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Abstract

With Next Generation Sequencers, sequence based transcriptomic or epigenomic assays
yield millions of short sequence reads that need to be mappedback on a reference genome.
The upcoming versions of these sequencers promise even higher sequencing capacities; this
may turn theread mappingtask into a bottleneck for which alternative pattern matching
approaches must be experimented. We present an algorithm and its implementation, called
MPSCAN, which uses a sophisticated filtration scheme to match a set patterns/reads exactly
on a sequence.MPSCANcan search for millions of reads in a single pass through the genome
without indexing its sequence. Moreover, we show thatMPSCAN offers an optimal average
time complexity, which is sublinear in the text length, meaning that it does not need to exam-
ine all sequence positions. Comparisons with BLAT-like tools and with six specialised read
mapping programs (like BOWTIE or ZOOM) demonstrate thatMPSCANalso is the fastest al-
gorithm in practice for exact matching. Our accuracy and scalability comparisons reveal that
some tools are inappropriate for read mapping. Moreover, weprovide evidence suggesting
that exact matching may be a valuable solution in some read mapping applications. As most
read mapping programs somehow rely on exact matching procedures to perform approximate
pattern mapping, the filtration scheme we experimented may reveal useful in the design of
future algorithms. The absence of genome index givesMPSCAN its low memory requirement
and flexibility that let it run on a desktop computer and avoids a time-consuming genome
preprocessing.

1 Introduction

Next-generation sequencers (NGS), able to yield millions of sequences in a single run, are
presently being applied in a variety of innovative ways to assess crucial biological questions:
to interrogate the transcriptome with high sensitivity [1], to assay protein-DNA interactions at
a genome wide scale [2], or to investigate the open chromatine structure of human cells [3, 4].
Due to their wide applicability, cost effectiveness, and small demand in biological material,
these techniques become widespread and generate massive data sets [5]. These experiments
yield small sequence reads, also calledtags, which need to be positioned on the genome. For
instance, one transcriptomics experiment delivered≃ 8 million different 27 bp tags, which were
then mapped back to the genome. Only the tags mapping to a unique genomic location served
to predict novel transcribed regions and alternative transcripts [6]. Generally, further analyses
concentrate on those tags mapped to a unique genomic location [7].
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The goal of tag mapping is to find for each tag the best matchinggenomic position. The
ELAND program, which belongs to the bioinformatic pipeline delivered with the Solexa/IlluminaR©

1G sequencer, reports first an exact matching location if oneis found, and otherwise seeks for
locations that differ by 1 or 2 mismatches.

In the vast pattern matching literature, numerous guaranteed algorithms have been described
to match exactly or approximately a pattern in a text (i.e. a read in a sequence), but only a few
have been implemented to process efficiently tens of thousands of patterns [8]. In the context
of read mapping, tools must be able to process millions of reads and thus, programs that exploit
a precomputed genome index often prove more efficient [9, 10,11, 12]. Read mapping tools
offer possibilities of approximate matching up to a limitednumber of differences (generally a
few mismatches). However, they usually trade off a guaranteed accuracy for efficiency [13, 10,
11, 12].

Another specificity of read mapping applications is that further processing considers only
reads mapping to a unique position in the genome [7]. From a statistical viewpoint, exact match-
ing of a 20 bp read is sufficient to identify a unique position in the human genome [14, 15]. This
implies that, instead of approximately matching full length reads, it may be as adequate to
match,i.e. read prefixes, exactly. This would allow to keep the 100% accuracy, while still being
efficient. Thus, it is desirable to further investigate whether exact set pattern matching algo-
rithms can be adapted to meet the requirements of read mapping. For instance, it remains open
whether an efficient pattern matching algorithm able to process huge read sets without indexing
the genome exists.

To perform the mapping task, the user chooses either fast BLAST-like similarity search
programs (BLAT [16], MEGABLAST [17], or SSAHA [18]), or specialised mapping tools
(ELAND , TAGGER [19], RMAP [11], SEQMAP [13], SOAP [10], MAQ [9], BOWTIE [12], and
ZOOM [20]). ELAND is probably the most used one [6, 3, 2]. While mappers were designed
to process the huge tag sets output by NGS and allow only a few of substitutions and/or indels,
similarity search tools were intended to find local alignments for longer query sequences, but
can be twisted to map tags [3, 21]. To speed up the search, bothcategories of tools follow a
filtration strategy that eliminates quickly non-matching regions. The filtration usually requires
to match exactly or approximately a short piece of the sequence (e.g., BLAT or SEQMAP). All
mappers but one [20] use variants of thePEXfilter (as called in [8]), which consists in splitting
the tag ink+1 adjacent pieces, knowing that at least one will match exactly when a maximum
of k errors are allowed. Logically to accelerate the filtration step, several of these tools exploit
an index of the genome’s words of lengthq (or q-mers) [16, 18, 19, 12]1, which is stored on
disk, loaded in memory once before all searches, and requires a computer intensive preprocess-
ing of the genome [12]. The construction of a human genome index lasts several hours even
on powerful servers [12]. Among mapping tools, ZOOM distinguishes itself with a filtration
relying on spaced seeds,i.e. matching subsequences instead of pieces [20].

Here we present a computer programMPSCAN2, short for Multi-Pattern Scan, that is able to
locate multiple reads in a single pass through the searched sequence and study its average time
complexity (Section 2). In Section 3, we compareMPSCAN with the fastest of BLAST-like tools
and mapping programs in terms of speed and scalability on large tag sets, and also evaluate the
accuracy of similarity search tools for this task. We conclude by discussing the practical and
algorithmical implications of our findings.

2 MPSCAN algorithm

MPSCAN, short for Multi-Pattern Scan, is a program for set pattern matching: it searches si-

1As well as the version 2.0 of SOAP
2MPSCAN is freely available for academic users and can be downloadedat http://www.atgc-montpellier.fr/

mpscan.
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multaneously in a text for a set of words (i.e. tags) on a single computer (no parallelisation, no
special hardware). To enable fast matching of large tag sets, we combine afiltration/verification
approach with a search procedure based on bitwise comparisons, and a compact representation
of the tag set. The tags are loaded in memory at the start and indexed in a trie-like structure,
while the text is scanned on-the-fly by pieces.

The filtration strategy, which was explored for sets of up to 100,000 patterns in [22], is
the clue ofMPSCAN efficiency. Filtration aims at eliminating most positions that cannot match
any tag with an easy criterion. Then, verification checks whether the remaining positions truly
match a tag.MPSCAN can handle a tag set in which tags differ in length. However, the filtration
strategy works with tags of identical length; thus, it creates internally a set in which all tags are
cut to the size of the smallest one (call this sizel ). The verification tests whether a complete
tag matches. Filtration has been extensively applied to speed up similarity search algorithms, as
in BLAST or BLAT [16]. MPSCAN’s criterion relies on the fact that a matching window must
share subwords of lengthq with the tags. Subwords of lengthq are calledq-mers.

For verification purposes we index the tag set with a trie [8].To save space, we prune the trie
at nodes where the remaining suffixes can be stored in approximately 512 bytes. The suffixes are
sorted for easier access during the verification phase. The pruned trie allows for efficient lookup
speed and memory usage with patterns sharing common prefixes, and the remaining suffixes
are efficiently packed, without compromising efficiency. Without pruning, the trie alone would
result in unacceptably huge memory usage, as a single trie node takes up dozens of bytes in the
form of pointers alone.

2.1 Filtration strategy

Let us explain the filtration scheme with an example. Assume aset of 3 tags of lengthl = 8:
{P1,P2,P3} = {accttggc,gtcttggc,accttcca}, and setq to 5. The overlapping 5-mers of each
pattern are given in Figure 2. For a text windowW of length 8 to matchP1, we need that the
subword starting at positioni in W matches theith q-mer ofP1 for all possiblei, and conversely.
Now, we want to filter out windows that do not match any tag. If the subword starting at position
i in W does not match theith q-mer of neitherP1, P2, norP3, then we are sureW cannot match
any of the tags. Thus, our filtration criterion to surely eliminate any non-matching windowW is
to find if there exists a positioni such that the previous condition is true.

From a set of tags,MPSCAN builds a singleq-mer generalised pattern (Fig. 2). A gener-
alised pattern allows several symbols to match at a position(like in a PROSITE pattern where a
positione.g. [DENQ] matches symbols D, E, N, or Q). However, here eachq-mer is processed
as a single symbol. Then,MPSCAN searches for this generalised pattern in the text with the
Backward Nondeterministic DAWG Matching (BNDM)algorithm [8], which efficiently uses bit-
parallelism. The basic idea of the algorithm is to recognizereversed factors (or substrings) of
the pattern when scanning a window backward. When the scanned suffix of a window matches
a prefix of the pattern, we store this position as a potential start of the next window. When we
reach a point in the backward sscanning where the suffix of thewindow is not a factor of the pat-
tern, we shift the window forward based on the longest recognized prefix of the pattern except
for the whole pattern. If no prefix was recognized, the lengthof the shift isl −q+1. To achieve
this efficiently, we initialize during preprocessing a bit vectorB[s] for eachq-mers, where the
ith bit in the bit vector is one if theq-mer appears in the reversed pattern in positioni. During
searching the algorithm maintains a state vectorE, where theith bit is one if the scannedq-mers
match the pattern starting at positioni. When we read a newq-mers, the state vector is updated
as follows:

E = (E≪ 1) & B[s] ,

where≪ shifts the bits to the left and & performs a bitwise and of the two bit vectors. If the first
bit in E is one, we have read a prefix of the pattern, and if all the bits in E are zero, the scanned
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1: i← l −q+1
2: while i ≤ n−q+1 do
3: j = 1; last← l −q+1
4: E = B[si ] { si is theith q-mer of the scanned sequence}
5: while truedo
6: if first bit in E is onethen
7: {the scanned window is a prefix of the pattern}
8: if j = l −q+1 then
9: verify an occurrence; break

10: end if
11: last← l −q+1− j
12: end if
13: if E = 0 then
14: break {the scanned window is not a factor of the pattern}
15: end if
16: E← (E≪ 1) & B[si− j ] { si− j is the(i− j)th q-mer of the scanned sequence}
17: j ← j +1
18: end while
19: i← i + last
20: end while

Figure 1: Pseudo code for the filtration phase ofMPSCAN.

suffix of the window does not match any factor of the pattern. Figure 1 gives the pseudo code
for the filtration phase.

2.2 Optimal average complexity of MPSCAN

For a single pattern, BNDM has a sublinear average complexity with respect to the text length
n; in other words, it does not examine all characters of the text. The combination of the BNDM
algorithm withq-mers was first studied in [22], where it was shown sublinear.Here we prove
that, if one sets the value ofq relatively to the total number of tagsr, MPSCAN average time
complexity is not only sublinear with respect ton, but optimal. Indeed, the average complexity
of the set pattern matching problem isΩ(nlogc(rl )/l) (cf. [23]) and we prove:

Theorem 1 The average time complexity ofMPSCAN for searching r patterns of size l in a text
of length n over an alphabet of size c isO(nlogc(rl )/l) if q = Θ(logc(rl )).

Proof: We want to prove that the average time complexity ofMPSCAN for searchingr pat-
terns of sizel in a text of lengthn over an alphabet of sizec is O(nlogc(rl )/l) if q= Θ(logc(rl )).
Practically,c equals 4 for DNA sequences.

Remember thatMPSCAN processes the text in windows and it always reads the windows
from right to left. We will call a windowgood if the lastq-mer of the window does not match
any pattern in any position. All other windows are calledbad. In a good window,MPSCAN

reads only the lastq-mer and then shifts the window byl −q+ 1 characters. In a bad window
MPSCAN reads up tol characters and then shifts the window by at least one position (but often
more than that).

For the purposes of the proof, the filtering phase ofMPSCAN is divided into subphases that
we define as follows. LetWi , i = 1,2, . . . be the windows scanned byMPSCAN. The first subphase
starts withW1. Let Ws be the first window of a subphase. Only a good window can end a
subphase, but not all of them do. Indeed, the first good windowin the series of windows indexed
with i := s+qk, i.e. Ws+qk, with k = 0,1, . . . is the last window of that subphase. The next
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{P1,P2,P3}= {accttggc,gtcttggc,accttcca}
(a)

1 2 3 4 5 6 7 8
P1 a c c t t g g c

a c c t t
c c t t g

c t t g g
t t g g c

1 2 3 4 5 6 7 8
P2 g t c t t g g c

g t c t t
t c t t g

c t t g g
t t g g c

1 2 3 4 5 6 7 8
P3 a c c t t c c a

a c c t t
c c t t c

c t t c c
t t c c a

(b)

[acctt,gtctt][ccttg,tcttg,ccttc][cttgg,cttcc][ttggc,ttcca]
(c)

Figure 2: Filtration scheme ofMPSCAN. (a) A set of 3 tags of lengthl = 8. (b) The overlapping
5-mers starting at position 1 to 4 (resp. in light, dark, normal, very dark gray) of each tag. (c)
The generalised 5-mers pattern for the set of tags.

bad goodgood
︸ ︷︷ ︸

good
︸︷︷︸

bad badbad goodgood
︸ ︷︷ ︸

bad badgood
︸ ︷︷ ︸

. . .

Figure 3: Dividing the search phase into subphases whenq = 2. The windows, whose type
influences the division, are shown in boldface.

window starts a new subphase. It follows that each subphase consists ofX groups ofq windows
and one good window, withX ≥ 0 being a random variable. Each of theX groups ofq windows
starts with a bad window and the restq− 1 windows may be of any type. Figure 3 shows an
example of dividing the windows into subphases.

The type of a window following a group ofq windows is independent of the first window
of the group, because the pattern has been shifted by at leastq positions between them and the
type of a window is determined solely by the lastq-mer of the window. Ifq≤ l − q+ 1, the
type of a window after a good window is also independent of thegood window,i.e. theq-mer
determining the type of the next window contains only characters that have not been previously
read. Because each subphase contains at least one good window, the text of lengthn will surely
be covered afterO(n/(l −q+1)) subphases.

The probability that a randomq-mer matches any of the patterns in any position is at most
rl /cq, because there arecq differentq-mers and at mostrl of these can occur in the patterns (r
patterns each of lengthl ). This is also the probability that a window is bad. In a bad window
MPSCAN reads theq-mers from right to left. It surely stops when it encounters aq-mer that does
not match anyq-mer in any of the patterns. In the worst case,MPSCAN reads the whole window
and compares it against all the patterns takingO(rl ) time. Note that this a very pessimistic
estimate. In practise, verification is not triggered in all bad windows and even thenMPSCAN

compares the window against only a few patterns.
In a good window,MPSCAN readsq characters. Therefore in one subphase of filtering, the

number of characters read byMPSCAN is less than

O(q) ·P(X = 0)+
∞

∑
i=1

(O(q)+ i ·q ·O (rl )) ·P(X = i)

5
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= O(q)+
∞

∑
i=1

i ·q ·O (rl ) ·P(X = i)≤ O(q)+q ·O (rl )
∞

∑
i=1

i

(
rl
cq

)i

.

This sum will converge ifrl /cq < 1 or equally ifq > logc(rl ) and then

O(q)+q ·O (rl )
∞

∑
i=1

i

(
rl
cq

)i

= O(q)+q ·O (rl )
rl
cq

(
1− rl

cq

)2 = O(q)+q ·O (rl )
rl ·cq

(cq− rl )2

If we chooseq≥ alogc(rl ), wherea > 1 is a constant, thencq≥ rala. Becausea > 1, cq− rl =
Ω(cq) and therefore

1
cq− rl

= O

(
1
cq

)

.

Now, the work done by the algorithm in one subphase takes lessthan

O(q)+q ·O (rl )
rl ·cq

(cq− rl )2 = O(q)

(

1+ O

(
r2l2cq

c2q

))

= O

(

q ·
r2l2

cq

)

= O(q)

if a≥ 2. There areO(n/(l − q+ 1)) = O(n/l) subphases and the average complexity of one
subphase isO(q). Overall the average case complexity of filtering inMPSCAN is thus

O

(n
l
·q

)

= O(nlogc(rl )/m)

if q = alogc(rl ) ≤ l −q+ 1 for a constanta≥ 2. The conditionq≤ l −q+ 1 is equivalent to

q≤ (l +1)/2. Such aq can be found if 2 logc(rl ) < (l +1)/2 or equally ifr < c
1
4 (l+1)/l .

The above proof predicts that a good choice forq would be 2logc(rl ), but in practice a good
choice forq seems to be roughly logc(rl ). If we analysed the complexity of bad windows and
verification more carefully, we could bring the theoreticalresult closer to the practical one.

3 Comparison

The MPSCAN algorithm offers a good theoretical average complexity, but how does it behave
in practice and compare to other solutions? We perform search tests to investigateMPSCAN

behavior and to compare it to either ultra-fast similarity search tools used for this task (BLAT,
MEGABLAST, and SSAHA) or to mapping tools. For each tool, we set its parameters to let it
search only for exact matches (which is for instance impossible with MAQ). ELAND could not
be included in the comparison for we do not have a copy of the program.

Let us first recall some distinguishing features of those similarity search programs. They
were designed to search for highly similar sequences fasterthan BLAST and exploit this high
level of similarity to speed up the search. All are heuristic, but are by design better and faster
than BLAST for searching exact occurrences of reads in a genome. MEGABLAST proceeds like
BLAST: it scans the genome with the query read, which takes time proportional to the genome
size. BLAT and SSAHA both use an index of the genome that records the occurrence positions
of q-mers in the genome for some lengthq. Then, they search for allq-mers of the query in the
index to determine which regions of the genome likely contain occurrences. This requires a time
proportional to the read size. Note thatq is the key parameter to balance between sensitivity and
speed. Hence, BLAT and SSAHA avoid scanning repeatedly the whole genome, but require to
precompute an index.

6
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3.1 Speed and memory with respect to text length

First, we compared the running times ofMPSCANand of all similarity search programs with a set
of 200 K-tags and texts of increasing length (Fig. 6, time in log scale). For all programs except
BLAT, the running time increases less than linearly with thetext length (but BLAT follows the
same trend above 50 Mbps). For instance,MPSCAN takes 1.1 sec to search in 10 Mbps of Human
chromosome 1, but only 5.6 sec in 247 Mbps: a 5-fold increase of the running time for a 25-
fold increase in length. This illustrates well the sublinear time complexity ofMPSCAN (Th. 1),
which proves to be faster than the reference methods. The behavior is logical: MEGABLAST

andMPSCAN first build their search engine, and then scan the text by pieces. The time spent
for initialisation of the engine is better amortised with longer texts. This also explains why the
memory used byMPSCAN is independent of the text length.

Second, we measured the time and memory footprint needed byMPSCANand mapping tools
to search the complete human genome with one million 27 bp tags. ZOOM requires 17 minutes
and 0.9 Gigabytes,RMAP takes 30 min and 0.6 Gb,SEQMAPperforms the task in 14 min with 9
Gb, BOWTIE runs in> 6 min with 1.4 Gb andMPSCAN needs< 5 min using 0.3 Gb. MPSCAN

runs faster than BOWTIE although the latter uses a precomputed index, and it is threetimes faster
thanSEQMAP, the third most efficient tool.

3.2 Scalability with respect to number of patterns

The central issue is the scalability in terms of number of tags. To investigate this issue, we plot
their running times when searching for increasing tag sets (Fig 4). The comparison with simi-
larity search tools is shown in Figure 4a. BLAT is by far the slowest tool, while MEGABLAST’s
time increases sharply due an internal limitation on the maximal number of tags searched at
once, which forces it to perform several scans. SSAHA takes full advantage of its index with
large pattern sets, and becomes 10 times faster than MEGABLAST. However,MPSCAN runs
always faster than BLAT, MEGABLAST, and SSAHA. Especially for more than 400 K-tags, it
outperforms other programs by almost an order of magnitude (9.8 s for 700 K-tags instead of 78
for SSAHA, 670 for MEGABLAST and 4,234 s for BLAT). Importantly, the times needed by
other programs increase more sharply with the number of tagsthan that ofMPSCAN, especially
after 100K, auguring ill for their scalability beyond a million tags.

Beyond that, we consider specialised mapping tools whose behavior is illustrated in Fig-
ure 4b. For this, we used 6.5M 27 bp RNA Polymerase II ChIP-seq tags sequenced in an
erythroleukemia cell line (HK652, GEOGSM325934) and took increasing subsets every million
tags. All tools exhibit a running time that increases linearly with the number of tags: a much
better scalability than similarity search tools. Comparedto similarity search tools, all mappers
behave similarly, probably due to the resemblance of their filtration algorithm.

Both BOWTIE and SOAP-V2 use a Burrows-Wheeler-Transform index with a similar exact
matching algorithm, but it benefits more BOWTIE than SOAP-V2, making BOWTIE the faster of
mapping tools. This emphasises how much implementation issues influence efficiency. Among
non-index based programs, ZOOM exhibits a behavior close tothat of BOWTIE above 3M tags,
showing that ultrafast running times are not bound to an index. For moderate tag sets (< 4M
tags)MPSCAN is two to four times faster than ZOOM, its fastest competitorin this category.
Even if MPSCAN’s running time increases from 4 to 5M tags due to a multiplication by 5 of
the number of matches, it remains the fastest of all tools forexact matching. This shows that
exact set pattern matching can be highly efficient even without a genome index and answers
the question asked in the introduction.MPSCAN’s filtration strategy is logically sensitive to the
ratio #reads/4q, which suggests that using longer computer-words (on 64-bit processors) will
improve its efficiency and scalability.

7



D
R

A
FT

3.3 Accuracy

The MPSCAN algorithm is guaranteed 100% accurate (and extensive testshave shown that the
MPSCAN program also is): it reports all patterns’ occurrences (100% sensitive) and only these
(100% selective) [22, 8].

Despite the availability of specialised mapping tools, popular heuristic similarity search pro-
gram like BLAT are still used for read mapping [21], for they can find distant alignments. How-
ever to our knowledge, their accuracy has never been assessed in this context. We performed a
thorough comparison of their exact matching capacity, since it should be the easiest part of the
task. Our results show it is a complex matter: especially their sensitivity is influenced by the
numbers of occurrences, the relative length of seeds compared to matches, the parameters set
for both building the index and searching.

While all tools (SSAHA, BLAT, and MEGABLAST) achieve their best accuracy for long
patterns (for≥ 60 bp,i.e. when the seed is guaranteed to fall in each occurrence), all encounter
problems finding short patterns (≤ 30 bp). Index and parameters must be adapted to gain sensi-
tivity at the expense of time and flexibility (one cannot exploit the same index for different tag
lengths), which is an issue for digital transcriptomic and ChIP-seq data (≤ 25 bp in [1, 3, 2]).
For instance, with 30 bp patterns, all are less than 50% sensitive with pattern sets≥ 10,000
(Fig. 4). For both parameter sets used with BLAT, its sensitivity remains below 0.6 whatever
the tag length. The number of tags also has a negative influence on the sensitivity of similarity
search tools (data not shown). However, it is logical that similarity search tools have limited
accuracy, since they were not designed for exact pattern matching.

The accuracy of mapping tools that allow both exact and approximate matching should be
evaluated globally and their dependence to several parameters (tag length, error types, tag num-
ber, genome length) should be investigated. Indeed, the underlying definitions of a read best
match, the strategies for finding it, as well as the notion of approximation differ among tools,
hampering this comparison. This is beyond the scope of this paper. Nevertheless, we have
analysed the accuracy of ELAND . Although, we do not have access to the program, some of
ELAND ’s raw results can be downloaded from public repositories like GEO. ELAND searches
for exact and approximate matches with≤ 2 mismatches. We analysed the subset of mapped
tags in the ELAND output of the NRSF ChIP-seq data set [2]. ELAND finds only approximate
matches for 442,766 tags, whileMPSCAN locates an exact match for 59,571 of these tags (13%
of them).

Such an inaccuracy may impact the final positioning of protein binding or DNA modification
sites. This comparison illustrates the difficulty of searching for large tag sets in sequences and
the benefit of using a guaranteed pattern matching algorithmfor this task.

3.4 Relevance of exact vs approximate mapping

Currently, new sequencers yield short tags (i.e. < 30 bp) in Digital Gene Expression, RNA-
Seq, and ChIP-seq experiments (14, 20, and 27 bp in [1, 3, 6] respectively). Technological
developments aim at increasing the tag length to improve theprobability of a read to match a
unique genomic location. However, the error probability also increases with tag length [21, 15].
Altogether, the tag length has an opposite influence on the probabilities of a tag to be mapped
and to be mapped at a unique location.

To evaluate the relevance of exact versus approximate matching, we did the following exper-
iment with a Pol-II ChIP-seq set of 34 bp tags (GEOGSM325934). If one maps withMPSCAN

the full length tags, 86% remain unmapped and 11% are uniquely mapped. With at most two
mismatches, ELAND finds 14% of additional uniquely mapped tags (categories U1 and U2),
while mapping the 20 bp prefix of each tag withMPSCAN allows to map 25% of all tags at
unique positions (14% more sites than with full length tags).

This result suggests that optimising the final output of a sequence census assay in terms
8
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of number of uniquely mapped locations is a complex issue. Approximate mapping is seen as
a solution to detect more genomic sites, but it often maps tags at multiple locations [24]. In
fine, exact matching may turn out to be a relevant alternativestrategy compared to approximate
matching. Thus, the proposed filtration algorithm may be useful in read mapping applications,
especially if one considered mapping a substring of the original reads. A more in-depth investi-
gation of this issue is exposed in [15].

4 Discussion

Key biological questions can be investigated at genome scale with new sequencing technologies.
Whether in genomic, transcriptomic or epigenomic assays, millions of short sequence reads
need first to be mapped on a reference genome. This is a compulsory step in the bioinformatic
analysis. We presented an efficient program,MPSCAN, for mapping tags exactly on a genome,
evaluated its relevance for read mapping, and compared it totwo classes of alternative solutions:
i) ultrafast similarity search tools and ii) specifically designed mapping tools. We summarise
below some valuable evidence and take-home messages brought by this study.

Similarity search tools are inappropriate for mapping exactly short patterns≤ 40 bp, since
their sensitivity remains too low (< .5 for 30 bp long tags). Whatever the number of seeds
required to examine a hit, BLAT is the least sensitive among the tested similarity search tools.
Its sensitivity never reaches 0.6, even with patterns up to 100 bp. In other words, similarity
search tools miss many exact matching locations, which are considered to be the most secure
locations in many applications [3, 2]. In general, the scalability of similarity search tools is not
satisfactory for tag mapping: both the speed of processing and the sensitivity suffer when the
number of tags becomes large.

Mapping tools are adequate for this task. They enable the user to map up to millions of
tags fast on the human genome, and scale up well. Nevertheless, differences in speed can be
important:e.g., an order of magnitude for mapping 2M tags betweenMPSCAN and SOAP-V2.
If most algorithms are similar, from the user viewpoint the programs are not equivalent: neither
in flexibility, ease of use, speed, options, nor in accuracy.

From the algorithmic viewpoint, our results suggest that indexing is not required to perform
exact mapping of tags on long sequences. In the class of similarity search tools, the superiority
in speed of SSAHA compared to BLAT and MEGABLAST is due to its index, but also to its
lack of verification, which induces a poor specificity. In ourcomparison of seven programs (the
largest we are aware of), BOWTIE seems the fastest among mapping tools, but never beats the
performance ofMPSCAN for exact mapping.

ZOOM, which exploits spaced seeds in its filtration scheme, compares favorably in speed
to tools using the splitting strategy or PEX filter, such asSEQMAP, RMAP, SOAP. This suggests
the superiority of spaced seeds. However, this superiorityhas a price in terms of flexibility:
sets of spaced seeds are specifically designed for a certain tag length and maximum number
of mismatches, and different sets corresponding to different parameter combinations are hard
coded in ZOOM. For instance, a set of 4 spaced seeds of weight 13 was manually designed to
search for 33 bp tags [20]. Hence, adaptation of ZOOM to a new setup requires the design of
specific seeds, which is a theoretically hard and practically difficult problem [25, 26, 27]. The
present limitation of ZOOM to patterns up to 64 bp is certainly due to this bottleneck.

In conclusion, we presented an exact set pattern matching program,MPSCAN, which is based
on a filtration scheme that had never been applied to read mapping. Our current implementation
has pushed the limit on the number of tags by two orders of magnitude compared to previ-
ous pattern matching algorithms [8, 22]. We conducted thorough comparisons with similarity
search algorithms and mapping tools in term of speed and scalability. Our experiments revealed
that BLAT-like tools are inadequate for short read mapping both in terms of scalability and
of sensitivity, which, to our knowledge, has never been reported before. From the algorithmic
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viewpoint, we demonstrated the average running time optimality of MPSCAN, which turns out to
be very efficient in practice. Compared to mapping tools for exact mapping,MPSCAN runs faster
and scales well: it can even compete in efficiency with programs using a sophisticated genome
index, like BOWTIE. Since it uses no index,MPSCAN combines flexibility, low memory foot-
print, and high efficiency, while avoiding a time consuming index precomputation (cf. building
times in [12]). Finally, we provide evidence that exact matching approaches can be relevant for
read mapping applications, especially in the perspective of longer reads. It remains open to find
filtration strategies that achieve efficient “near exact” mapping.

With future generation of sequencers, which promise further increases in sequencing capac-
ity, read mapping may become a bottleneck. Further researchin theoretical and practical pattern
matching will be needed to tackle this challenging question.
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Figure 4: Evaluation of scalability. Search times on chromosome 1 (247 Mbp) for increasing
tag sets. (a) Comparison with similarity search tools. Search times of BLAT, MEGABLAST,
SSAHA, MPSCAN in seconds for 21 bp LongSAGE tags, for sets of 10, 50, 100, 200, 300, 400,
and up to 700 Kilo-tags (K-tags). Both axes have logarithmicscales. The curve ofMPSCAN

running time is almost flat: for instance doubling the tag setfrom 200 to 400 K-tags yields a
small increase from 5.6 to 6.4 s Its time increases in a sublinear fashion with the number of
tags. For all other tools, the increase of the tag set gives rise to a proportional growth of the
running time.E.g., SSAHA needs 23 s for 200 K-tags and 54 s for 400 K-tags. (b) Comparison
with mapping tools: Search times ofRMAP, SEQMAP, SOAP (v1 & v2), ZOOM, BOWTIE and
MPSCAN in seconds (log scale) for increasing subsets of 27 bp ChIP-seq tags. All tools behave
similarly and offer acceptable scalability.MPSCAN remains the most efficient of all and can be
10 times faster than tools likeSEQMAP or RMAP. Times do not include the index construction
time.
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tags). BLAT-m1 and BLAT-m2 gives BLAT’s sensitivity when the filtration criterion asks for
one or two seed matches, respectively; BLAT-m1 found necessarily more matches than BLAT-
m2. However, here their curves are superimposed. The sensitivity of similarity search tools is
low (< 0.5) for tags≤ 30 bp and reaches a maximum for MEGABLAST and SSAHA at≥ 60
bp.
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Figure 6: Search times of BLAT, MEGABLAST, SSAHA, MPSCAN in seconds for 200 Kilo-
tags (LongSAGE tags of 21 bp), on increasing pieces of length5, 10, 50, 100, and 247 Mbp of
Human chromosome 1. Both axes have logarithmic scales. These curves illustrate the sublinear
increase of time with respect to text length for all tools except BLAT, and the superiority of
MPSCAN in running time.
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