
Max-ASP:
Maximum Satisfiability of Answer Set Programs?

Emilia Oikarinen and Matti Järvisalo

Helsinki University of Technology TKK
Department of Information and Computer Science

PO Box 5400, FI-02015 TKK, Finland
emilia.oikarinen@tkk.fi, matti.jarvisalo@tkk.fi

Abstract. This paper studies answer set programming (ASP) in the generalized
context of soft constraints and optimization criteria. In analogy to the well-known
Max-SAT problem of maximum satisfiability of propositional formulas, we intro-
duce the problems of unweighted and weighted Max-ASP. Given a normal logic
program P , in Max-ASP the goal is to find so called optimal Max-ASP models,
which minimize the total cost of unsatisfied rules in P and are at the same time
answer sets for the set of satisfied rules in P . Inference rules for Max-ASP are
developed, resulting in a complete branch-and-bound algorithm for finding opti-
mal models for weighted Max-ASP instances. Differences between the Max-ASP
problem and earlier proposed related concepts in the context of ASP are also dis-
cussed. Furthermore, translations between Max-ASP and Max-SAT are studied.

1 Introduction
Answer set programming (ASP) is a well-studied declarative programming paradigm
that has proven to be an effective approach to knowledge representation and reasoning
in various hard combinatorial problem domains. The task of answer set solvers is to
find answer sets of ASP programs, representing solutions to the underlying decision
problem instance at hand. However, it can often be the case that the problem instance
has no solutions since it may be over-constrained. While answer set solvers can in this
case prove the non-existence of answer sets, instead of a simple ”no” answer, a ”near-
solution” would be of interest, i.e., an interpretation that is optimal with respect to a
specific minimization or maximization criterion, such as the number of unsatisfied rules
in the program. For example, in debugging ASP programs (see e.g. [1] and references
therein), such an interpretation, or optimal solution, could give hints to the reasons for
the non-existence of answer sets through a minimal set of unsatisfied rules.

In the field of Boolean satisfiability (SAT), which has close connections to ASP
especially from the viewpoint of solver technology, interest in methods for solving the
Max-SAT problem (the optimization variant (or generalization) of SAT) has risen es-
pecially during recent years [2–4]. Motivation for Max-SAT, where the interest is in
optimal truth assignments with respect to the number of unsatisfied clauses, and es-
pecially its weighted variant, comes from the possibilities of expressing and solving
various optimization and probabilistic reasoning tasks via (weighted) Max-SAT.
? This work is financially supported by Academy of Finland under the project Methods for

Constructing and Solving Large Constraint Models (grant #122399).

In this paper, we study the problem analogous to Max-SAT for normal logic pro-
grams under the stable model semantics, namely Max-ASP, or maximum satisfiability of
answer set programs. In other words, given a normal logic program and integer weights
for each rule in the program, in weighted Max-ASP the goal is to find optimal Max-ASP
models that minimize the total cost (sum of weights) of unsatisfied rules in the program
and are at the same time a stable model for remaining (satisfied) rules of the program.

Our contributions are many-fold. In addition to considering basic properties of (op-
timal) Max-ASP models, we develop various inference (or transformation) rules for
reasoning about the optimal cost of Max-ASP instances. Based on the transformation
rules, we present a complete branch-and-bound algorithm for determining the optimal
cost and an associated optimal model for any Max-ASP instance, also in the weighted
case. In fact, the algorithm can be viewed as a generalization of complete search meth-
ods proposed for ASP, as some of the presented transformation rules are in a sense
generalizations of tableau rules [5] for ASP inference applied in ASP solvers. We also
study the relation between Max-ASP and Max-SAT with translations which preserve
the solutions between the problems. Furthermore, we discuss differences between Max-
ASP and other generalizations [6–9] of answer sets/answer set programs which have a
similar flavor. For example, in contrast to Max-ASP, often costs are assigned on literals
instead of rules, penalizing the inclusion or exclusion of specific atoms in an answer set
of the program at hand, and often answer sets for the whole program are still sought.

This paper is organized as follows. After necessary concepts related to ASP (Sect. 2),
we define the Max-ASP problem and discuss properties of optimal Max-ASP models
(Sect. 3). We then (Sect. 4) define various transformation rules which preserve the cost
of all Max-ASP models and present a complete algorithm for determining the opti-
mal cost of any weighted Max-ASP instance. Before conclusions, translations between
Max-ASP and Max-SAT (Sect. 5), and the question of how earlier proposed related
concepts can be expressed in Max-ASP (Sect. 6), are considered.

2 Preliminaries
We consider normal logic programs (NLPs) in the propositional case. A normal logic
program Π consists of a finite set of rules of the form

r : h← a1, . . . , an,∼b1, . . . ,∼bm, (1)

where h, ai’s, and bj’s are propositional atoms. A rule r consists of a head, head(r) =
h, and a body, body(r) = {a1, . . . , an,∼b1, . . . ,∼bm}. The symbol “∼” denotes de-
fault negation. A default literal is an atom a, or its default negation ∼a. The set of
atoms occurring in a program Π is atom(Π), and dlits(Π) = {a,∼a | a ∈ atom(Π)}
is the set of default literals in Π . We use the shorthands L+ = {a | a ∈ L} and
L− = {a | ∼a ∈ L} for a set L of default literals. Furthermore, we define body(Π) =⋃

r∈Π{body(r)}, and def(a,Π) = {r ∈ Π | head(r) = a}.
In ASP, we are interested in stable models [10] (or answer sets) of a programΠ . An

interpretation M ⊆ atom(Π) defines which atoms of Π are true (a ∈ M) and which
are false (a 6∈M). An interpretationM ⊆ atom(Π) satisfies a set L of literals, denoted
M |= L, if and only if L+ ⊆ M and L− ∩M = ∅; and M satisfies a rule r ∈ Π ,
denoted M |= r, if and only if M |= body(r) implies head(r) ∈ M . An interpretation

M ⊆ atom(Π) is a (classical) model of Π , denoted by M |= Π , if and only if M |= r
for each rule r ∈ Π . A model M of a program Π is a stable model of Π if and only
if there is no model M ′ ⊂ M of ΠM , where ΠM = {head(r) ← body(r)+ | r ∈
Π and body(r)− ∩M = ∅} is called the Gelfond-Lifschitz reduct of Π with respect to
M . The set of stable models of Π is denoted by SM(Π).

Additional concepts relevant in this work are related to loops. The positive de-
pendency graph of Π , denoted by Dep+(Π), is a directed graph with atom(Π) and
{〈b, a〉 | ∃r ∈ Π such that b = head(r) and a ∈ body(r)+} as the sets of vertices
and edges, respectively. A non-empty set L ⊆ atom(Π) is a loop in Dep+(Π) if for
any a, b ∈ L there is a path of non-zero length from a to b in Dep+(Π) such that all
vertices in the path are in L; loop(Π) denotes the set of all loops in Dep+(Π). The set
of external bodies of a loop L in Π is

ebΠ(L) = {body(r) | r ∈ Π, head(r) ∈ L, body(r)+ ∩ L = ∅}.

3 Max-ASP
As a central starting point of this work, in this section we define unweighted and
weighted Max-ASP and discuss some interesting properties of Max-ASP models.

Definition 1. Given a NLP Π , an interpretation M ⊆ atom(Π) is a Max-ASP model
for Π , if M is a stable model for some subset-maximal Π ′ ⊆ Π (there is no Π ′′ ⊃ Π ′

such that M ∈ SM(Π ′′)). The cost of M is |Π \Π ′|. A Max-ASP model is optimal if it
has minimum cost over all Max-ASP models for Π .

In this work we are especially interested in finding optimal Max-ASP models. We de-
note the set of all optimal Max-ASP models of a NLP Π by MaxSM(Π).

Example 1. Consider Π = {a← ∼b. b← ∼c. c← ∼a}. Now SM(Π) = ∅, but M =
{a} is a Max-ASP model for Π , since M ∈ SM(Π ′) for Π ′ = {a ← ∼b. c ← ∼a}.
The cost of M is |{b ← ∼c}| = 1. Also ∅ (cost 3), {b} (cost 1), and {c} (cost 1) are
Max-ASP models of Π . Thus MaxSM(Π) = {{a}, {b}, {c}} since ∅ is not optimal.

Notice that Max-ASP models have the following basic properties:

1. Every NLP Π has a Max-ASP model; at least ∅ ⊆ Π trivially has a stable model.
2. If M is a Max-ASP model for Π such that M ∈ SM(Π ′) for subset-maximal
Π ′ ⊆ Π , then M 6|= r for all r ∈ Π \Π ′.

3. The sets of optimal Max-ASP models and stable models for Π coincide if and only
if Π has a stable model, i.e., MaxSM(Π) = SM(Π) if and only if SM(Π) 6= ∅.

4. If M ∈ MaxSM(Π) such that M ∈ SM(Π ′) for subset-maximal Π ′ ⊆ Π , then
SM(Π ′′) = ∅ for all Π ′′ ⊃ Π ′.

3.1 Weighted Max-ASP

In analogy with weighted Max-SAT, Max-ASP allows for a natural extension to the
weighted case where the rules can be weighted with integer costs.

Definition 2. A weighted normal logic program is a pair P = 〈Π,W 〉, where Π is a
NLP and W : Π → N is a function that associates a nonnegative integer (a weight)
with each rule in Π .

We use the notation introduced in Section 2 in analogous way for weighted NLPs, e.g.,
atom(P) = atom(Π) for P = 〈Π,W 〉.

The concept of a weighted Max-ASP model is then naturally defined as follows.

Definition 3. Given a weighted NLP P = 〈Π,W 〉, a Max-ASP model M for Π is a
(weighted) Max-ASP model for P . The cost of a Max-ASP model M which is a stable
model for subset-maximal Π ′ ⊆ Π is

∑

r∈Π\Π′
W (r).

A Max-ASP model is optimal if it has minimum cost over all Max-ASP models for P .

We denote by MaxSM(P) the set of all optimal (weighted) Max-ASP models of P .
Notationally, we represent a weighted NLP P = 〈Π,W 〉 as a set of pairs

{(r;w) | r ∈ Π and w = W (r)}.

Example 2. ConsiderP = {(a← ∼b; 5), (b← ∼a; 5), (c← a, b; 1), (d← ∼c,∼d; 1)}.
Now, SM(P) = ∅, as the first two rules choose either a or b to be true, while the last
rule requires that c is true. But to satisfy this, both a and b need to be true. The weights
assigned for the rules imply that the mutual exclusion of a and b is more important than
satisfaction of the constraint for c. Thus, MaxSM(P) = {{a}, {b}} which both have
cost 1, as the rule d← ∼c,∼d is not satisfied. Notice that there is no Max-ASP model
for P such that c is true, because no subset of the rules in P has such a stable model.

It is worth noticing that the properties of unweighted Max-ASP models discussed in
Section 3 also hold in the weighted case.

The weighted variant of Max-ASP is in fact more expressive than the unweighted
case. Namely, the decision problems of determining whether a (weighted) NLP has an
optimal (weighted) Max-ASP model of cost less than a given value is in PNP[log n] and
PNP for the unweighted and weighted case, respectively1. This is due to similar results
for the well-known Max-SAT and weighted Max-SAT problems [11].

4 Branch-and-Bound for Max-ASP
In this section we present a branch-and-bound algorithm for finding the cost of an opti-
mal Max-ASP model of a weighted NLP P . The algorithm applies a set of equivalence-
preserving transformation rules. For presenting these transformations and the branch-
and-bound algorithm, we start with some additional notation.

We will assume that an explicit proper upper bound > is known for the cost of an
optimal Max-ASP model for a weighted NLP P = 〈Π,W 〉. This is in analogy with [3],

1 The unweighted case can be decided in deterministic polynomial time using logarithmic num-
ber of calls to an NP-oracle, while a linear number of calls are required for the weighted case.

where a similar approach is applied in the context of Max-SAT. Notice that any value
larger than the sum of the weights of all the rules of a program gives such an upper
bound>. Given a weighted NLP P = 〈Π,W 〉, an upper bound>, and an interpretation
M ⊆ atom(P), the cost ofM in P , denoted by cost(M,P,>), is c =

∑
r∈Π\Π′W (r)

if M ∈ SM(Π ′) for subset maximal Π ′ ⊆ Π such that c < >, and > otherwise.
Furthermore, M is a Max-ASP model for P if cost(M,P,>) < >, and M is optimal
if it has minimum cost over all Max-ASP models for P .

For a given upper bound >, all rules which have weight w > > must necessarily
be satisfied. Thus, such rules can be interpreted as hard, whereas rules with a weight
less than > are soft. Without loss of generality, we can limit all the costs to the interval
[0 . . .>] and define w1 ⊕ w2 = min(w1 + w2,>). Finally, we use the symbol ¤ to
denote falsity, i.e., a rule that is always unsatisfied. Thus, if (¤, w) ∈ P , then the cost
of any Max-ASP model for P is at least w, and if w = >, then P is unsatisfiable, i.e.,
has no Max-ASP models.

Remark 1. By setting > = 1, the problem of finding a Max-ASP model for a weighted
NLP P = 〈Π,W 〉 reduces to the problem of finding a stable model for Π .

Next, we will present the transformation rules which form a central part of our
branch-and-bound algorithm for weighted Max-ASP.

4.1 Equivalence-Preserving Transformations
For presenting transformations preserving Max-ASP models, we begin by defining
when two weighted NLPs are equivalent.

Definition 4. Weighted NLPsP1 andP2 with a common upper bound> are equivalent,
denoted by 〈P1,>〉 ≡ 〈P2,>〉, if

1. atom(P1) = atom(P2), and
2. cost(M,P1,>) = cost(M,P2,>) for all M ⊆ atom(P1) = atom(P2).

Notice that in order P1 and P2 to be equivalent they need to have the same upper bound.
Furthermore, notice that it is not sufficient that MaxSM(P1) = MaxSM(P2) holds, but
in addition, the cost of each interpretation has to be the same.

Remark 2. With > = 1, i.e., when a stable model is sought, the relation ≡ turns out to
be the same as ordinary or weak equivalence, which requires that P1 and P2 have the
same set of stable models. Notice that the additional condition atom(P1) = atom(P2)
can always be satisfied, e.g., by adding rules of the form a← a.

Given weighted NLPs P , P1 ⊆ P , and P2, we use P1 ≡P P2 as a shorthand for

〈P,>〉 ≡ 〈(P \ P1) ∪ P2,>〉.
Finally, we use shorthands (a;w) and (∼a;w) where a ∈ atom(Π) for weighted lit-
erals; and (B;w) and (∼B;w) where B ∈ body(Π) for weighted bodies and their
complements which can appear in a weighted NLP P = 〈Π,W 〉. These shorthands are
easily presented with weighted rules, e.g., ({l1, . . . , ln};w) is a shorthand for weighted
rules (f ← ∼f,∼l;w) and (l ← l1, . . . , ln;>); and (∼{l1, . . . , ln};w) for (f ←
∼f, l;w) and (l← l1, . . . , ln;>), where f and l do not appear in atom(Π).

First we present transformation rules for aggregation, hardening, and lower-bounding.

Proposition 1. Let P = 〈Π,W 〉 be a weighted NLP with an upper bound >. If ψ
is a rule r ∈ Π (only in Items 1 and 2), a default literal l ∈ dlits(Π), or a body
B ∈ body(Π) or its complement ∼B, then the following equivalences hold:

1. Aggregation: {(ψ;w1), (ψ;w2)} ≡P {(ψ;w1 ⊕ w2)}
2. Hardening: {(ψ;w1), (¤;w2)} ≡P {(ψ;>), (¤;w2)}, if w1 ⊕ w2 = >
3. Lower-bounding: {(ψ;>), (∼ψ;w)} ≡P {(ψ;>), (¤;w)}

The hardening rule allows one to identify rules that are equivalent to hard counterparts:
the violation of (ψ;w1) has cost >. The lower-bounding rule makes the lower bound
implied by the violation of a hard constraint explicit. The proof of Proposition 1 is
omitted due to space constraints.

The next transformations are for inference between bodies and literals in the bodies.

Proposition 2. LetP = 〈Π,W 〉 be a weighted NLP,> an upper bound, l and l′ literals
in dlits(Π), and B ∈ body(Π). The following equivalences hold:

4. Forward true body (FTB): {(l;>) | l ∈ B} ≡P {(l;>) | l ∈ B} ∪ {(B;>)}
5. Backward false body (BFB):

{(∼B;>)} ∪ {(l;>) | l ∈ B \ {l′}}
≡P {(∼B;>)} ∪ {(l;>) | l ∈ B \ {l′}} ∪ {(∼l′;>)}

6. Forward false body (FFB): {(∼l;>)} ≡P {(∼l;>), (∼B;>)}, if l ∈ B
7. Backward true body (BTB): {(B;>)} ≡P {(B;>), (l;>))}, if l ∈ B

All these transformation rules require the constraints involved be hard, and this way
a body is interpreted as a conjunction of its default literals. Without going into further
details, we note that the correctness of these transformations follows from the similarity
with sound ASP inference rules for normal logic programs presented in [5].

Finally, we have transformations relating head atoms with the rules defining them.

Proposition 3. Let P = 〈Π,W 〉 be a weighted NLP and > an upper bound. The fol-
lowing equivalences hold:

8. Forward true atom (FTA):
{(B;>), (h← B;w)} ≡P {(B;>), (h← B; 0), (h;w)}

9. Backward false atom (BFA):
{(∼h;>), (h← B;w)} ≡P {(∼h;>), (h← B; 0), (∼B;w)}

10. Forward false atom (FFA):

{(∼B;>) | B ∈ body(def(h,Π))}
≡P {(∼B;>) | B ∈ body(def(h,Π))} ∪ {(∼h;>)}

11. Forward loop (FL): Let h ∈ L and L ∈ loop(Π). Then
{(∼B;>) | B ∈ ebΠ(L)} ≡P {(∼B;>) | B ∈ ebΠ(L)} ∪ {(∼h;>)}

12. Backward true atom (BTA):

{(∼B;>) | B ∈ body(def(h,Π)) \ {B′}} ∪ {(h;>)}
≡P {(∼B;>) | B ∈ body(def(h,Π)) \ {B′}} ∪ {(h;>), (B′;>)}

For understanding these transformations, we note that since a Max-ASP model needs
to be a stable model for some subset of rules, only hard constraints are inferred in
FFA, FL, and BTA. On the other hand, the “soft” transformation rules FTA and BFA
correspond to satisfaction of rules (the cost of a Max-ASP model M comes from the
rules r such that M 6|= r). Moreover, the precise form of FTA and BFA is related to
the global nature of FFA, FL, and BTA. Instead of removing the rule in question when
applying FTA or BFA, we change its cost to zero. There is no cost involved if a rule
with zero cost is unsatisfied, but nevertheless, the effect of such rules needs to be taken
into account when applying FFA, FL, and BTA. We now consider the correctness of the
transformation rules FTA and FFA in more detail. The other cases are similar.

FTA: Let

P = P ′ ∪ {(B;>), (h← B;w)} and P ′′ = P ′ ∪ {(B;>)}, (h← B; 0), (h;w),

and consider arbitrary M ⊆ atom(P). If M 6|= B, then cost(M,P,>) = > and
cost(M,P ′′,>) = >. If M |= B, then M 6|= h ← B if and only if h 6∈ M . Thus,
either {(h ← B;w)} and {(h;w), (h ← B; 0)} are both satisfied in M , or neither
of them is satisfied, and cost(M,P,>) = cost(M,P ′′,>).

FFA: Let

P = 〈Π,W 〉 = P ′ ∪ {(∼B;>) | B ∈ body(def(h,Π))} and
P ′′ = P ′ ∪ {(∼B;>) | B ∈ body(def(h,Π))} ∪ {(∼h;>)},

and consider arbitraryM ⊆ atom(P). If h 6∈M , then it holds that cost(M,P ′′,>) =
cost(M,P,>). If h ∈M , then cost(M,P ′′,>) = >. Assume that cost(M,P,>) <
>. Then there is Π ′ ⊆ Π such that M = SM(Π ′). However, M 6|= B for all
B ∈ body(def(h,Π)). This implies that there can be no rule r in Π ′ such that
head(r) = h and M |= body(r), and furthermore, h 6∈M . This is a contradiction,
and thus, cost(M,P,>) = >.

4.2 Branch-and-Bound

We are now ready to introduce a depth-first branch-and-bound algorithm which, given a
weighted NLPP and a cost upper bound>, determines the cost of the optimal weighted
Max-ASP models of P given that the optimal cost is less than >. The method, pre-
sented as Algorithm 1, applies the equivalence-preserving transformations introduced
in Propositions 1, 2, and 3 in PROPAGATE(P,>) (Line 1). After applying the transfor-
mations, the algorithm makes choices by case analysis on (l;>), where l ∈ dlits(P),
such that (l;>) 6∈ P (represented by the choice heuristic SELECTLITERAL(P) on Line
4). This leads to a complete search for determining the cost of Max-ASP models of
weight less than >. The algorithm can also easily be modified to also return an optimal
model in addition to its cost (as demonstrated in Example 3). If there are no models
with cost less than >, the algorithm returns > (Line 2). Recall that the lower-bounding
rule guarantees that {(a;>), (∼a;>)} ⊆ P is impossible.

While a formal correctness proof is omitted here, the correctness is based on the fact
that, once (a;>) ∈ P or (∼a;>) ∈ P for all a ∈ atom(P) (Line 2), the transformation

Algorithm 1 MAXASP(P,>).
1. P := PROPAGATE(P,>)
2. if (¤,>) ∈ P then return >
3. if ∀a ∈ atom(P) either (a;>) ∈ P or (∼a;>) ∈ P then

3a. if (¤, w) ∈ P then return w
3b. else return 0

4. l := SELECTLITERAL(P)
5. v := MAXASP(P ∪ {(l;>)},>)
6. v := MAXASP(P ∪ {(∼l; v)}, v)
7. return v

rules are complete in the sense that they assure that the lower bound can not be tightened
further. Since the transformation rules also guarantee that the current weighted NLP
remains equivalent to the original one, the current lower bound is the optimal cost.

The following example illustrates a run of the algorithm.

Example 3. Consider P = {(b ← a; 1), (a ← b; 2), (a ← ∼c; 3)} with > = 7.
We start with PROPAGATE(P,>). Since atom c has no defining rules, we can apply
FFA and obtain P ∪ {(∼c;>)}. We continue by applying FTB and FTA and get P1 =
{(b ← a; 1), (a ← b; 2), (a ← ∼c; 0), (∼c;>), ({∼c};>), (a; 3)}. None of the
transformation rules is applicable to P1, and the stopping criteria on Line 2 and Line 3
do not hold. Thus we make a choice. Let SELECTLITERAL(P) return ∼a.

– We add (∼a;>) to P1 and after propagation using FFB, lower-bounding, FFA, and
FFB, we obtain

P2 = {(b← a; 1), (a← b; 2), (a← ∼c; 0), (∼c;>), ({∼c};>),
(∼a;>), (∼{a};>), (¤; 3), (∼b;>), (∼{b};>)}.

No further propagation is applicable, and the condition on Line 3 holds. Now,
{a ∈ atom(P) | (a;>) ∈ P2} = ∅ and cost(∅,P,>) = cost(∅,P2,>) = 3.
Furthermore, ∅ is a (not necessarily optimal) Max-ASP model for P2, and thus also
for P . We set > = 3 and continue the search by backtracking.

– After adding (a; >) toP1, we get {(b← a; 0), (a← b; 2), (a← ∼c; 0), (∼c;>),
({∼c};>), (a;>), ({a};>), (b; 1)} by application of aggregation, FTB, and FTA.
Let SELECTLITERAL(P) return b. After the use of aggregation and FTB we have

P3 = {(b← a; 0), (a← b; 0), (a← ∼c; 0), (∼c;>), ({∼c};>), (a;>),
({a};>), (b; >), ({b};>)}.

Now, M = {a, b} = {a ∈ atom(P) | (a;>) ∈ P3} and cost(M,P,>) =
cost(M,P3,>) = 0. Thus we have found an optimal Max-ASP model, which in
this case is a stable model for the NLP.

Remark 3. In the case > = 1, the transformation rules in Propositions 2 and 3 re-
semble closely inference rules in tableau calculi for ASP proposed in [5]. In fact, Al-
gorithm 1 can be viewed as a generalization of complete search methods proposed

for ASP, as some of the presented transformation rules are generalizations of tableau
rules [5]. However, for compactness we have intentionally left out additional trans-
formation rules (related to well-founded sets and loops) which would generalize their
counterparts in [5].

5 From Max-ASP to Max-SAT
In this section we analyze the relationship between Max-ASP and Max-SAT, giving
solution-preserving translations between these problems. For this we first briefly go
through necessary concepts related to Max-SAT.

Let X be a set of Boolean variables. Associated with every variable x ∈ X there
are two literals, the positive literal, denoted by x, and the negative literal, denoted by x̄.
A clause is a disjunction of distinct literals. We view a clause as a finite set of literals
and a CNF formula as a finite set of clauses. A truth assignment τ associates a truth
value τ(x) ∈ {false, true} with each variable x ∈ X . A truth assignment satisfies a
CNF formula if and only if it satisfies every clause in it. A clause is satisfied if and only
if it contains at least one satisfied literal, where a literal x (x̄, respectively) is satisfied
if τ(x) = true (τ(x) = false, respectively). A CNF formula is satisfiable if there is a
truth assignment that satisfies it, and unsatisfiable otherwise.

A weighted CNF formula is a pair W = 〈C,W 〉, where C is a CNF formula and
W : C → N is a function that associates a nonnegative integer with each clause in C.

Definition 5. Given a weighted CNF formulaW = 〈C,W 〉, an upper bound >, and a
truth assignment τ for C, the cost of τ in W , denoted by cost(τ,W,>), is the sum of
weights of the clauses not satisfied by τ . If cost(τ,W,>) < >, τ is a Max-SAT model
forW , and τ is optimal if it has minimum cost over all Max-SAT models forW .

5.1 Max-ASP as Max-SAT

The translation from Max-ASP to Max-SAT is based on a typical translation from ASP
to SAT, i.e., Clark’s completion [12, 13] with loop formulas [14]. In the following, we
assume without loss of generality that ri 6= rj for all rules ri, rj ∈ Π in a weighted
NLP P = 〈Π,W 〉. Furthermore, we use shorthands as follows: if l is a default literal,
i.e., a or ∼a, then xl = xa if l = a, and xl = x̄a if l = ∼a.

Definition 6. Given a weighted NLP P = 〈Π,W 〉 with an upper bound >, the trans-
lation MaxSAT(P,>) consists of the following weighted clauses:
1. For each a ∈ atom(Π):

({xa, x̄B1};w1), . . . , ({xa, x̄Bm};wm) and ({xB1 , . . . , xBm , x̄a};>),
where Bi = body(ri) and wi = W (ri) for each ri ∈ def(a,Π).

2. For each B = {l1, . . . , ln} ∈ body(Π):
({xl1 , x̄B};>), . . . , ({xln , x̄B};>), and ({xB , x̄l1 , . . . , x̄ln};>).

3. For each L ∈ loop(Π) and each a ∈ L:
({xB1 , . . . , xBm , x̄a};>) where ebΠ(L) = {B1, . . . , Bm}.

There is a bijective correspondence between the Max-ASP models of P and Max-SAT
models of its translation MaxSAT(P,>).

Theorem 1. Given a weighted NLP P = 〈Π,W 〉, an upper bound >, and a Max-ASP
model M for P with cost w < >, the truth assignment

τ(x) =





true, if x = xa for a ∈ atom(Π) and a ∈M,
true, if x = xB for B ∈ body(Π) and M |= B,
false, otherwise.

is a Max-SAT model for MaxSAT(P,>) with cost w.

Proof. Let M be a Max-ASP model for P = 〈Π,W 〉 with cost w, τ defined as in
Definition 6, and Π ′ ⊆ Π subset-maximal such that M ∈ SM(Π ′).

Consider first the clauses in Item 2 of Definition 6. Assume that clause ({xl, x̄B};>)
is not satisfied by τ , i.e., τ(xl) = false and τ(xB) = true. But thenM 6|= l andM |= B
which leads to contradiction as l ∈ B. Similarly, τ satisfies all clauses of the form
({xB , x̄l1 , . . . , x̄ln};>); and furthermore, τ satisfies all clauses in Item 2.

Next, notice that the hard clauses in Item 3 are effectively the loop formulas of Π
in clausal form [14]. Assume now that there is a clause ({xB1 , . . . , xBm

, x̄a};>) that
τ does not satisfy, i.e, τ(xBi

) = false for all i and τ(xa) = true. Thus M 6|= B for all
B ∈ ebΠ(L) and there is a ∈ M ∩ L. Since a ∈ M and M = LM((Π ′)M), there is a
rule r ∈ (Π ′)M such that a = head(r) andM |= body(r). Moreover, body(r)∩L 6= ∅,
since M 6|= B for all B ∈ ebΠ(L). Thus there is b ∈ body(r) ∩ L ∩M . Continuing
this process, one notices that M |= L and moreover, L ∈ loop(Π ′). Since Π ′ ⊆ Π ,
also ebΠ′(L) ⊆ ebΠ(L). Therefore M 6|= B for all B ∈ ebΠ′(L), and there is a loop
formula of Π ′ not satisfied in M . This is a contradiction to M ∈ SM(Π ′), since a
stable model of a program must satisfy all its loop formulas [14]. Thus, τ satisfies all
the clauses in Item 3.

As regards the weighted clauses in Item 1, we notice that if a ∈ M , then there is
a rule a ← B ∈ def(a,Π ′) ⊆ def(a,Π) such that M |= B, i.e., τ(xa) = true and
τ(xB) = true for some B ∈ body(def(a,Π)). Thus τ satisfies all weighted clauses
in Item 1. On the other hand, if a 6∈ M , then we notice that M 6|= body(r) for all
r ∈ def(a,Π) ∩ Π ′ and M |= body(r) for all r ∈ def(a,Π) \ Π ′. The cost of
clauses related to def(a,Π) which τ does not satisfy is the same as the cost of rules
r ∈ def(a,Π) such that M 6|= r. Thus, the overall cost of violated clauses is exactly
the cost of rules in Π \Π ′. ¤

Remark 4. Note that if > = 1, all clauses are hard, and MaxSAT(P,>) is a clausal
form of Clark’s completion of P with loop formulas of P . Thus, M ∈ SM(P) if and
only if τ satisfies MaxSAT(P, 1) [14].

Theorem 2. Given a weighted NLP P = 〈Π,W 〉, an upper bound >, and a Max-SAT
model τ with cost w < > for MaxSAT(P,>), the interpretation

{a ∈ atom(Π) | τ(xa) = true}
is a Max-ASP model for P with cost w.

Proof. Assume that τ is a Max-SAT model for MaxSAT(P,>) with cost w < >, and
M = {a ∈ atom(Π) | τ(xa) = true}. Define Π ′ = {r ∈ Π | M |= r} and
P ′ = 〈Π ′,W ′〉 such that W ′(r) = W (r) for all r ∈ Π ′.

Let us consider MaxSAT(P ′, 1). Since w < >, the clauses in Item 2 of Definition
6 of MaxSAT(P,>) force that τ(xB) = true if and only if τ(xl) = true for all l ∈
B. Furthermore, since body(Π ′) ⊆ body(Π), τ satisfies all the clauses in Item 2 of
MaxSAT(P ′, 1) as well.

Consider arbitrary a ∈ atom(Π). If a ∈ M , i.e., τ(xa) = true, then def(a,Π ′) =
def(a,Π). Then MaxSAT(P ′, 1) contains the same clauses related to def(a,Π ′) as
MaxSAT(P,>), and furthermore, τ satisfies all these clauses. If a 6∈ M , i.e., τ(xa) =
false, then for all r ∈ def(a,Π ′) it holds thatM 6|= body(r). Thus τ satisfies all clauses
related to def(a,Π ′).

Consider an arbitrary L ∈ loop(Π ′) ⊆ loop(Π). If ebΠ′(L) = ebΠ(L), then τ
satisfies all clauses in Item 3 of MaxSAT(P ′, 1). Assume ebΠ′(L) ⊂ ebΠ(L) and con-
sider arbitrary a ∈ L. If a 6∈ M , i.e., τ(xa) = false, then τ satisfies the clause in Item
3 related to a. If a ∈ M , i.e., τ(xa) = true, then there is B ∈ body(def(a,Π ′)) such
that τ(xB) = true, i.e., M |= B, since τ satisfies the clause ({xB1 , . . . , xBm , x̄a};>)
for {B1, . . . , Bm} = body(def(a,Π ′)). If B ∈ ebΠ′(L) then τ satisfies all clauses in
Item 3 related to L. If B 6∈ ebΠ′(L), then B ∩ L 6= ∅, and thus M |= B implies that
there is a′ ∈ L ∩M , i.e., τ(xa′) = true. Again, there must be B′ ∈ body(def(a′,Π ′))
such that τ(xB′) = true, i.e., M |= B′. If B′ ∈ ebΠ′(L), we are done as τ satisfies
all clauses in Item 3 related L. Assume now that τ(xB) = false for all B ∈ ebΠ′(L).
Continuing the process we notice that a ∈M for all a ∈ L. Since τ satisfies the clauses
in Item 3 of MaxSAT(P,>) there is B ∈ ebΠ(L) \ ebΠ′(L) such that τ(xB) = true.
Thus, there is r ∈ Π \Π ′ such that B = body(r) and head(r) ∈ L. Since r 6∈ Π ′, it
holds that head(r) 6∈M . This is in contradiction with L ⊆M , and therefore τ satisfies
all clauses in Item 3 of MaxSAT(P ′, 1).

Now, τ is a Max-SAT model for MaxSAT(P ′, 1) with cost 0, i.e., M is a stable
model of Π ′. Finally, note that the sum of the weights of the rules in Π \Π ′ is w. ¤

5.2 Max-SAT as Max-ASP

There is a natural linear-size translation from CNF formulas to NLPs so that there is a
bijective correspondence between the satisfying truth assignments of any CNF formula
and stable models of its translation [15]. We give a generalization of the translation to
establish a similar correspondence between Max-SAT and Max-ASP. If l is a literal,
i.e., variable x or its negation x̄, then ∼al = ax if l = x̄ and ∼al = ∼ax if l = x. We
assume without loss of generality that Ci 6= Cj for all clauses Ci, Cj ∈ C in a weighted
CNF formulaW = 〈C,W 〉.
Definition 7. Given a weighted CNF formula W = 〈C,W 〉 with an upper bound >,
the translation MaxASP(W,>) consists of the following weighted rules:
1. For each clause Ci = {l1, . . . , ln} ∈ C:

(fi ← ∼fi,∼al1 , . . . ,∼aln ;wi), where wi = W (Ci).
2. For each variable x in C: (âx ← ∼ax;>), and (ax ← ∼âx;>).

Theorem 3. LetW = 〈C,W 〉 be a weighted CNF formula, and > an upper bound.

– If τ is a Max-SAT model forW with cost w < >, then
{ax | τ(x) = true} ∪ {âx | τ(x) = false}

is a Max-ASP model for MaxASP(W,>) with cost w.
– If M is a Max-ASP model for MaxASP(W,>) with cost w < >, then

τ(x) =
{

true, if ax ∈M, and
false, if âx ∈M.

is a Max-SAT model forW with cost w.

6 Related Approaches in ASP

In this section we discuss the similarities and differences of Max-ASP and some exten-
sions of stable models most closely related to Max-ASP models.

Simons et al. [7] consider an extended ASP language including cardinality and
choice rules and, especially, optimize statements. An optimize statement is a mini-
mize statement or its dual, a maximize statement. A minimize statement is of the form
MINIMIZE(a1 = wa1 , . . . , an = wan

,∼b1 = wb1 , . . . ,∼bm = wbm
) where ai’s and

bj’s are atoms. First, recall that several optimize statements can be encoded into a
single one with suitable weights [7]. Now, given a program Π and a minimize state-
ment, the goal is to find a stable model M for Π such that

∑
ai∈M wai +

∑
bi 6∈M wbi

is minimized. For an NLP Π , we can view this optimization problem as a weighted
NLP P where all the rules from Π are hard, and in addition, there are soft constraints
(f ← ∼f, ai;wai) for each 1 ≤ i ≤ n and (f ← ∼f,∼bi;wbi) for each 1 ≤ i ≤ m.

Buccafurri et al. [6] consider strong and weak constraints in disjunctive Datalog
programs. A strong constraint is of the form ← a1, . . . , an,∼b1, . . . ,∼bm which can
be viewed as a rule f ← ∼f, a1, . . . , an,∼b1, . . . ,∼bm. Thus, a stable model must
necessarily satisfy all the strong, i.e., hard constraints. A weak constraint is of the form
⇐ a1, . . . , an,∼b1, . . . ,∼bm, and it is possible to set different priorities for weak con-
straints. The goal is to minimize the number of unsatisfied weak constraints according
to their priorities. In the case of NLPs, weak constraints can be represented in a natural
way in Max-ASP by using weights for expressing priorities.

On the other hand, while (weighted) Max-ASP can be expressed with NLPs and
either minimize statements or weak constraints (all three problems have the same com-
plexity), we do not see an immediate and natural way of encoding Max-ASP in the
other two formalisms.

Gebser et al. [9] introduce ι-stable models, which have similar properties as (un-
weighted) Max-ASP models. An interpretation M ⊆ atom(Π) is a ι-stable model for
NLP Π , if M = LM(Π ′∅) for some subset maximal Π ′ ⊆ Π such that body+(Π ′) ⊆
LM(Π ′∅) and body−(Π ′) ∩ LM(Π ′∅) = ∅. It is worth noticing that a ι-stable model
M of Π is a stable model of Π if and only if M |= Π , and the same applies to Max-
ASP models. It is straightforward to see that a ι-stable model M for Π is a Max-ASP
model for Π . However, ι-stable models are not necessarily optimal Max-ASP models.
For instance, Π1 = {a ← ∼d. b ← ∼e. c ← a, b. e ← ∼a} [9] has two ι-stable
models, namely {e}, and {a, b, c}. Now, SM(Π1) = {{a, b, c}} and {e} is not optimal.
On the other hand, a Max-ASP model of a NLP is not necessarily a ι-stable model. For
instance, consider Π2 = {a← ∼c. a← b, c. b← a. b← c. c← a, b} from [9, Ex-
ample 6.3]. Now, MaxSM(Π2) = {∅, {a}, {a, b}} which each have cost one. However,
{a, b} is the unique ι-stable model of Π2.

7 Conclusions

We study the unweighted and weighted Max-ASP problems from several different an-
gles. Most importantly, we develop sound transformation rules for Max-ASP inference,
based on which we present a complete algorithm for computing optimal weighted Max-
ASP models. Translations between Max-ASP and Max-SAT are also developed, in ad-
dition to relating Max-ASP to related concepts in ASP.

Our branch-and-bound algorithm builds ground for implementations for Max-ASP
search. We find that the study of inference and search methods, including study of
additional transformation rules as well as solver development, for (weighted) Max-
ASP could prove a fruitful direction for further study. Additionally, we aim to study
translation-based approaches for solving Max-ASP as, e.g., Max-SAT, so that the al-
ready developed Max-SAT solvers can be exploited in analogy to SAT-based approaches
to ASP such as [14].

References

1. Gebser, M., Pührer, J., Schaub, T., Tompits, H.: A meta-programming technique for debug-
ging answer-set programs. In: Proc. AAAI’08, AAAI Press (2008) 448–453

2. Li, C., Manyá, F.: MaxSAT, hard and soft constraints. In: Handbook of Satisfiability. IOS
Press (2009)

3. Larrosa, J., Heras, F., de Givry, S.: A logical approach to efficient Max-SAT solving. Artifi-
cial Intelligence 172(2–3) (2008) 204–233

4. Bonet, M., Levy, J., Manyà, F.: Resolution for Max-SAT. Artificial Intelligence 171(8–9)
(2007) 606–618

5. Gebser, M., Schaub, T.: Tableau calculi for answer set programming. In: Proc. ICLP’06.
Volume 4079 of LNCS., Springer (2006) 11–25

6. Buccafurri, F., Leone, N., Rullo, P.: Enhancing disjunctive datalog by constraints. IEEE
Transactions on Knowledge and Data Engineering 12(5) (2000) 845–860

7. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1–2) (2002) 181–234

8. Brewka, G., Niemelä, I., Truszczynski, M.: Answer set optimization. In: Proc. IJCAI’03,
Morgan Kaufmann (2003) 867–872

9. Gebser, M., Gharib, M., Mercer, R., Schaub, T.: Monotonic answer set programming. Journal
of Logic and Computation (in press (2009)) doi:10.1093/logcom/exn040.

10. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proc.
ICLP/SLP’88, MIT Press (1988) 1070–1080

11. Papadimitriou, C.: Computational Complexity. Addison-Wesley (1995)
12. Clark, K.: Negation as failure. In: Readings in nonmonotonic reasoning. Morgan Kaufmann

Publishers (1987) 311–325
13. Fages, F.: Consistency of Clark’s completion and existence of stable models. Journal of

Methods of Logic in Computer Science 1 (1994) 51–60
14. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers.

Artificial Intelligence 157(1–2) (2004) 115–137
15. Niemelä, I.: Logic programs with stable model semantics as a constraint programming

paradigm. Annals of Mathematics and Artificial Intelligence 25(3–4) (1999) 241–273

