Skip to main content

K-Partite RNA Secondary Structures

  • Conference paper
Algorithms in Bioinformatics (WABI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5724))

Included in the following conference series:

  • 781 Accesses

Abstract

RNA secondary structure prediction is a fundamental problem in structural bioinformatics. The prediction problem is difficult because RNA secondary structures may contain pseudoknots formed by crossing base pairs. We introduce k-partite secondary structures as a simple classification of RNA secondary structures with pseudoknots. An RNA secondary structure is k-partite if it is the union of k pseudoknot-free sub-structures. Most known RNA secondary structures are either bipartite or tripartite. We show that there exists a constant number k such that any secondary structure can be modified into a k-partite secondary structure with approximately the same free energy. This offers a partial explanation of the prevalence of k-partite secondary structures with small k. We give a complete characterization of the computational complexities of recognizing k-partite secondary structures for all k ≥ 2, and show that this recognition problem is essentially the same as the k-colorability problem on circle graphs. We present two simple heuristics, iterated peeling and first-fit packing, for finding k-partite RNA secondary structures. For maximizing the number of base pair stackings, our iterated peeling heuristic achieves a constant approximation ratio of at most k for 2 ≤ k ≤ 5, and at most \(\frac6{1-(1-6/k)^k} \le \frac6{1-e^{-6}} < 6.01491\) for k ≥ 6. Experiment on sequences from PseudoBase shows that our first-fit packing heuristic outperforms the leading method HotKnots in predicting RNA secondary structures with pseudoknots. Source code, data set, and experimental results are available at http://www.cs.usu.edu/~mjiang/rna/kpartite/.

Supported in part by NSF grant DBI-0743670.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ageev, A.A.: A triangle-free circle graph with chromatic number 5. Discrete Mathematics 152, 295–298 (1996)

    Article  Google Scholar 

  2. Akutsu, T.: Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete Applied Mathematics 104, 45–62 (2000)

    Article  Google Scholar 

  3. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified boolean formulas. Information Processing Letters 8, 121–123 (1979)

    Article  Google Scholar 

  4. van Batenburg, F.H.D., Gultyaev, A.P., Pleij, C.W.A.: An APL-programmed genetic algorithm for the prediction of RNA secondary structure. Journal of Theoretical Biology 174, 269–280 (1995)

    Article  PubMed  Google Scholar 

  5. van Batenburg, F.H.D., Gultyaev, A.P., Pleij, C.W.A., Ng, J., Oliehoek, J.: Pseudobase: a database with RNA pseudoknots. Nucleic Acids Research 28, 201–204 (2000)

    Article  PubMed  PubMed Central  Google Scholar 

  6. Condon, A., Davy, B., Rastegari, B., Zhao, S., Tarrant, F.: Classifying RNA pseudoknotted structures. Theoretical Computer Science 320, 35–50 (2004)

    Article  Google Scholar 

  7. Cong, J., Hossain, M., Sherwani, N.A.: A provably good multilayer topological planar routing algorithms in IC layout designs. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems 12, 70–78 (1993)

    Article  Google Scholar 

  8. Dirks, R.M., Pierce, N.A.: A partition function algorithm for nucleic acid secondary structure including pseudoknots. Journal of Computational Chemistry 24, 1664–1677 (2003)

    Article  CAS  PubMed  Google Scholar 

  9. Eppstein, D.: Testing bipartiteness of geometric intersection graphs. In: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), pp. 860–868 (2004)

    Google Scholar 

  10. Garey, M.R., Johnson, D.S., Miller, G.L., Papadimitriou, C.H.: The complexity of coloring circular arcs and chords. SIAM Journal on Algebraic & Discrete Methods 1, 216–227 (1980)

    Article  Google Scholar 

  11. Haslinger, C., Stadler, P.F.: RNA structures with pseudo-knots: graph theoretical, combinatorial, and statistical properties. Bulletin of Mathematical Biology 61, 437–467 (1999)

    Article  CAS  PubMed  Google Scholar 

  12. Hofacker, I.L.: Vienna RNA secondary structure server. Nucleic Acids Research 31, 3429–3431 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang, F.W.D., Peng, W.W.J., Reidys, C.M.: Folding 3-noncrossing RNA pseudoknot structures (2008), http://arxiv.org/abs/0809.4840v1

  14. Ieong, S., Kao, M.-Y., Lam, T.-W., Sung, W.-K., Yiu, S.-M.: Predicting RNA secondary structure with arbitrary pseudoknots by maximizing the number of stacking pairs. Journal of Computational Biology 10, 981–995 (2003)

    Article  CAS  PubMed  Google Scholar 

  15. Jabbari, H., Condon, A., Zhao, S.: Novel and efficient RNA secondary structure prediction using hierarchical folding. Journal of Computational Biology 15, 139–163 (2008)

    Article  CAS  PubMed  Google Scholar 

  16. Jiang, M.: Approximation algorithms for predicting RNA secondary structures with arbitrary pseudoknots. ACM/IEEE Transactions on Computational Biology and Bioinformatics (to appear), http://dx.doi.org/10.1109/TCBB.2008.109

  17. Kleinberg, J., Tardos, E.: Algorithm Design. Addison-Wesley, Reading (2005)

    Google Scholar 

  18. Lyngsø, R.B.: Complexity of pseudoknot prediction in simple models. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 919–931. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Lyngsø, R.B., Pedersen, C.N.S.: RNA pseudoknot prediction in energy-based models. Journal of Computational Biology 7, 409–427 (2000)

    Article  PubMed  Google Scholar 

  20. Nussinov, R., Pieczenik, G., Griggs, J.R., Kleitman, D.J.: Algorithms for loop matching. SIAM Journal on Applied Mathematics 35, 68–82 (1978)

    Article  Google Scholar 

  21. Rastegari, B., Condon, A.: Parsing nucleic acid pseudoknotted secondary structure: algorithm and applications. Journal of Computational Biology 14, 16–32 (2007)

    Article  CAS  PubMed  Google Scholar 

  22. Reeder, J., Giegerich, R.: Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics 5, 104 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ren, J., Rastegari, B., Condon, A., Hoos, H.H.: HotKnots: Heuristic prediction of RNA secondary structures including pseudoknots. RNA 11, 1494–1504 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rivas, E., Eddy, S.R.: A dynamic programming algorithm for RNA structure prediction including pseudoknots. Journal of Molecular Biology 285, 2053–2068 (1999)

    Article  CAS  PubMed  Google Scholar 

  25. Rødland, E.A.: Pseudoknots in RNA secondary structures: representation, enumeration, and prevalence. Journal of Computational Biology 13, 1197–1213 (2006)

    Article  PubMed  Google Scholar 

  26. Ruan, J., Stormo, G.D., Zhang, W.: An iterated loop matching approach to the prediction of RNA secondary structure with pseudoknots. Bioinformatics 20, 58–66 (2004)

    Article  CAS  PubMed  Google Scholar 

  27. Uemura, Y., Hasegawa, A., Kobayashi, S., Yokomori, T.: Tree adjoining grammars for RNA structure prediction. Theoretical Computer Science 210, 277–303 (1999)

    Article  Google Scholar 

  28. Unger, W.: On the k-colouring of circle-graphs. In: Cori, R., Wirsing, M. (eds.) STACS 1988. LNCS, vol. 294, pp. 61–72. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  29. Unger, W.: The complexity of colouring circle graphs. In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577, pp. 389–400. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  30. Witwer, C., Hofacker, I.L., Stadler, P.F.: Prediction of consensus RNA secondary structures including pseudoknots. IEEE/ACM Transactions on Computational Biology and Bioinformatics 1, 66–77 (2004)

    Article  CAS  PubMed  Google Scholar 

  31. Zuker, M.: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research 31, 3406–3415 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jiang, M., Tejada, P.J., Lasisi, R.O., Cheng, S., Fechser, D.S. (2009). K-Partite RNA Secondary Structures. In: Salzberg, S.L., Warnow, T. (eds) Algorithms in Bioinformatics. WABI 2009. Lecture Notes in Computer Science(), vol 5724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04241-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04241-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04240-9

  • Online ISBN: 978-3-642-04241-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics