ISBN: 978-3-642-04225-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics