Manifold Answer-Set Programs for Meta-Reasoning

Wolfgang Fabéer and Stefan Woltrah

L University of Calabria, Italy
wi@wfaber.com
2 Vienna University of Technology, Austria
woltran@dbai.tuwien.ac.at

Abstract. In answer-set programming (ASP), the main focus usuallyisam-
puting answer sets which correspond to solutions to thel@mobepresented by
a logic program. Simple reasoning over answer sets is sprastsupported by
ASP systems (usually in the form of computing brave or caistimonsequences),
but slightly more involved reasoning problems require edépostprocessing.
Generally speaking, it is often desirable to use (a subgebraize or cautious
consequences of a progrdfn as input to another prograi in order to provide
the desired solutions to the problem to be solved. In practlee evaluation of
the programP; currently has to be decoupled from the evaluationPefusing
an intermediate step which collects the desired consegsefd®; and provides
them as input ta™. In this work, we present a novel method for representing
such a procedure within single program, and thus within the realm of ASP
itself. Our technique relies on rewriting; into a so-callednanifold program
which allows for accessing all desired consequenceB;ofvithin a single an-
swer set. Then, this manifold program can be evaluatedyoivith P, avoiding
any intermediate computation step. For determining theegumences within the
manifold program we us&eak constraintswhich is strongly motivated by com-
plexity considerations. As an application, we present ailéimg for computing
the ideal extension of an abstract argumentation framework

1 Introduction

In the last decadelnswer Set Programmin@ASP) [1, 2], also known as A-Prolog
[3,4], has emerged as a declarative programming paradigd®. i& well suited for
modelling and solving problems which involve common-saessoning, and has been
fruitfully applied to a wide variety of applications inclumdy diagnosis, data integration,
configuration, and many others. Moreover, the efficiencheflatest tools for process-
ing ASP programs (so-called ASP solvers) reached a statentdiees them applicable
for problems of practical importance [5]. The basic idea &FAis to compute answer
sets (usually stable models) of a logic program from whiehgthlutions of the problem
encoded by the program can be obtained.

However, frequently one is interested not only in the sohgiper se, but rather in
reasoning tasks that have to take some or even all solutmgccount. As an exam-
ple, consider the problem of database repair, in which angilatabase instance does

* This work was supported by the Vienna Science and Techndtagd (WWTF), grant ICT08-
028, and by M.1.U.R. within the Italia-Austria internazadization project “Sistemi basati sulla
logica per la rappresentazione di conoscenza: estensieonihe di ottimizzazione.”.

not satisfy some of the constraints imposed in the datal@se.can attempt to mod-
ify the data in order to obtain a consistent database by ¢hgras little as possible.
This will in general yield multiple possibilities and can &ecoded conveniently using
ASP (see, e.g., [6]). However, usually one is not interesigtie repairs themselves,
but in the data which is present @l repairs. For the ASP encoding, this means that
one is interested in the elements which occur in all answist #eese are also known
ascautious consequencdadeed, ASP systems provide special interfaces for comput
ing cautious consequences by means of query answering.oBwgtenes one has to
do more, such as answering a complex query over the cautansequences (not to
be confused with complex queries over answer sets). So &P, folvers provide no
support for such tasks. Instead, computations like thishavwe done outside ASP
systems, which hampers usability and limits the potenfilsP.

In this work, we tackle this limitation by providing a tecljmie, which transforms an
ASP progranP into amanifold program\/ » which we use to identify all consequences
of a certain typ&within a singleanswer set. The main advantage of the manifold ap-
proach is that the resulting program can be extended byianditrules representing
a query over the brave (or cautious, definite) consequerfdbs original progran®,
thereby using ASP itself for this additional reasoning. tdes to identify the conse-
quences, we usgeak constraintf8], which are supported by the ASP-solver DLV [9].
Weak constraints have been introduced to prefer a certhgesof answer sets via pe-
nalization. Their use for computing consequences is jadtlily a complexity-theoretic
argument: One can show that computing consequences is etaript the complex-

ity classe§PﬂIP or FPF (depending on the presence of disjunction), for which also

computing answer sets for programs with weak constrairdsnspleté, which means
that an equivalent compact ASP program without these ertnatoucts does not exist,
unless the polynomial hierarchy collapses. In principkbeo preferential constructs
similar to weak constraints could be used as well for our pseg, as long as they meet
these complexity requirements.

We discuss two particular applications of the manifold apgh. First, we specify
an encoding which decides the SAT-relatedque minimal model problemvhich is
closely related to closed-world reasoning [10]. The secprublem stems from the
area of argumentation (cf. [11] for an overview) and consdh® computation of the
ideal extension [12] of an argumentation framework. Fohlpsbblems we make use of
manifold programs of well-known encodings (computing atidels of a CNF-formula
for the former application, computing all admissible exiens of an argumentation
framework for the latter) in order to compute consequeriegtensions by a few more
rules then directly provide the desired solutions, reqagitittle effort in total.

3 We consider here the well-known concepts of brave and azsitionsequence, but also definite
consequence [7].
4 The first of these results is fairly easy to see, for the secomehs shown [8] that the related
P

decision problem is complete for the cla®g’ or O3, from which theFP||" and Fsz

results can be obtained. Also note that frequently cited P, and co-NPJIZ completeness
results hold for brave and cautious query answering, réispgc but not for computing brave
and cautious consequences.

Organization and Main Results. After introducing the necessary background in the
next section, we

— introduce in Section 3 the concept of a manifold program &writing proposi-
tional programs in such a way that all brave (resp. cautidefnite) consequences
of the original program are collected into a single answgr se

— lift the results to the non-ground case (Section 4); and

— present applications for our technique in Section 5. Inipaler, we provide an
ASP encoding for computing the ideal extension of an arguatiem framework.

The paper concludes with a brief discussion of related artddéawork.

2 Preliminaries

In this section, we review the basic syntax and semanticsSéf with weak constraints,
following [9], to which we refer for a more detailed definitio

An atomis an expressiop(t1,,t,), Wherep is apredicateof arity a(p) =n > 0
and eacht; is either a variable or a constantliferal is either an atom or its negation
not a. A (disjunctive) ruler is of the form

a1 V -V oay - by,...,bg, not byy1,..., not by,

withn >0,m >k > 0,n +m > 0, and whereuy,...,a,,by,...,b, are atoms.
Theheadof r is the setH () = {as, . .., a,}, and thebodyof r is the setB(r)
{b1,...,bg, not by 1, ..., not by, }. FurthermoreB*(r) = {by,...,bx} and B~ (r)
{bk+1,.-.,bm}. We will sometimes denote a ruteasH (r) - B(r).
A weak constrainf8] is an expressiowc of the form

i~ by, b, n0t by, ..., 0Ot by, [w]

wherem > k > 0 andby,...,b,, are literals, whileweight (wc) = w (the weigh)
and! (theleve) are positive integer constants or variables. For conveigo and/or
I may be omitted and are set to 1 in this case. The Bétsc), BT (wc), and B~ (wc)
are defined as for rules. We will sometimes denote a weak @ngc as:~ B(wc).

A program P is a finite set of rules and weak constrain®:les(P) denotes the
set of rules andV C(P) the set of weak constraints iR. w? . andif denote the
maximum weight and maximum level ov& C(P), respectively. A program (rule,
atom) ispropositionalor groundif it does not contain variables. A program is called
strongif WC(P) = (), andweakotherwise.

For any progran®, let Up be the set of all constants appearindgfrif no constant
appears inP, an arbitrary constant is added &&); let Bp be the set of all ground
literals constructible from the predicate symbols appepim P and the constants of
Up; and letGround(P) be the set of rules and weak constraints obtained by applying
to each rule and weak constraint ihall possible substitutions from the variables in
P to elements of/p. Up is usually called théderbrand Universeof P and Bp the
Herbrand Basef P.

A ground ruler is satisfiedby a setl of ground atoms ifff (r) N I # () whenever
Bt(r) C TandB~(r) NI = 0. I satisfies a ground prograf, if eachr € P is

satisfied byl. For non-groundP, I satisfiesP iff I satisfiesRules(Ground(P)). A
ground weak constraintc is violatedby I, iff BT (wc) C I andB~ (we) NI = (;itis
satisfied otherwise.

Following [13], a setl C Bp of atoms is aranswer sefor a strong progran® iff
it is a subset-minimal set that satisfies thduct

Pl ={H(r)- B (r) | INB (r) = 0,r € Ground(P)}.

A set of atomd C Bp is ananswer sefor a weak progran® iff I is an answer set
of Rules(P) and HEmu4(P)(T) is minimal among all the answer sets Bfiles(P),
where the penalization functiali (1) for weak constraint violation of a ground pro-
gramP is defined as follows:

P
HP (1) = S (£ () - Eenr r) weight (w))
fp(1) =1, and
fp(n) = fp(n—1)-|WC(P)| - wk,, +1 forn > 1.
where NP (I) denotes the set of weak constraintsifin level i violated byI. For
any programP, we denote the set of its answer setsA§(P). In this paper, we use
only weak constraints with weight and level 1, for whig* °*"4(")(1) amounts to
the number of weak constraints violated/in

A ground atomg is abrave (sometimes also called credulous or possible) conse-
quence of a prograr®, denotedP =, q, if a € A holds for at least ond € AS(P).
A ground atonu is acautious(sometimes also called skeptical or certain) consequence
of a programP, denotedP |=. a, if a € A holds for allA € AS(P). A ground atom
a is adefiniteconsequence [7] of a prograf, denotedP =, a, if AS(P) # @ and
a € Aholds forallA € AS(P). The sets of all brave, cautious, definite consequences
of a programP are denoted aBC'(P), CC(P), DC(P), respectively.

3 Propositional Manifold Programs

In this section, we present a translation which essent@ibates a copy of a given
strong propositional program for each of (resp. for a sub$eits atoms. Thus, we
require several copies of the alphabet used by the givernrgmg

Definition 1. Given a sefl of literals, a collectiorZ of sets of literals, and an atom
definel* = {p* | atomp € I} U {not p® |not p € I'} andZ® = {I* | I € T}.

The actual transformation to a manifold is given in the nesfirdtion. We copy a
given progranP for each atonu in a given setS, whereby the transformation guaran-
tees the existence of an answer set by enabling the copidgiooally.

Definition 2. For a strong propositional progran® and.S C Bp, define itsmanifold
as
P = U {H(r)*:- {c}UB(r)* |a€ S} U{c:- noti ; i:- notc}.
repP

We assumé&p N Bpir = 0, that is, all symbols irP%" are assumed to be fresh.

Example 1.Considerd = {pV ¢~ ; r=p ; r= g} forwhich AS(®) = {{p,r},
{¢,7}}, BC(?) = {p,q,r} andCC(P) = DC(P) = {r}. When forming the manifold
for Bg = {p, q,r}, we obtain

pPPNvVgP-c o rP-c,p? rP-c,¢qP 5 c-noti g
QPtBT@: pivagl-c; ri-cp?; ri-cq? ; i-notc ;

a T . T . T . T . T

pvVqg -c; r=-ce,p ;" -ceq

Note that given a strong programandS C Bp, the construction of’%" can be
done in polynomial time (w.r.t. the size &f). The answer sets of the transformed pro-
gram consist of all combinations (of siz€|) of answer sets of the original program
(augmented by) plus the special answer st which we shall use to indicate incon-
sistency ofP.

Proposition 1. For a strong propositional progran® and a setS C Bp, AS(PL") =
AU {{i}}, where

5]

A= {U A;U{c} | (A1, Ag) € [T As(P)*}.

a€S
Note that] | denotes the Cartesian product in Proposition 1.

Example 2.For & of Example 1, we obtain thatS(&7%) consists of{i} plus (copies
of {q, r} are underlined for readability)

T o7 D T o.T q T T
{e,p?,rP,p0 8, p" e} {e, g® P pd,r, p" e} {e, pP P g pT T)
T 2T D q T T P ro.T
{e,;p?,r?,p0 e, ", r "} {e, g?,rP, g% p" "} {e, gb P pt gt T
q T T y4 q T T
{e,pP 7P, q% 1% q" v} {e, gy rP g, r g7, T)

Using this transformation, each answer set encodes aniassoof an atom with
some answer set of the original program. If an atois a brave consequence of the
original program, then a witnessing answer set exists, bantains the atom“. The
idea is now to prefer those atom-answer set associationsewthe answer set is a
witness. We do this by means of weak constraints and peredizie association where
the atom is not in the associated answer set, that is, wifei®not in the answer set
of the transformed program. Doing this for each atom meaatsathh optimal answer set
will not containa® only if there is no answer set of the original program thattaors
a, SO eachu® contained in an optimal answer set is a brave consequenbe ofiginal
program.

Definition 3. Given a strong propositional prograti® andS C Bp, let
PY = Py U{:~nota®|ac S}U{:~i}

Observe that all weak constraints are violated in the spanmwer se{i}, while in
the answer sefc} (which occurs if the original program has an empty answeraikt
but:~ 7 are violated. The following result would also hold withotiti being included.

Proposition 2. Given a strong propositional prograr® and S C Bp, forany A €
AS(Pt), {a|a® € A} = BC(P)NS.

Example 3.For the programd as given Example 14)1]5;; is given bysl')tBT@ U {:~
not p? ; :~mnot¢? ; :~mnotr” ; :~ i}. We obtain thatAS(@%C@) = {41, A2},
whereA; = {¢,p?, P, ¢4, r?,p",r"} and Ay = {c,p?,r?,q%,r9,q",r"}, as these two
answer sets are the only ones that violate no weak constk&®tcan observe that
{a]a® € A1} ={ala® € A2} = {p,q,r} = BC(P).

Concerning cautious consequences, we first observe thatagam is inconsistent
(in the sense that it does not have any answer set), eachstoautious consequence.
But if P is inconsistent, the®!" will have only{i} as an answer set, so we will need
to find a suitable modification in order to deal with this in tta@rect way. In fact, we
can use a similar approach as for brave consequences, lalizeethose associations
where an atom is contained in its associated answer set. piinal answer set will
thus containa® for an atom only ifa is contained in each answer set. If an answer
set containing exists, it is augmented by all atom$, which also causes all weak
constraints to be violated.

Definition 4. Given a strong propositional prograi® and S C Bp, let
P =Pl u{i~a®|aeStu{a"-ilaecS}uU{i~i}
As for PS¢, the following result also holds without including i.

Proposition 3. Given a strong propositional prograr® and.S C Bp, forany A €
AS(P§), {a|a* € A} =CC(P)NS.

Example 4.Recall progran® from Example 1. We haveéy = @tg@ U{i~pP o i~
q? ;T pPd qls iy =0 i~ it We obtain thatdS (9%) = {As, As},
whereAs = {c,¢?, 7P, p4,r?, p",r"} and Ay = {c,¢?,r?,p%,r9,q",r"}, as these two
answer sets are the only ones that violate only one weakredgmisthamely:~ r". We
observethafa | a* € A3} ={a | a® € Ay} = {r} = CC(P).

We next consider the notion of definite consequences. [Rifteio cautious conse-
guences, we do not add the annotated atoms to the answemsaingaoy:. However,
this answer set should never be among the optimal ones unie#ise only one. There-
fore we inflate it by new atomg, all of which incur a penalty. This guarantees that this
answer set will incur a higher penalty5z| + 1) than any other{ |Bp|).

Definition 5. Given a strong propositional prograti® andS C Bp, let
Pl = Piru{i~a% i%- iy i~ i% | a € S}U {1~ i}

Proposition 4. Given a strong propositional prograr® and S C Bp, forany A €
AS(Pde),{a|a* € A} = DC(P)N S.

de _) .
Example 5.Recall progran® from Example 1. We haveéy’ = @tBT@ U{i~pP ; i~
q? ;T oy PGy i 4 TR d i~ dP) i~ T v T i~ i) ASn
Example 4,43 and A4 are the only ones that violate only one weak constraint, iame
:~ 1", and thus are the answer setsigf, .

Obviously, one can compute all brave, cautious, or defirttesequences of a pro-
gram by choosing = Bp. We also note that the programs from Definitions 3, 4 and
5 yield multiple answer sets. However each of these yieldstime atoms®, so it is
sufficient to compute one of these. The programs could bandgtkin order to admit
only one answer set by suitably penalizing all atathga # b). To avoid interference
with the weak constraints already used, these additionakwenstraints would have
to pertain to a different level.

4 Non-Ground Manifold Programs

We now generalize the techniques introduced in Section 2ieground strong pro-
grams. In principle, one could annotate each predicatbdrahan atom as in Sec-
tion 3) with ground atoms of a subset of the Herbrand Base.ddew one can also
move the annotations to the non-ground level: For examptgead of annotating a
rule p(X,Y) - ¢(X,Y) by the set{r(a),r(b)} yielding p"(?(X,Y) - ¢"(X,Y)
andp"®(X,Y) - ¢"®(X,Y) we will annotate using only the predicateand ex-
tend the arguments qf, yielding the compact rulel},(X,Y, 7) - d;(X,Y, Z) (we
use predicate symboly) anddj rather tharnp™ andg" just for pointing out the dif-
ference between annotation by predicates versus annotatiground atoms). In this
particular example we have assumed that the program is tarstated by all ground
instances of-(Z); we will use this assumption also in the following for sinfping
the presentation. In practice, one can clearly add atomeaule body for restrict-
ing the instances of the predicate by which we annotate,enettample this would
yield p"(X,Y, Z) - ¢"(X,Y, Z),dom(Z) where the predicatdom should be defined
appropriately. In the following, recall that(p) denotes the arity of a predicate

Definition 6. Given an atonu = p(t1,...,t,) and a predicatey, let atq’“ be the atom
di(ts, .. s tn, X1,. .., Xa(q)) WhereXy, ..., X, () are fresh variables andy is a new
predicate symbol with(d?) = a(p) +a(q). Furthermore, given a set of literals, and

a predicatey, let £" be{a" | atoma € L} U {not a} | not a € L}.

Note that we assume that even though the variallgs . ., X, are fresh, they
will be the same for eac«lng’”. One could define similar notions also for partially ground
atoms or for sets of atoms characterized by a collection fifidg rules, from which
we refrain here for the ease of presentation. We define th&ohdprogram in analogy
to Definition 2, the only difference being the different wayaonotating.

Definition 7. Given a strong progran® and a setS of predicates, define itmanifold
as

P = U {H(r)’;r - {c} UB(T)ZT | g€ S}U{c:- noti ; i:- notc}.
reP
Example 6.Consider progra# = {p(X) V ¢(X) - r(X); ; r(a)=- ; r(b)=- }for
which AS(¥) = {{p(a),p(b),r(a),r(b)}, {p(a),q(b),r(a),r(b)}, {q(a), p(b),r(a),
r(0)}, {4a(a),q(b), 7(a),r(b)}}. Hence,BC(¥) = {p(a), p(b),q(a), q(b),(a),r(b)}
andCC(¥) = DC(¥) = {r(a), r(b)}. Forming the manifold foS = {p}, we obtain
Wtr* dg(X7X1)\/dg(X7X1)- d'zr)(XaXl)vc N
s {d’r’(a,Xl):- c; d?(b,X1)-c; c-noti ; i- not c}

AS(PE) consists of{i} plus 16 answer sets, corresponding to all combinationseof th
4 answer sets ialS(¥).

Now we are able to generalize the encodings for brave, asjtand definite con-
sequences. These definitions are direct extensions of befisi3, 4, and 5, the dif-
ferences are only due to the non-ground annotations. licpkat, the diagonalization
atomsa® should now be written a&) (X1, . . ., Xo(p), X1, - - -, Xo(p)) Which represent
the set of ground instances pfX,, ..., X,(,), €ach annotated by itself. So, a weak
constraint:~ dp (X1, ..., Xa(p), X1, -+ Xa(p)) gives rise to{:~ db(e1, ..y Cagp)s
Cly-- s Cap)) | €150+ -5 Capy € U} whereU is the Herbrand base of the program in
guestion, that is one weak constraint for each ground iestannotated by itself.

Definition 8. Given a strong progran® and a setS of predicate symbols, let
P =P uU{i~mnot A, | g€ SYU {i~ i}
P& =Pl U{i~ Ay Ag-i| g€ STU i~}
Pde = P u{i~ Ay Iy i i~ I, | g€ SPU {i~v i}
WhereAq = dg(Xl, - ,Xa(q), X1,... 7Xo¢(q)) anqu = iq(Xl, S ,Xa(q)).

Proposition 5. Given a strong progran® and a setS of predicates, for an arbitrary

A € AS(P&), (resp., A € AS(PS), A € AS(PZ)), the set{p(c1, ..., Ca(p)) |
db(c1s -5 Cagp)s Cryeens ca(_p)) e_A} is the set of brave (resp., cautious, definite) con-
sequences aP with a predicate inS.

Example 7.Consider agai andS = {p} from Example 6. We obtai#’ = ¥ U
{:~mnot db(X1, X;) ; :~ i} and we can check thatS(¥4°) consists of the sets

RU{dg(a, a), db(b,b),
RU{dg(a, a), db(b,0),

(a,0),db(b,a)}, RU{db(a,a),db(b,b),db(a,b),d?(b,a)},

p

P(a,b),db(b,a)}, RU{db(a,a),db(b,b),db(b,a),db(b,a)};

whereR = {d2(a, a),d®(a,b),d? (b, a),d?(b,b)}. For eachA of these answer sets we
obtain{p(t) | db(t,t) € A} = {p(a),p(b)} which corresponds exactly to the brave
consequences @f with a predicate of = {p}.

For cautious consequencesy = W§ U {:~ db(X1, X1) ; (X1, X1) =i 5 i~ i}
and we can check thatS(¥§¢) consists of the sets

RU{d{;(a, a),
Ru{db(a,a),

P(a,b),db(b,a)}, RU{d¥(a,a),db
P(a,b),db(b,a)}, RU{d}(a,a),d}
whereR = {d2(a, a),d®(a,b),d?(b,a),d?(b,b)}. For eachA of these answer sets we
obtain{p(t) | db(t,t) € A} = 0 and indeed there are no cautious consequencés of
with a predicate of = {p}.

Finally, for definite consequencesj® = Wi U {:~ d5(X1,X1) ; ip(X1) =i 5 i~
ip(X1) ; :~ i} Itis easy to see thal S(Wd) = AS(¥¢) and sop(t) | db(t,t) €

A} = 0 for each answer set of ¥Z¢, and indeed there is also no definite consequence
of ¥ with a predicate of = {p}.

These definitions exploit the fact that the semantics of gund programs is de-
fined via their grounding with respect to their Herbrand @nse. So the fresh variables
introduced in the manifold will give rise to one copy of a ride each ground atom.

In practice, ASP systems usually require rules to be sa#¢ jshthat each variable
occurs (also) in the positive body. The manifold for a set @idiicates may therefore
contain unsafe rules (because of the fresh variables) Hgitan be repaired by adding
a domain atomdom, (X, ..., X,,) to a rule which is to be annotated with This
predicate can in turn be defined by a rdlen, (X1, ..., X,,) - w(X1),...,u(Xm)
whereu is defined usindu(c) | ¢ € Up}. One can also provide smarter definitions for
dom, by using a relaxation of the definition for

We also observe that ground atoms that are contained in alNemsets of a pro-
gram need not be annotated in the manifold. Note that thesesaentially the cautious
consequences of a program and therefore determining dbsétautomatically before
rewriting does not make sense. But for some atoms this piyppan be determined
only by the structure of the program. For instance, factslvglin all answer sets. In
the sequel we will not annotate extensional atoms (thoseeatkéinly by facts) in order
to obtain more concise programs. One could also go furtheéparit the annotation of
atoms which are defined using nondisjunctive stratified rmg.

As an example, we present an ASP encoding for boolean shiiisfiand then cre-
ate its manifold program for resolving the following proimeGiven a propositional
formula in CNF¢, compute all atoms which are true in all models,ofWe provide a
fixed program which takes a representatiopas facts as input. To apply our method
we first require a program whose answer sets are in a onegcarrespondence to the
models ofp. To start with, we fix the representation of CNFs. Izefover atomsA) be
of the formA_, ¢;. Then,D, = {at(a) | a € A} U{cl(i) | 1 <i < n}U{pos(a,i) |
atoma occurs positively ire; } U {neg(a, i) | atoma occurs negatively im; }. We con-
struct progran8 AT as the set of the following rules.

true(X) - not false(X),at(X); false(X) - not true(X), at(X);

ok(C) = true(X),pos(C, X); ok(C) - false(X),neg(C, X); - not ok(C),cl(C).
It can be checked that the answer setSAT U D, are in a one-to-one correspondence
to the models (oveA) of . In particular, for any model C A of ¢ there exists an

answer setV/ of SAT U D,, such thatl = {a | true(a) € M}. We now consider
SAT{}..; Which consists of the following rules.

{true
dijue(X,Y) = ¢,not dffie (X,Y),at(X); ¢ - not i; i - not ¢
d};}fe(X,Y) = ¢not dir(X,Y),at(X); = ¢,not d¥ ¢ (C,Y),cl(C);
dipee(CY) = e, diuc(X,Y), pos(C, X); i~ djie (X, X); i~
dz%“e(C,Y) - d%}fe(X, Y), neg(C, X); di:ﬁi(X,X) - 1.

Given Proposition 5, it is easy to see that, given some ansetelrof SATY},,., U Dy,
{a | dit¢(a,a) € A} is precisely the set of atoms which are true in all modelg.of

true

5 Applications

In this section, we put our technique to work and show how ®rasta-reasoning over
answer sets for two application scenarios. The first one islakmown problem from

propositional logic, and we will reuse the example from ahovhe second example
takes a bit more background, but presents a novel methodhtpute ideal extensions
for argumentation frameworks.

5.1 The Unique Minimal Model Problem

As a first example, we show how to encode the problem of degidimether a given
propositional formulap has a unique minimal model. This problem is known to be
in ©f and to beco-NP-hard (the exact complexity is an open problem). Léte the
intersection of all models op. Theny has a unique minimal model iff is also a
model of p. We thus use our example from the previous section, and défepro-
gramUNIQUE asSATY{;,.,., augmented by rulesk(C) - dfjue(X, X), pos(C, X);
0k(C) = not A" (X, X),neg(C, X); = not ok(C),cl(C).

Theorem 1. For any CNF formulap, it holds thaty has a unique minimal model, if
and only if programUNIQUE U D,, has at least one answer set.

A slight adaption of this encoding allows us to formalize C\Mfasoning [10] over
a propositional knowledge bage since the atoms in ¢, for which the corresponding
atomsdj;i¢ (a, a) are not contained in an answer setST{;,.,., U D, are exactly

those which are added negateditéor CWA-reasoning.

5.2 Computing the Ideal Extension

Our second example is from the area of argumentation, whengroblem of computing
the ideal extension [12] of an abstract argumentation freonle was recently shown
to be complete fonFPﬂIP in [14]. Thus, this task cannot be compactly encoded via
normal programs (under usual complexity theoretic assiomgt On the other hand,
the complexity shows that employing disjunction is not reseey, if one instead uses
weak constraints. We first give the basic definitions follogj15].

Definition 9. An argumentation framework (AR} a pair F' = (A, R) whereA C Y
is a set of arguments anl C A x A. (a,b) € R means that attacksb. An argument
a € Aisdefendedy S C A (in F) if, for eachb € A such that(b, a) € R, there exists
ac € S, such thatc,b) € R. An argument: is admissible (inF) w.r.t. a setS C A if
eachb € A which attacks: is defended by

Semantics for argumentation frameworks are given in tefras-galled extensions.
The next definitions introduce two such notions which alsdauty the concept of an
ideal extension.

Definition 10. Let I’ = (A, R) be an AF. A sef C A is said to beconflict-free (in
F), if there are nau, b € S, such that(a, b) € R. A setS is anadmissible extensioof
F, if S is conflict-free inF" and eachu € S is admissible inf" w.r.t. S. The collection
of admissible extensions is denoteddayn (F). An admissible extensiofi of F' is a
preferred extensioaf F, if for eachT € adm(F), S ¢ T. The collection of preferred
extensions of" is denoted byref (F).

Definition 11. Let F' be an AF. A sefS is calledideal for F, if S € adm(F) and
S € Nreprepcry T- A maximal (w.r.t. set-inclusion) ideal set 6tis called anideal
extensiorof F.

It was shown that for each AF, a unique ideal extension exists. In [14], the fol-
lowing algorithm to compute the ideal extension of an BE= (A, R) is proposed. Let
Xp = A\Useadm(F)SandX;: ={a € A|Vbc: (ba)(a,c) € R= bce
X} \ X, and define an AF™* = (X} U X}, R*) whereR* = RN {(a,b), (b,a) |
a € Xj,be X, }. F*is a bipartite AF in the sense th&t is a bipartite graph.

Proposition 6 ([14]). The ideal extension of AF is given byUSEadm(F*)(S nxXE).

The set of all admissible atoms for a bipartite AFean be computed in polynomial
time using Algorithm 1 of [16]. This is basically a fixpointitation identifying argu-
ments inX; that cannot be in an admissible extension: First, argunients = X ;5
are excluded, which are attacked by unattacked argumetisi{vare necessarily in
X7), yielding X;. Now, arguments itk . may be unattacked b¥;, and all arguments
in X attacked by such newly unattacked arguments should bedaatlThis process is
iterated until either no arguments are left or no more arguro@n be excluded. There
may be at mostX ;| iterations in this process.

We exploit this technique to formulate an ASP-encodib@:AL. We first report a
program the answer sets of which characterize admissitdmsions. Then, we use the
brave manifold of this program in order to determine all angats contained in some
admissible extension. Finally, we extend this manifoldgoamn in order to identify™*
and to simulate Algorithm 1 of [16].

The argumentation frameworks will be givenlIdEAL as sets of input facts. Given
anAFF = (A, R),letDp = {a(z) | v € A}U{x(z,y) | (z,y) € R}. ProgramADM,
given by the rules below, computes admissible extensidnfl(g 18]):

in(X) - not out(X), a(X); out(X) = not in(X), a(X); def(X) - in(Y), (Y, X);
= in(X),in(Y),r(X,Y); - in(X),r(Y, X),not def(Y).

Indeed one can show that, given an AF the answer sets dADM U Dy are
in a one-to-one correspondence to the admissible extensiaf via thein(-) predi-
cate. In order to determine the brave consequencad$d for predicatein, we form
ADM’;?H}, and extend it by collecting all brave consequencesldoM U D in predi-

catein(-), from which we can determin& . (represented bin ™ (-)), X (represented
by in™ (), using auxiliary predicataot_in™ (-)), andR* (represented by(-, -)).

in(X) = di*(X,X); in™ (X) = a(X),not in(X); in™(X) = in(X), not not_in™ (X);
not_in*(X) - in(Y),r(X,Y); not_in™(X) - in(Y), r(Y,X);
qa(X,Y) = 1(X,Y),in"T(X),in" (Y); a(X,Y) - r(X,Y),in" (X),inT(Y).

In order to simulate Algorithm 1 of [16], we use the elementsi;: for marking
the iteration steps. To this end, we use an arbitrary orden ASP constants (all ASP
systems provide such a predefined order) and define succedisoum and supremum
among the constants representiig w.r.t. the order.

) 3 in+(X)a
suce(X,Y) = inT(X),inT(Y), X<V, not nsucc(X,Y);
ninf(Y) = in™(X),in"(Y), X<Y; nsup(X) - in"(X),in"(Y), X<Y;
) = in"(X)

inf(X) - in*(X),not ninf(X); sup(X) - in*(X), not nsup(X).

n(Y),in*(2), X<Y,Y<Z;

—-

nsucc(X,

We now use this to iteratively determine arguments that atémthe ideal exten-
sion, usingnid(-, -), where the first argument is the iteration step. In the fiesation
(identified by the infimum) all arguments ik} which are attacked by an unattacked
argument are collected. In subsequent iterations, allaegnis from the previous steps
are included and augmented by arguments that are attacleddrgument not attacked
by arguments inY;. that were not yet excluded in the previous iteration. Fipalt-
guments in the ideal extension are those that are not extlsden X} in the final
iteration (identified by the supremum).

atto(X) - q(V,X); att;(J,Z) - q(Y,Z),in"(Y),not nid(J,Y),in™ (J);
ideal(X) = in™(X),sup(l),not nid(I,X); nid(1,Y) = succ(J,I),nid(J,Y);
nid(1,Y) = inf(1),q(Z,Y),in"(Y), not atto(Z);

nid(1,Y) = suce(J,I),q(Z,Y),in*(Y),not att;(J,Z).

If we put ADM’;?H} and all of these additional rules together to form the progra
IDEAL, we obtain the following result:

Theorem 2. Let F be an AF andd € AS(IDEALU Dpr). Then, the ideal extension of
Fis given by{a | ideal(a) € A}.

6 Conclusion

In this paper, we provided a novel method to rewrite ASP-paots in such a way that
reasoning over all answer sets of the original program cafotreulated within the
same program. Our method exploits the well-known conceptestk constraints. We
illustrated the impact of our method by encoding the prolsief(i) deciding whether
a propositional formula in CNF has a unique minimal moded &) computing the
ideal extension of an argumentation framework. Known c@xip} results witness that
our encodings are adequate in the sense that efficient AShliaigs without weak
constraints or similar constructs are assumed to be irfieasi

The manifold program for cautious consequences is alselgloslated to the con-
cept of data disjunctions [19] (this paper also containstaildel discussion about the
complexity class9f and related classes for functional problems). Related wask
also been done in the area of default logic, where a methodefmsoning within a
single extension has been proposed [20]. That method usegarsables which charac-
terize the set of generating defaults of the original extars Such an approach differs
considerably from ours as it encodes certain aspects oktharstics (which ours does
not), which puts it closer to meta-programming (cf. [21]).

As future work, we are interested in developing a suitabhdglege for expressing
reasoning with brave, cautious and definite consequenit®sireg also for mixing dif-
ferent reasoning modes. This language should serve adarpidor natural encodings

i
of problems in complexity classe3!’, 671, FPWP, andFPﬁ2 . Moreover, we intend
studying the use of alternative preferential constructdace of weak constraints.

References

1. Marek, V.W., Truszczyhski, M.: Stable models and anralve logic programming
paradigm. In: The Logic Programming Paradigm — A 25-Yearspective. (1999) 375—
398

2. Niemela, I.: Logic programming with stable model sen@nas a constraint programming
paradigm. Ann. Math. Artif. Intell25(3—4) (1999) 241-273

3. Baral, C.: Knowledge Representation, Reasoning andalbaale Problem Solving. CUP
(2002)

4. Gelfond, M.: Representing knowledge in A-Prolog. In: Quiational Logic: From Logic
Programming into the Future. LNCS 2408, (2002) 413-451

5. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaylruszczyhnski, M.: The first
answer set programming system competition. In: LPNMR'QYCS 4483, (2007) 3—-17

6. Bravo, L., Bertossi, L.E.: Logic programs for consiskgquerying data integration systems.
In: IJCAI 2003,(2003) 10-15

7. Sacca, D.: Multiple total stable models are definitelgdesl to solve unique solution prob-
lems. Inf. Process. Leth8(5) (1996) 249-254

8. Buccafurri, F., Leone, N., Rullo, P.: Enhancing disjivetdatalog by constraints. |IEEE
Trans. Knowl. Data Engl2(5) (2000) 845-860

9. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, Berri, S., Scarcello, F.: The dlv
system for knowledge representation and reasoning. ACMsTi@omput. Log7(3) (2006)
499-562

10. Reiter, R.: On closed world data bases. In: Logic andlizestas. Plenum Press (1978) 55-76

11. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation ifficietl intelligence. Artif. Intell.
171(10-15) (2007) 619-641

12. Dung, P.M., Mancarella, P., Toni, F.: Computing ide@&izal argumentation. Artif. Intell.
171(10-15) (2007) 642—-674

13. Gelfond, M., Lifschitz, V.: Classical negation in logicograms and disjunctive databases.
New Generation Compu®(3/4) (1991) 365-386

14. Dunne, P.E.: The computational complexity of ideal sgina I: Abstract argumentation
frameworks. In; COMMA08, |0S Press (2008) 147-158

15. Dung, P.M.: On the acceptability of arguments and itsléumental role in nonmonotonic
reasoning, logic programming and n-person games. Artiélllriy7(2) (1995) 321-358

16. Dunne, P.E.: Computational properties of argumenesysisatisfying graph-theoretic con-
straints. Artif. Intell.171(10-15) (2007) 701-729

17. Osorio, M., Zepeda, C., Nieves, J.C., Cortés, U.: hiigracceptable arguments with answer
set programming. In: ENC 2005 (2005) 198-205

18. Egly, U., Gaggl, S., Woltran, S.: Answer-set programgnémcodings for argumentation
frameworks. In: Proceedings ASPOCP’08. (2008)

19. Eiter, T., Veith, H.: On the complexity of data disjumets. Theor. Comput. Sc28§1)
(2002) 101-128

20. Delgrande, J.P., Schaub, T.: Reasoning credulouslgkaqtically within a single extension.
Journal of Applied Non-Classical Logid2(2) (2002) 259-285

21. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Computingferred answer sets by meta-
interpretation in answer set programming. TR3(R-5) (2003) 463-498

