
Bridging the Gap between High-Level Reasoning
and Low-Level Control

Ozan Caldiran, Kadir Haspalamutgil, Abdullah Ok, Can Palaz,
Esra Erdem, and Volkan Patoglu

Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey

Abstract. We present a formal framework where a nonmonotonic formalism (the
action description language C+) is used to provide robots with high-level reason-
ing, such as planning, in the style of cognitive robotics. In particular, we introduce
a novel method that bridges the high-level discrete action planning and the low-
level continuous behavior by trajectory planning. We show the applicability of
this framework on two LEGO MINDSTORMS NXT robots, in an action domain
that involves concurrent execution of actions that cannot be serialized.

1 Introduction

As robotics technology is broadening its applications from factory to more general-
purpose applications in public use, demands from robots shift from speed and precision
towards safety and cognition. New levels of robustness, physical dexterity, and cognitive
capability are necessitated from robots that can perform in dynamic environments in-
volving humans. While traditional robotics design and construct extremely rigid robots
with high position control gains, cognitive robotics [1] is concerned with providing
robots with higher level cognitive functions that involve reasoning about goals, percep-
tion, actions, the mental states of other agents, collaborative task execution, etc., so that
they can give high-level decisions to act intelligently in a dynamic world. This paper is
an attempt to close the gap between traditional robotics and cognitive robotics, to meet
the demands of various applications from robots.

There have been various studies to close the gap between traditional robotics and
cognitive robotics, by implementing high-level robot control systems based on differ-
ent families of formalisms for reasoning about actions and change. For instance, [2]
describes a system, LEGOLOG1, that controls a LEGO MINDSTORMS RIS robot us-
ing the high-level control language GOLOG [3] based on the situation calculus [4,5]. [6]
presents an execution monitoring system for GOLOG and the RHINO control software
which operates on RWI B21 and B14 mobile robots. [7] studies coordination of soccer
playing robots, using an extension of GOLOG. In the WITAS Unmanned Aerial Vehi-
cle Project2 temporal action logic [8], features and fluents [9], and cognitive robotics
logic [10] are used for representing the actions and the events, as a part of a helicopter
control system [11]. [12] describes how event calculus [13,14] can be used to provide

1 http://www.cs.toronto.edu/cogrobo/Legolog
2 http://www.ida.liu.se/ext/witas

E. Erdem, F. Lin, and T. Schaub (Eds.): LPNMR 2009, LNCS 5753, pp. 342–354, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.cs.toronto.edu/cogrobo/Legolog
http://www.ida.liu.se/ext/witas

Bridging the Gap between High-Level Reasoning and Low-Level Control 343

Execute the plan

Computea plan

Ac onDomain Descrip on
(formalized in C+)

Planning Problem

Plan

Obtain a trajectory

Trajectory

MASTERCOMPUTER

NXT

SENSORS MOTORS Log le

Messages

CCalc

C++

Sendmessages NeXTTOOL

NXC

Python

LEGOMINDSTORMS

BLU
ETO

O
TH

Fig. 1. The overall system architecture

high-level control for a Khepera robot. The agent programming language FLUX [15],
based on the fluent calculus [16], has also been used to control the execution of some
robots.3 For instance, [17] presents how FLUX can be used for monitoring the execution
of a plan, on a Pioneer 2 mobile robot.

We continue this line of research to provide traditional robotics with high-level rea-
soning in the style of cognitive robotics, with a different formalism (i.e., the action de-
scription language C+ [18]), a different reasoner (i.e., CCALC4), a different robot (i.e.,
LEGO MINDSTORMS NXT), and most importantly with a different method, which
bridges the high-level discrete action planning and the low-level continuous behavior
with “trajectory planning”.

Also we consider high-level reasoning in a different sort of action domain that involves
concurrent execution of actions that cannot be serialized. In particular, we study planning
problems that require two robots to pick up and carry a payload from an initial location
to a goal location, on a maze, while avoiding obstacles. The idea is for the robots to
automatically generate a plan, and then execute it collaboratively (Fig. 1). In this domain,
the robots can follow complex paths (not necessarily a straight path marked a priori, as in
LEGOLOG) avoiding obstacles; this is why our system has trajectory planning between
the high-level discrete action planning and the low-level continuous behavior. We can
describe this action domain (in particular, the frame problem, the ramification problem,
the qualification problem, nonserializable concurrency) in C+ in a straightforward way.

3 http://www.fluxagent.org/projects.htm
4 http://www.cs.utexas.edu/users/tag/cc

http://www.fluxagent.org/projects.htm
http://www.cs.utexas.edu/users/tag/cc

344 O. Caldiran et al.

Our main contributions can be summarized in two parts:

– Action description languages [19] are well-studied for various sorts of high-level
reasoning about actions and change. On the other hand, unlike the other formalisms
mentioned above, it has not been shown on a real robot how high-level reason-
ing performed within an action description language can be useful for traditional
robotics. In that sense, our work is the first to demonstrate the use of action de-
scription languages for high-level reasoning and control of robots, in the style of
cognitive robotics.

– LEGO MINDSTORMS NXT is available at a relatively low price and is widely
available all over the world compared to more sophisticated robots. It allows one
to build various kinds of robots, and write programs to control them. Also, the
high-level reasoning component based on the action description language C+ can
be replaced by one based on a different formalism. These features of the overall
system enable the reproduction and improvement of our work for educational and
research purposes by other researchers who study action description languages,
other formalisms for reasoning about actions and change, cognitive robotics, and
also traditional robotics.

In the rest of the paper, first we describe the overall system shown in Fig. 1. After
we describe the particular action domain and the kind of planning problems we are
interested in, we formalize them in the language of CCALC. After that, we explain how
a plan computed by CCALC is executed by a LEGO MINDSTORMS NXT robot. We
conclude with a discussion on the results and the challenges, as well as the future work.

2 The Overall System Architecture

The overall architecture of our high-level reasoning and control platform is illustrated
in Fig. 1.

We start with a description of an action domain in the action description language
C+ [18]. The idea is, based on this description, to plan the actions of two LEGO MIND-
STORMS NXT robots to achieve a common goal. For that, we use the reasoner CCALC.
Given an initial state and goal conditions, CCALC computes a plan to reach a goal state,
and displays the complete history (including the state information). From such a history,
we extract the trajectories of the robots (including the positions and the orientations of
the joints of the robots) using inverse kinematics; these trajectories are obtained from a
history automatically with a C++ program. After that, we pass these trajectories to the
robots, by means of messages via Bluetooth communication, using the program NeXT-
Tool. All these tasks are automatically performed on a PC using a Python program.

The brain of a LEGO MINDSTORMS NXT robot is NXT—an embedded controller
(with an ARM7 microprocessor) capable of processing messages via the Bluetooth
communication, and sending signals to three motors. In our work, two motors are used
for movements of the robot on a plane; a third motor is used for the rotation of the
robot arm. Since gripping would require an additional degree of freedom, a permanent
magnet is used as the end-effector; by this way, a payload with metal endpoints can be
grabbed by the robots. Several methods and languages exist for programming NXTs.

Bridging the Gap between High-Level Reasoning and Low-Level Control 345

Due to its documentation and relative ease of use, we use the programming language
NXC to control the movements of the robots according to the received messages.

3 Example: Two Robots and a Payload

Consider two robots, and a payload (a long metal stick) on a platform. Suppose that
each robot has a magnet at its end-effector so that it can hold the payload only at one
end. None of the robots can carry the payload alone; they have to hold the payload at
both ends to be able to carry it. The goal is to place the payload at a specified goal
position on the platform.

3.1 Action Domain Description

We view the platform as a maze. We represent the robots by the constants r1 and r2. We
describe the payload by its end points, and denote them by the constants pl1 and pl2.

We characterize each robot by its end-effector, and describe its position by a grid
point on the maze. The location (X,Y) of a robot R is specified by two functional
fluents, xpos(R)=X and ypos(R)=Y. Similarly, the location (X,Y) of an end point P1
of the payload is specified by two fluents, xpay(P1)=X and ypay(P1)=Y. Movements
of a robot R in some direction D are described by actions of the form move(R,D). Each
such action has an attribute that specifies the number of steps to be taken by the robot.

In the following, suppose that R denotes a robot, P1 and P2 denote the end points of
the payload, N and N1 range over nonnegative integers 1, ..., maxN, and D and D1 range
over all directions, up, down, right, left. Also suppose that X1, X2, Y1, Y2 range
over nonnegative integers 1, ..., maxXY.

We present the causal laws in the language of CCALC.

Direct effects of actions. We describe the effect of a robot’s moving right, by the causal
laws

move(R,right) causes xpos(R)=X2 if steps(R,right)=N & xpos(R)=X1
where X2=X1+N & X2 =< maxN.

Similarly, we describe the effects of moving in other directions.

Ramifications. If a robot R is at the same location as an end point P1 of the payload,
the end-effector of that robot attracts that end point:

caused on(R,P1) if xpos(R)=xpay(P1) & ypos(R)=ypay(P1).

Then the location of the payload is determined by the locations of the robots:

caused xpay(P1)=X1 if on(R,P1) & xpos(R)=X1.
caused ypay(P1)=Y1 if on(R,P1) & ypos(R)=Y1.

Preconditions of actions. We describe that a robot cannot move in opposite directions
by the causal laws

346 O. Caldiran et al.

nonexecutable move(R,up) & move(R,down).
nonexecutable move(R,left) & move(R,right).

We describe each robot’s range of motion, taking into account the Pythagorean Theo-
rem, by the causal laws

nonexecutable move(R,D) & move(R,D1)
if D @< D1 & steps(R,D)=N & steps(R,D1)=N1
where N*N+N1*N1 > maxN*maxN.

The robots can carry the payload only if both of them hold the payload at its end points.

nonexecutable move(R,D) if -canCarry & on(R,P1).

The conditions under which two robots can carry the payload are described by
canCarry:

caused canCarry if on(r1,P1) & on(r2,P2) & P1\=P2
after on(r1,P1) & on(r2,P2) & P1\=P2.

Note that it is required by the causal laws above that the robots wait for one step imme-
diately after they hold the payload at both ends.

Constraints. We make sure that a payload cannot move places unless it is carried by
the causal laws

caused false if xpay(P1)=X1 & X1\=X2
after -canCarry & xpay(P1)=X2.

caused false if ypay(P1)=Y1 & Y1\=Y2
after -canCarry & ypay(P1)=Y2

Since CCALC can only deal with integers, we cannot keep track of the exact locations
of the payload. (Consider, for instance, moving one end of the horizontally-situated
payload up by 2 steps.) Therefore, we allow the payload’s length change with a small
tolerance for a more flexible motion. Suppose that linklengthsq denotes the square
of the length of the payload; and tolerance denotes the maximum change allowed
in the payload’s length. The following laws ensure that the payload’s length cannot in-
crease/decrease more than tolerance:

caused false
if xpay(pl1)=X1 & xpay(pl2)=X2 & ypay(pl1)=Y1 & ypay(pl2)=Y2
where

(X2-X1)*(X2-X1)+(Y2-Y1)*(Y2-Y1) < (linklengthsq-tolerance) ++
(X2-X1)*(X2-X1)+(Y2-Y1)*(Y2-Y1) > (linklengthsq+tolerance).

To take care of obstacles on the platform (to prevent collisions), we add the following
causal laws:

caused false if xpos(R)=X1 & ypos(R)=Y1
after xpos(R)=X2 & ypos(R)=Y2
where collision(X1,Y1,X2,Y2) &

between(X2-maxN,X2+maxN,X1) & between(Y2-maxN,Y2+maxN,Y1).
caused false

if xpay(pl1)=X1 & ypay(pl1)=Y1 & xpay(pl2)=X2 & ypay(pl2)=Y2
where collision(X1,Y1,X2,Y2).

Bridging the Gap between High-Level Reasoning and Low-Level Control 347

Here collision is an external function defined in C++, and between is an external
SWI Prolog function; both are evaluated in SWI Prolog while grounding the causal
laws. The first law above prevents the robot end-effectors from moving to a position
occupied by an obstacle. The second law ensures that at every state of the world the
payload cannot collide with an obstacle.

3.2 Collision Detection

The constraints above ensure at each step that the length of a payload does not change
more than a specified tolerance, and the robot end-effectors and the payload do not
collide with an obstacle. However, during the plan execution, between any two steps of
the plan, the length of a payload can change out of the specified range, and there may
be collisions. To ensure collision-free trajectories for the robot end-effectors and the
payload, a collision detection algorithm is required.

Such a collision detection algorithm can be implemented in C++ as a function, which
takes as inputs the end-effector coordinates of a robot (or the end point coordinates of
the payload) at the current state and the next state, and returns “true” if the path is free of
collisions. Let’s call this function trajectoryCollision. After that, we can prevent
collision by adding to the description in Section 3.1 the causal laws

caused false
if xpay(pl1)=X1 & ypay(pl1)=Y1 & xpay(pl2)=X2 & ypay(pl2)=Y2
after
xpay(pl1)=X3 & ypay(pl1)=Y3 & xpay(pl2)=X4 & ypay(pl2)=Y4

where trajectoryCollision(X1,Y1,X3,Y3,X2,Y2,X4,Y4) &
between(X3-maxN,X3+maxN,X1) & between(Y3-maxN,Y3+maxN,Y1) &
between(X4-maxN,X4+maxN,X2) & between(Y4-maxN,Y4+maxN,Y2).

However, there are too many of such causal laws (due to the 8 schematic variables).
(Grounding the schematic law above takes more than an hour if we reduce the grid size
and restrict the collision detection check to a small set of possible positions of the robot
end-effectors.) We can modify trajectoryCollision so that it takes 6 variables
instead (the positions of one of the end points and the orientation of the payload at the
current state and the next state) to uniquely determine the current and the next positions
of the robot end-effectors and the payload; add new definitions for the orientations; and
modify the schematic causal law above. However, these modifications do not reduce the
grounding time sufficiently.

Therefore, instead of adding to the action domain descriptionD in Section 3.1 causal
laws with too many variables, we apply Algorithm 1. The idea is to compute a plan with
D using CCALC, and then check whether such a plan could lead to a trajectory collision.
If such a collision is detected between Steps i and i + 1, then we extract the location L
of the payload and the action A executed at Step i and ask CCALC for a different plan
that does not execute A at a state where the payload is located at L. It is important to
note that CCALC grounds the action domain only once at the very first iteration of the
algorithm; after that, no grounding is done to compute a collision-free plan.

348 O. Caldiran et al.

Algorithm 1. PLAN

Input: An action domain description D, a planning problem P
Output: A collision-free plan P of length at most n, if exists

plan := false; // no collision-free plan is computed so far
while ¬plan do

plan, P, H ← Compute a plan P of length at most n, within a history H , using CCALC

withD and P , if there exists such a plan;
if plan then

collision := false; // no trajectory collision is detected so far
i := 0;
while ¬collision AND i ≤ |P | do

Δ ← Extract the relevant parameters from the history H to uniquely identify the
positions of the robot end-effectors at Steps i and i + 1;
// Extract the location L of the payload and the action A executed at Step i, if a collision
is detected
collision, L, A← trajectoryCollision(Δ);
i + +;

end while
if ¬collision then

return P
else
P ← Modify the planning problem P to compute a plan that does not execute A at a
state where the payload is located at L;
plan := false;

end if
end if

end while

4 Finding a Collision-Free Plan

Suppose that initially the robots r1 and r2 are at (1,1) and (2,1) respectively, and
the end points of the payload are at (4,1) and (9,1). The goal is to move the payload
to a location so that its end points are at (4,9) and (9,9). This planning problem can
be described in the language of CCALC by means of a “query” as follows:

:- query
maxstep :: 0..infinity;
0: -canCarry, xpos(r1)=1, ypos(r1)=1, xpos(r2)=1, ypos(r2)=1,

xpay(pl1)=4, ypay(pl1)=1, xpay(pl2)=9, ypay(pl2)=1;
maxstep: xpay(pl1)=9, ypay(pl1)=9, xpay(pl2)=4, ypay(pl2)=9.

CCALC then computes the following plan (Plan 1) for this problem:

0: move(r1,up,steps=2) move(r1,right,steps=2) move(r2,up,steps=3)
1: move(r1,up,steps=3) move(r1,right,steps=2) move(r2,up,steps=2)

move(r2,right,steps=3)
2: move(r1,down,steps=3) move(r1,right,steps=2) move(r2,down,steps=2)

move(r2,right,steps=3)
3: move(r1,down,steps=2) move(r1,left,steps=3) move(r2,down,steps=3)

Bridging the Gap between High-Level Reasoning and Low-Level Control 349

move(r2,right,steps=2)
4:
5: move(r2,up,steps=3) move(r2,left,steps=1)
6: move(r1,up,steps=2) move(r1,right,steps=2)

move(r2,up,steps=3) move(r2,right,steps=1)
7: move(r1,up,steps=2) move(r1,right,steps=3)

move(r2,up,steps=2) move(r2,left,steps=3)
8: move(r1,up,steps=4) move(r2,left,steps=2)

However, while executing this plan, between time units 7 and 8, the payload collides
with the obstacle as illustrated in Fig. 2. Therefore, from the history CCALC computed,
we extract the position L of the payload at Step 7:

xpay(pl1)=6 xpay(pl2)=9 ypay(pl1)=3 ypay(pl2)=7

and the actions A executed at Step 7:

move(r1,up,steps=2) move(r1,right,steps=3)
move(r2,up,steps=2) move(r2,left,steps=3)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

x−position

y−
po

si
tio

n

Robot 1
Robot 2
Obstacles
Payload

7

7

8

8

Fig. 2. This figure illustrates the execution of Plan 1 on the robot system, at time step 7. Colors
blue, red, green and black are associated with the Robots 1 and 2, the payload, and the obstacles,
respectively. Circles and their labels indicate the positions of the robot end-effectors, while the
thick green lines denote the position of the payload at each step according to the history calculated
by CCALC. For instance, according to the computed history, at Step 7, the end-effectors of Robots
1 and 2 are located at (6,3) and (9,7) respectively, holding the end points of the payload. The
thinner green lines denote the payload configuration constructed from the motor encoder data.
Observe that, although at time steps 7 and 8 the payload does not collide with the obstacles,
between time steps 7 and 8 it does collide with the obstacles. Also the length of the payload
changes more than the allowable tolerance.

350 O. Caldiran et al.

After that, we ask CCALC to find a different plan that does not execute the actions A at
a state where the payload is located at L, by modifying the query above as follows:

:- query
label::5;
maxstep :: 9..infinity;
0: -canCarry, xpos(r1)=1, ypos(r1)=1, xpos(r2)=1, ypos(r2)=1,

xpay(pl1)=4, ypay(pl1)=1, xpay(pl2)=9, ypay(pl2)=1;
maxstep: xpay(pl1)=9, ypay(pl1)=9, xpay(pl2)=4, ypay(pl2)=9;
T<maxstep ->> (

((T: xpay(pl1)=6) && (T: ypay(pl1)=3) &&
(T: xpay(pl2)=9) && (T: ypay(pl2)=7)) ->>

-((T: move(r1,up)) && (T: steps(r1,up)=2) &&
(T: move(r1,right)) && (T: steps(r1,right)=3) &&
(T: move(r2,up)) && (T: steps(r2,up)=2) &&
(T: move(r2,left)) && (T:steps(r2,left)=3))).

Then CCALC computes the following plan (Plan 2)

0: move(r1,up,steps=2) move(r1,right,steps=3)
move(r2,up,steps=2) move(r2,right,steps=3)

1: move(r1,up,steps=2) move(r1,right,steps=3)
move(r2,up,steps=2) move(r2,right,steps=3)

2: move(r1,down,steps=1) move(r1,right,steps=2)
move(r2,down,steps=3) move(r2,left,steps=1)

3: move(r1,down,steps=3) move(r2,down,steps=1) move(r2,left,steps=2)
4:
5: move(r1,up,steps=4) move(r2,up,steps=1) move(r2,right,steps=1)
6: move(r1,up,steps=4) move(r2,up,steps=2) move(r2,right,steps=3)
7: move(r1,left,steps=3) move(r2,up,steps=1) move(r2,right,steps=1)
8: move(r1,left,steps=2) move(r2,up,steps=4)

According to this plan, for instance, at Step 7, Robot 1 moves left by 3 units, and Robot
2 moves up by 1 unit and right by 1 unit.

5 Executing a Plan on LEGO Robots

Once CCALC computes a plan for a given problem, it logs the complete history (includ-
ing the state information). From such a plan, the positions of the robot end-effectors at
each time step can be extracted. The simplest approach for executing the plan would be
to convert these state values into motor angles and use these values as set-point refer-
ences for the motors. However, set-point tracking does not guarantee a linear motion of
the end-effector, and may cause collisions with the obstacles. To obtain more straight
trajectories, a simplified trajectory tracking controller is implemented by introducing in-
termediate steps to the plan using linear interpolation. Then, these intermediate points
are mapped to robot joint variables.

Bridging the Gap between High-Level Reasoning and Low-Level Control 351

p

s
s

l l

lp

robot 1

payload

robot 2

(x ,y)2 2(x ,y)1 1

Fig. 3. Schematic representation of two robots carrying a payload

0: Initial State

2

4

6

8

1

3

5

7

9: Goal State

Fig. 4. Snapshot taken at each step of the plan

352 O. Caldiran et al.

Fig. 3 depicts a schematic representation of two planar robots carrying a payload.
For each robot i, its end-effector is located at a grid point (xi,yi) and its corresponding
joint variables are denoted as (si,θi). The forward kinematics of each robot maps its
joint variables to its end-effector coordinates and reads as

xi = si + li cos(θi) (1)

yi = li sin(θi) (2)

while the inverse kinematics maps the end-effector coordinates to the joint variables
and is given as

si = xi ±
√

l2i − y2
i (3)

θi = atan2
(
±

√
l2i − y2

i , yi

)
(4)

where li represents the length of each robot arm. One can observe that two feasible
solutions exist for the inverse kinematics of each robot and the ± signs in equations (3)
and (4) are coupled.

After the joint space trajectories are calculated, they are passed to the robots, by
means of messages via Bluetooth communication, using the NeXTTool program. Based
on these joint space trajectories, the computed plan is executed by the robots via an
NXC program. Algorithm 2 presents the structure of the NXC program used for the
low level control of the robots.

To locate a robot at a reference configuration within an acceptable error margin, it
is essential that the actual configuration of the robot is checked with respect to the ref-
erence configuration. Hence, a feedback controller is necessitated. Due to its ease of
implementation, a proportional feedback controller (P-controller) is employed to en-
sure a robust tracking of the robots in the joint space. The P-controller continually
compares the reference and actual joint variables and compensates for the error term by

Algorithm 2. NXC Program
Input: Trajectories (a list of reference angles)
Output: Log file

Check for the Bluetooth communication
Go to the initial configuration
Wait for the start signal
while There is a trajectory to follow do

Read the reference angles
while Not at the reference angles do

Read the motor angles
Calculate the error in motor position
Rotate the motor to compensate for the error
Record the motor angles

end while
end while

Bridging the Gap between High-Level Reasoning and Low-Level Control 353

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

x−position

y−
po

si
tio

n

0 0

1 1

2 2

3

3

44 55

6

6

7

7

8

8

9 9

Robot 1
Robot 2
Obstacles
Payload

Fig. 5. This figure illustrates the execution of Plan 2 on the robot system. Colors blue, red, green
and black are associated with the Robots 1 and 2, the payload, and the obstacles, respectively.
Circles and their labels indicate the positions of the robot end-effectors, while the thick green lines
denote the position of the payload at each step according to the history calculated by CCALC.
For instance, according to the computed history, initially, the end-effectors of robots are located
at the grid point (1,1), and the payload lies between the points (4,1) and (9,1); at Step 6, the end-
effectors of Robots 1 and 2 are located at (9,5) and (5,2) respectively, holding the end points of
the payload. Blue and red lines represent the end-effector trajectories of each robot, while thinner
green lines denote the payload configuration as constructed from the motor encoder data. The
black lines represent the obstacles.

commanding a counteracting motion that is proportional to the magnitude of the error
signal. The P-controller gain is tuned empirically to achieve acceptably low overshoot
and steady state error of the motor response.

For instance, consider the planning problem described in the previous section. After
CCALC computes a collision-free plan (Plan 2) for the problem as described in the
previous sections, the intermediate points are interpolated and mapped to the robot joint
space as explained above. Then, the LEGO robots trace these trajectories as in Fig.s 4
and 5. Fig. 4 presents snapshots taken at each step of the plan, while Fig. 5 depicts the
trajectories of the robot end-effectors and the payload.

6 Discussion

We have demonstrated with some planning problems in a sample action domain, how
the logic-based formalism C+ can be used to endow two LEGO MINDSTORMS NXT
robots with high-level reasoning in the style of cognitive robotics.

In these experiments, we encountered many challenges. For instance, that CCALC

can handle integers only, caused some difficulties in calculating the exact positions of

354 O. Caldiran et al.

the robots. To deal with this problem, we assumed that the length of the payload might
increase/decrease within a specified tolerance. We also faced control challenges: Lack
of floating point operations in NXC; low encoder resolution, high friction and backlash
of the LEGO motors; and the flexible robot structure due to plastic parts. To address
these challenges we have to upgrade the hardware/software of LEGO MINDSTORMS
NXT robots. The modification of the overall architecture to include monitoring of the
plan execution is a part of the ongoing work.

References

1. Levesque, H., Lakemeyer, G.: Cognitive robotics. In: Handbook of Knowledge Representa-
tion. Elsevier, Amsterdam (2007)

2. Levesque, H.J., Pagnucco, M.: Legolog: Inexpensive experiments in cognitive robotics. In:
Proc. of CogRob, pp. 104–109 (2000)

3. Levesque, H.J., Reiter, R., Lin, F., Scherl, R.B.: GOLOG: A logic programming language for
dynamic domains. JLP 31 (1997)

4. McCarthy, J.: Situations, actions, and causal laws. Technical report, Stanford University
(1963)

5. Levesque, H.J., Pirri, F., Reiter, R.: Foundations for the situation calculus. ETAI 2, 159–178
(1998)

6. Hähnel, D., Burgard, W., Lakemeyer, G.: GOLEX - bridging the gap between logic
(GOLOG) and a real robot. In: Herzog, O. (ed.) KI 1998. LNCS, vol. 1504, pp. 165–176.
Springer, Heidelberg (1998)

7. Ferrein, A., Fritz, C., Lakemeyer, G.: Using GOLOG for deliberation and team coordination
in robotic soccer. Künstliche Intelligenz 1 (2005)

8. Doherty, P., Gustafsson, J., Karlsson, L., Kvarnström, J.: Tal: Temporal action logics lan-
guage specification and tutorial. ETAI 2, 273–306 (1998)

9. Sandewall, E.: Features and Fluents: A Systematic Approach to the Representation of Knowl-
edge about Dynamical Systems. Oxford University Press, Oxford (1994)

10. Sandewall, E.: Cognitive robotics logic and its metatheory: Features and fluents revisited.
ETAI 2, 307–329 (1998)

11. Doherty, P., Granlund, G., Kuchcinski, K., Sandewall, E., Nordberg, K., Skarman, E.,
Wiklund, J.: The WITAS unmanned aerial vehicle project. In: Proc. of ECAI, pp. 747–755
(2000)

12. Shanahan, M., Witkowski, M.: High-level robot control through logic. In: Castelfranchi, C.,
Lespérance, Y. (eds.) ATAL 2000. LNCS (LNAI), vol. 1986, pp. 104–121. Springer, Heidel-
berg (2001)

13. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gen. Comput. 4(1), 67–95
(1986)

14. Miller, R., Shanahan, M.: The event calculus in classical logic - alternative axiomatisations.
ETAI 3(A), 77–105 (1999)

15. Thielscher, M.: FLUX: A logic programming method for reasoning agents. TPLP 5(4-5),
533–565 (2005)

16. Thielscher, M.: Introduction to the fluent calculus. ETAI 2, 179–192 (1998)
17. Fichtner, M., Großmann, A., Thielscher, M.: Intelligent execution monitoring in dynamic

environments. In: Proc. of Workshop on Issues in Designing Physical Agents for Dynamic
Real-Time Environments: World modeling, planning, learning, and communicating, Aca-
pulco, Mexico (2003)

18. Giunchiglia, E., Lifschitz, J.L.V.: Nonmonotonic causal theories. AIJ 153 (2004)
19. Gelfond, M., Lifschitz, V.: Action languages. ETAI 2, 193–210 (1998)

	Bridging the Gap between High-Level Reasoning and Low-Level Control
	Introduction
	The Overall System Architecture
	Example: Two Robots and a Payload
	Action Domain Description
	Collision Detection

	Finding a Collision-Free Plan
	Executing a Plan on LEGO Robots
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

