

Edinburgh Research Explorer

Synthesizing Filtering Algorithms for Global Chance-Constraints
Citation for published version:
Hnich, B, Rossi, R, Tarim, SA & Prestwich, S 2009, Synthesizing Filtering Algorithms for Global Chance-
Constraints. in IP Gent (ed.), Principles and Practice of Constraint Programming - CP 2009: 15th
International Conference, CP 2009 Lisbon, Portugal, September 20-24, 2009 Proceedings. vol. 5732 LNCS,
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), Springer-Verlag GmbH, pp. 439-453. https://doi.org/10.1007/978-3-642-04244-
7_36

Digital Object Identifier (DOI):
10.1007/978-3-642-04244-7_36

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Principles and Practice of Constraint Programming - CP 2009

Publisher Rights Statement:
© Hnich, B., Rossi, R., Tarim, S. A., & Prestwich, S. (2009). Synthesizing Filtering Algorithms for Global Chance-
Constraints. In I. P. Gent (Ed.), Principles and Practice of Constraint Programming - CP 2009: 15th International
Conference, CP 2009 Lisbon, Portugal, September 20-24, 2009 Proceedings. (Vol. 5732 LNCS, pp. 439-453).
(Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics)). Springer-Verlag GmbH. 10.1007/978-3-642-04244-7_36

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 26. Apr. 2024

https://doi.org/10.1007/978-3-642-04244-7_36
https://doi.org/10.1007/978-3-642-04244-7_36
https://doi.org/10.1007/978-3-642-04244-7_36
https://www.research.ed.ac.uk/en/publications/53c89d7a-4603-4daa-b7a5-bfe5dc92c1ff

Synthesizing Filtering Algorithms for Global

Chance-Constraints⋆

Brahim Hnich1, Roberto Rossi2, S. Armagan Tarim3 and Steven Prestwich4

Faculty of Computer Science, Izmir University of Economics, Turkey1

brahim.hnich@ieu.edu.tr
Logistics, Decision and Information Sciences, Wageningen UR, the Netherlands2

roberto.rossi@wur.nl
Operations Management Division, Nottingham University Business School, UK3

armtar@yahoo.com
Cork Constraint Computation Centre - CTVR, University College, Cork, Ireland4

s.prestwich@4c.ucc.ie

Abstract. Stochastic Constraint Satisfaction Problems (SCSPs) are a
powerful modeling framework for problems under uncertainty. To solve
them is a P-Space task. The only solution approach to date compiles
down SCSPs into classical CSPs. This allows the reuse of classical con-
straint solvers to solve SCSPs, but at the cost of increased space require-
ments and weak constraint propagation. This paper tries to overcome
some of these drawbacks by automatically synthesizing filtering algo-
rithms for global chance-constraints. These filtering algorithms are pa-
rameterized by propagators for the deterministic version of the chance-
constraints. This approach allows the reuse of existing propagators in
current constraint solvers and it enhances constraint propagation. Ex-
periments show the benefits of this novel approach.

1 Introduction

Stochastic Constraint Satisfaction Problems (SCSPs) are a powerful modeling
framework for problems under uncertainty. SCSPs were first introduced in [10]
and further extended in [9] to permit multiple chance-constraints and a range
of different objectives in order to model combinatorial problems under uncer-
tainty. SCSP is a PSPACE-complete problem [10]. The approach in [9] compiles
down SCSPs into deterministic equivalent CSPs. This makes it possible to reuse
existing solvers, but at the cost of increased space requirements and of hinder-
ing constraint propagation. In this paper we overcome some of these drawbacks
by automatically synthesizing filtering algorithms for global chance-constraints.
These filtering algorithms are built around propagators for the deterministic ver-
sion of the chance-constraints. Like the approach in [9], our approach reuses the
propagators already available for classical CSPs. But, unlike [9], our approach

⋆ Brahim Hnich is supported by the Scientific and Technological Research Council of
Turkey (TUBITAK) under Grant No. SOBAG-108K027.

uses fewer decision variables and strengthens constraint propagation. Our results
show that our approach is superior to the one in [9], since it achieves stronger
pruning and therefore it proves to be more efficient in terms of run time and
explored nodes.

The paper is structured as follows: in Section 2 we provide the relevant formal
background; in Section 3 we discuss the structure of a SCSP solution; in Section
4 we describe the state-of-the-art approach to SCSPs; in Section 5 we discuss our
novel approach; in Section 6 we present our computational experience; in Section
7 we provide a brief literature review; finally, in Section 8 we draw conclusions.

2 Formal Background

A Constraint Satisfaction Problem (CSP) consists of a set of variables, each
with a finite domain of values, and a set of constraints specifying allowed com-
binations of values for some variables. A solution to a CSP is an assignment of
variables to values in their respective domains such that all of the constraints
are satisfied. Constraint solvers typically explore partial assignments enforcing
a local consistency property. A constraint c is generalized arc consistent (GAC)
iff when a variable is assigned any of the values in its domain, there exist com-
patible values in the domains of all the other variables of c. In order to enforce
a local consistency property on a constraint c during search, we employ filtering
algorithms that remove inconsistent values from the domains of the variables
of c. These filtering algorithms are repeatedly called until no more values are
pruned. This process is called constraint propagation.

An m-stage SCSP is defined as a 7-tuple 〈V, S, D, P, C, θ, L〉, where V is a
set of decision variables and S is a set of stochastic variables, D is a function
mapping each element of V and each element of S to a domain of potential
values. In what follows, we assume that both decision and stochastic variable
domains are finite. P is a function mapping each element of S to a probability
distribution for its associated domain. C is a set of chance-constraints over a
non-empty subset of decision variables and a subset of stochastic variables. θ

is a function mapping each chance-constraint h ∈ C to θh which is a threshold
value in the interval (0, 1]. L = [〈V1, S1〉, . . . , 〈Vi, Si〉, . . . , 〈Vm, Sm〉] is a list of
decision stages such that each Vi ⊆ V , each Si ⊆ S, the Vi form a partition of
V , and the Si form a partition of S.

The solution of an m-stage SCSP is, in general, represented by means of
a policy tree [9]. The arcs in such a policy tree represent values observed for
stochastic variables whereas nodes at each level represent the decisions associated
with the different stages. We call the policy tree of an m-stage SCSP that is a
solution a satisfying policy tree.

3 Satisfying Policy Trees

In order to simplify the presentation, we assume without loss of generality, that
each Vi = {xi} and each Si = {si} are singleton sets. All the results can be easily

extended in order to consider |Vi| > 1 and |Si| > 1. In fact, if Si comprises more
than one random variable, it is always possible to aggregate these variables into a
single multivariate random variable [5] by convoluting them. If Vi comprises more
than one decision variable, the following discussion still holds, provided that the
term DecV ar, which we will introduce in the next paragraph, is interpreted as
a set of decision variables.

Let S = {s1, s2, . . . , sm} be the set of all stochastic variables and V =
{x1, x2, . . . , xm} be the set of all decision variables. In an m-stage SCSP, the
policy tree has

N = 1 + |s1| + |s1| · |s2| + . . . + |s1| · |s2| · . . . · |sm−1|

nodes, where |sj | denotes the cardinality of D(sj). We adopt the following
node and arc labeling schemes for the policy tree of an m-stage SCSP. The
depth of a node can be uniquely associated with its respective decision stage,
more specifically Vi is associated with nodes at depth i − 1. We label each
node with 〈DecV ar, DecV al, Index〉 where DecV ar is a decision variable that
must be assigned at the decision stage associated with the node, DecV al ∈
D(DecV ar) is the value that this decision variable takes at this node, and
Index ∈ {0, . . . ,N − 1} is a unique index for this node. Each arc will be labeled
with 〈StochV ar, StochV al〉 where StochV ar ∈ S and StochV al ∈ D(StochV ar).
According to our labeling scheme, the root node has label 〈x1, x̄1, 0〉 where x̄1 is
the value assigned to the variable x1 associated with the root node and the index
of the root node is 0. The root node is at depth 0. For each value s̄1 ∈ D(s1), we
have an arc leaving the root node labeled with 〈s1, s̄1〉. The |s1| nodes connected
to the root node are labeled from 1 to |s1|. For each node at depth 1, we label
each of |s2| arcs with 〈s2, s̄2〉 for each s̄2 ∈ D(s2). For the nodes at depth 2, we
label them from 〈x2, x̄2, |s1| + 1〉 to 〈x2, x̄2, |s1| + |s1|.|s2|〉, and so on until we
label all arcs and all nodes of the policy tree. A path p from the root node to
the last arc can be represented by the sequence of the node and arc labelings,
i.e. p = [〈x1, x̄1, 0〉, 〈s1, s̄1〉, . . . , 〈xm, x̄m, k〉, 〈sm, s̄m〉]. Let Ψ denote the set of
all distinct paths of a policy tree. For each p ∈ Ψ , we denote by arcs(p) the
sequence of all the arc labelings in p whereas nodes(p) denotes the sequence
of all node labelings in p. That is arcs(p) = [〈s1, s̄1〉, . . . , 〈sm, s̄m〉] whereas
nodes(p) = [〈x1, x̄1, 0〉, . . . , 〈xm, x̄m, j〉]. We denote by Ω = {arcs(p)|p ∈ Ψ}
the set of all scenarios of the policy tree. The probability of ω ∈ Ω is given by
Pr{ω} =

∏m

i=1
Pr{si = s̄i}, where Pr{si = s̄i} is the probability that stochastic

variable si takes value s̄i.

Now consider a chance-constraint h ∈ C with a specified threshold level θh.
Consider a policy tree T for the SCSP and a path p ∈ T . Let h↓p be the deter-
ministic constraint obtained by substituting the stochastic variables in h with
the corresponding values (s̄i) assigned to these stochastic variables in arcs(p).
Let h̄↓p be the resulting tuple obtained by substituting the decision variables
in h↓p by the values (x̄i) assigned to the corresponding decision variables in

s1 = 5

x1 = 3

s1 = 4

s2 = 4

s2 = 3

s2 = 4

s2 = 3

0.25

0.25

0.25

0.25

x2 = 4

x2 = 6

1

2

V
1

S
1

Scenario
probability CV

2
S

2
c

1
: 5á3 + 4á4 ³ 30

c
2
: 4á3 = 12

c
1
: 4á3 + 4á6 ³ 30

c
2
: 4á3 = 12

c
1
: 5á3 + 3á4 < 30

c
2
: 3á3 12

c
1
: 4á3 + 3á6 ³ 30

c
2
: 3á3 12

Fig. 1. Policy tree for the SCSP in Example 1

nodes(p). We say that h is satisfied wrt to a given policy tree T iff

∑

p∈Ψ :h̄↓p∈h↓p

Pr{arcs(p)} ≥ θh.

Definition 1 Given an m-stage SCSP P and a policy tree T , T is a satisfying

policy tree to P iff every chance-constraint of P is satisfied wrt T .

Example 1 Let us consider a two-stage SCSP in which V1 = {x1} and
S1 = {s1}, V2 = {x2} and S2 = {s2}. Stochastic variable s1 may take two pos-
sible values, 5 and 4, each with probability 0.5; stochastic variable s2 may also
take two possible values, 3 and 4, each with probability 0.5. The domain of x1 is
{1, . . . , 4}, the domain of x2 is {3, . . . , 6}. There are two chance-constraints1 in
C, c1 : Pr{s1x1 + s2x2 ≥ 30} ≥ 0.75 and c2 : Pr{s2x1 = 12} ≥ 0.5. In this case,
the decision variable x1 must be set to a unique value before random variables
are observed, while decision variable x2 takes a value that depends on the ob-
served value of the random variable s1. A possible solution to this SCSP is the
satisfying policy tree shown in Fig. 1 in which x1 = 3, x1

2
= 4 and x2

2
= 6, where

x1
2 is the value assigned to decision variable x2, if random variable s1 takes value

5, and x2

2
is the value assigned to decision variable x2, if random variable s1

takes value 4. The four labeled paths of the above policy tree are as follows:
p1 = [〈x1, 3, 0〉, 〈s1, 5〉, 〈x2, 4, 1〉, 〈s2, 4〉], p2 = [〈x1, 3, 0〉, 〈s1, 5〉, 〈x2, 4, 1〉, 〈s2, 3〉],
p3 = [〈x1, 3, 0〉, 〈s1, 4〉, 〈x2, 6, 2〉, 〈s2, 4〉], p4 = [〈x1, 3, 0〉, 〈s1, 4〉, 〈x2, 6, 2〉, 〈s2, 3〉].

As the example shows, a solution to a SCSP is not simply an assignment of
the decision variables in V to values, but it is instead a satisfying policy tree.

1 In what follows, for convenience, we will denote a chance-constraint by using the
notation “Pr{〈cons〉} ≥ θ”, meaning that constraint 〈cons〉, constraining decision
and random variables, should be satisfied with probability greater or equal to θ.

4 Scenario-based Approach to Solve SCSPs

In [9], the authors discuss an equivalent scenario-based reformulation for SCSPs.
This reformulation makes it possible to compile SCSPs down into conventional
(non-stochastic) CSPs. For example, the multi-stage SCSP described in Exam-
ple 1 is compiled down to its deterministic equivalent CSP shown in Fig. 2.
The decision variables x1

1
, x1

2
, and x2

2
represent the nodes of the policy tree.

Constraints:

(1) (5x1

1 + 4x1

2 ≥ 30)↔ (Z1

c1
= 1) (6) (4x1

1 = 12)↔ (Z1

c2
= 1)

(2) (5x1

1 + 3x1

2 ≥ 30)↔ (Z2

c1
= 1) (7) (3x1

1 = 12)↔ (Z2

c2
= 1)

(3) (4x1

1 + 4x2

2 ≥ 30)↔ (Z3

c1
= 1) (8) (4x1

1 = 12)↔ (Z3

c2
= 1)

(4) (4x1

1 + 3x2

2 ≥ 30)↔ (Z4

c1
= 1) (9) (3x1

1 = 12)↔ (Z4

c2
= 1)

(5)
P

4

ω=1
0.25Zω

c1
≥ θc1 (10)

P

4

ω=1
0.25Zω

c2
≥ θc2

Decision variables:

x1 ∈ {1, 2, 3, 4}, x1

2 ∈ {3, 4, 5, 6},
x2

2 ∈ {3, 4, 5, 6}, Zω
h ∈ {0, 1} ∀ω = 1, . . . , 4; ∀h ∈ {c1, c2}.

Fig. 2. Deterministic equivalent CSP for Example 1

The variable x1 is decided at stage 1 so we have one copy of it (x1

1
) whereas

since x2 is to be decided at stage 2 and since s1 has two values, we need two
copies for x2, namely x1

2
and x2

2
. Chance-constraint c1 is compiled down into

constraints (1), . . . ,(5), whilst chance-constraint c2 is compiled down into con-
straints (6), . . . ,(10). Constraints (1), . . . ,(4) are reification constraints in which
every binary decision variable Zω

c1
is 1 iff in scenario ω ∈ {1, . . . , 4} constraint

s̄1x
1

1
+ s̄2x

i
2
≥ 30 — where i ∈ {1, 2} identifies the copy of decision variable x2

associated with scenario ω — is satisfied. Finally, constraint (5) enforces that
the satisfaction probability achieved must be greater or equal to the required
threshold θc1

= 0.75. A similar reasoning applies to constraints (6), . . . ,(10).
The scenario-based reformulation approach allows us to exploit the full power

of existing constraint solvers. However, it has a number of serious drawbacks that
might prevent it from being applied in practice. These drawbacks are:

Increased Space Requirements: For each chance-constraint, |Ω| extra Boolean
variables and |Ω| + 1 extra constraints are introduced. This requires more
space and might increase the solution time;

Hindering Constraint Propagation: the holistic CSP heavily depends on
reification constraints for constraint propagation, which is a very weak form
of propagation. Also, if the chance-constraint involves a global constraint
(e.g., Pr{alldiff(x1, s1, x2)} ≥ θ), then the corresponding reification con-
straints (e.g., alldiff(x1

1, s̄1, x
1
2) ↔ Zw) cannot simply be supported in an

effective way in terms of propagation by any of the current constraint solvers.

5 Generic Filtering Algorithms

In this section we show how to overcome the drawbacks discussed above.

5.1 Theoretical Properties

Like the approach in [10], in order to solve an m-stage SCSP, we introduce a deci-
sion variable for each node of the policy tree. Given an SCSP 〈V, S, D, P, C, θ, L〉,
we let PT be an array of decision variables indexed from 0 to N −1 representing
the space of all possible policy trees. The domains of these variables are defined
as follows:

– D(PT [i]) = D(x1), i ∈ M1 = {0},
– D(PT [i]) = D(x2), i ∈ M2 = {1, . . . , |s1|},
– D(PT [i]) = D(x3), i ∈ M3 = {(1 + |s1|), . . . , (|s1| · |s2|)},
– ...
– D(PT [i]) = D(xm), i ∈ Mm = {(1 + |s1| · |s2| · . . . · |sm−2|), . . . , (|s1| · |s2| ·

. . . · |sm−1|)}.

This array of decision variables is shared among the constraints in the model sim-
ilarly to what happens with decision variables in classic CSPs. In what follows,
we will discuss how to propagate chance-constraints on the policy tree decision
variable array.

Definition 2 Given a chance-constraint h ∈ C and a policy tree decision vari-

able array PT , a value v in the domain of PT [i] is consistent wrt h iff there

exists an assignment of values to variables in PT that is a satisfying policy wrt

h, in which PT [i] = v.

Definition 3 A chance-constraint h ∈ C is generalized arc-consistent iff

every value in the domain of every variable in PT is consistent wrt h.

Definition 4 A SCSP is generalized arc-consistent iff every chance-constraint

is generalized arc-consistent.

For convenience, given a chance-constraint h ∈ C, we now redefine h↓p as
the resulting deterministic constraint in which we substitute every decision vari-
able xi in h with decision variable PT [k], where 〈xi,−, k〉 is an element in
nodes(p), and — according to our former definition — in which we substitute
every stochastic variable si with the corresponding values (s̄i) assigned to si

in arcs(p). Note that the deterministic constraint h↓p is a classical constraint,
so a value v in the domain of any decision variable is consistent iff there exist
compatible values for all other variables such that h↓p is satisfied, otherwise v

is inconsistent. We denote by h
i,v
↓p the constraint h↓p in which decision variable

PT [i] is set to v. h
i,v
↓p is consistent if value v in D(PT [i]) is consistent w.r.t. h↓p.

Let Ψi = {p ∈ Ψ |h↓p constrains PT [i]}. We introduce f(i, v) as follows:

f(i, v) =
∑

p∈Ψi:h
i,v

↓p
is consistent

Pr{arcs(p)},

where f(i, v) is the sum of the probabilities of the scenarios in which value v

in the domain of PT [i] is consistent. As the next proposition shows, one can
exploit this to identify a subset of the inconsistent values.

Proposition 1 For any i ∈ Mk and value v ∈ D(PT [i]), if

f(i, v) +
∑

j∈Mk,j 6=i

max(j) < θh,

then v is inconsistent wrt h; where max(j) = max{f(j, v)|v ∈ D(PT [j])}.

Proof: (Sketch) The assignment PT [i] = v is consistent w.r.t. h iff the satisfac-
tion probability of h is greater or equal to θh. From the definition of f(i, v) and
of max(j) it follows that, if f(i, v) +

∑
j∈Mk ,j 6=i max(j) < θh, when PT [i] = v,

the satisfaction probability of h is less than θh even if we choose the best possible
value for all the other variables. 2

5.2 Filtering Algorithms

We now describe our generic filtering strategy for chance-constraints. We distin-
guish between two cases: the case when θh < 1 and the case where θh = 1. In
the first case, we design a specialized filtering algorithm whereas for the second
case we provide a reformulation approach that is more efficient. Both methods,
however, are parameterized with a filtering algorithm A for the deterministic
constraints h↓p for all p ∈ Ψ that maintains GAC (or any other level of consis-
tency). This allows us to reuse existing filtering algorithms in current constraint
solvers and makes our filtering algorithms generic and suitable for any global
chance-constraint.

Case 1: Algorithm 1 takes as input chance-constraint h, PT , and a propa-
gator A. It filters from PT inconsistent values wrt h. For each decision variable
and each value in its domain, we initialize f [i, v] to 0 in line 2. In line 5, we
iterate through the scenarios in Ψ . For each scenario, we create a copy c of con-
straint h↓p and of the decision variables it constrains. Then we enforce GAC on
c using A. We iterate through the domain of each copy of the decision variable
at index i and, if a given value v has support, we add the probability associated
with the current scenario to the respective f [i, v] (line 10). It should be noted
that, for each scenario, constraint c is dynamically generated every time the fil-
tering algorithm runs, and also that these constraints are never posted into the
model. They are only used to reduce the domains of the copies of the associated
decision variables. In line 12, for each variable i ∈ {0, . . . ,N − 1} we compute
the maximum support probability f [i, v] provided by a value v in the domain
of PT [i], and we store it at max[i]. In line 16, for each stage k ∈ {1, . . . , m},
we store in g[k] the sum of the max[i] of all variables i ∈ Mk. Finally, (line 20)
at stage k we prune from D(PT [i]) any value v that makes g[k] strictly smaller
than θh when we replace max[i] in g[k] with f [i, v].

Algorithm 1: Filtering Algorithm

input : h; PT ; A.
output: Filtered PT wrt h.

begin1

for each i ∈ {0, . . . ,N − 1} do2

for each v ∈ D(PT [i]) do3

f [i, v]← 0;4

for each p ∈ Ψ do5

Create a copy c of h↓p and of the decision variables it constrains;6

Enforce GAC on c using A;7

for each index i of the variables in c do8

for each v in domain of the copy of PT [i] do9

f [i, v]← f [i, v] + Pr{arcs(p)};10

delete c and the respective copies of the decision variables;11

for each i ∈ {0, . . . ,N − 1} do12

max[i]← 0;13

for each v ∈ D(PT [i]) do14

max[i]← max(max[i], f [i, v]);15

for each k ∈ {1, . . . , m} do16

g[k]← 0;17

for each i ∈Mk do18

g[k]← g[k] + max[i]19

for each k ∈ {1, . . . , m} do20

for each i ∈Mk do21

for each v ∈ PT [i] do22

if g[k]−max[i] + f [i, v] < θh then23

prune value v from D(PT [i]);24

end25

Theorem 1 Algorithm 1 is a sound filtering algorithm.

Proof: (Sketch) Soundness. When a value v is pruned by Algorithm 1,
Proposition 1 is true. Thus, any pruned value v is inconsistent. 2

Algorithm 1 fails to prune some inconsistent values because such values are
supported by values that may become inconsistent at a later stage of the algo-
rithm. We illustrate these situations with an example. Consider a 2-stage SCSP
in which V1 = {x1}, where x1 ∈ {1, 2}, S1 = {s1}, where s1 ∈ {a, b}, V2 = {x2},
where x2 ∈ {1, 2, 3}, and S2 = {s2}, where s2 ∈ {a, b}. Let Pr{si = j} = 0.5
for all i ∈ {1, 2} and j ∈ {a, b}. Let h be the chance-constraint with θh = 0.75.
In this constraint, for the first scenario (s1 = a and s2 = a) the only consistent
values for PT [0] and PT [1] are 1 and 2 respectively. For the second scenario

(s1 = a and s2 = b) the only consistent values for PT [0] and PT [1] are 2 and
1 respectively. For the third scenario (s1 = b and s2 = a) the only consistent
values for PT [0] and PT [2] are 1 and 3 respectively. For the fourth scenario
(s1 = b and s2 = b) the only consistent values for PT [0] and PT [2] are 1
and 3 respectively. Our algorithm originally introduces three decision variables
PT [0] ∈ {1, 2}, PT [1] ∈ {1, 2, 3}, and PT [2] ∈ {1, 2, 3}. Assume that at some
stage during search, the domains become PT [0] ∈ {1, 2}, PT [1] ∈ {1, 2}, and
PT [2] ∈ {3}. In Table 1, the values that are not pruned by Algorithm 1 when
θ = 0.75 are underlined. Only value 2 in the domain of PT [0] is pruned. But,
value 2 was providing support to value 1 in the domain of PT [1]. This goes un-
detected by the algorithm and value 1 for PT [1] no longer provides f [1, v] = 0.25
satisfaction, but 0. Thus, there exists no satisfying policy in which PT [1] = 1!
We can easily remedy this problem by repeatedly calling Algorithm 1 until we

PT [0] f [0, v] PT [1] f [1, v] PT [2] f [2, v]

1 0.75 1 0.25 3 0.5
2 0.25 2 0.25

Table 1. Example of inconsistent values gone undetected

reach a fixed-point and no further pruning is done. We denote as H this modified
algorithm.

Theorem 2 Algorithm H runs in O(|Ω| · a · N 2 · d2) time and in O(N · d + p)
space where a is the time complexity of A, p is its space complexity, and d is the

maximum domain size.

Proof: (Sketch) Time complexity. In the worst case, Algorithm 1 needs to
be called N·d times in order to prune at each iteration just one inconsistent value.
At each of these iterations, the time complexity is dominated by complexity of
line 7 assuming that |Ω| ≫ |V |. Enforcing GAC on each of the |Ω| constraints
runs in a time using algorithm A. In the worst case, we need to repeat this whole
process N ·d times in order to prune at each iteration just one inconsistent value.
Thus the time complexity of this step is in |Ω|·a·N ·d. The overall time complexity
is therefore in O(|Ω| · a · N 2 · d2) time.
(Sketch) Space complexity. The space complexity is dominated by the size
of PT and by the space complexity of A. PT requires N · d space whereas A
requires p space. Therefore, the modified algorithm runs in O(N · d + p) space.
2

In Table 2 we report the pruned values for Example 1 achieved by H. The
values that are not pruned when θ = 0.75 are underlined. Note that if we propa-
gate the constraints in the model generated according to the approach described
in [9] and shown in Fig. 2, no value is pruned.

Even though algorithm H is a sound filtering algorithm, it is unfortunately
still incomplete.

PT [0] f [0, v] PT [1] f [1, v] PT [2] f [2, v]

1 0.0 3 0.25 3 0.0
2 0.5 4 0.5 4 0.25
3 1.0 5 0.5 5 0.5
4 1.0 6 0.5 6 0.5

Table 2. Pruning for Example 2 after calling Algorithm H

PT [0] f [0, v] PT [1] f [1, v] PT [2] f [2, v]

1 1 1 0.5 1 0.5
2 1 2 0.5 2 0.5

Table 3. Filtered domains

Theorem 3 The level of consistency achieved by algorithm H on global chance-

constraint h is weaker than GAC on h.

Proof: Consider a 2-stage SCSP where V1 = {x1} where x1 ∈ {1, 2}, S1 =
{s1} where s1 ∈ {a, b}, V2 = {x2} where x2 ∈ {1, 2}, and S2 = {s2} where
s2 ∈ {a, b}. Let Pr{si = j} = 0.5 for all i ∈ {1, 2} and j ∈ {a, b}. Let h be
the chance-constraint with θh = 0.75. Furthermore, for the first scenario (s1 = a

and s2 = a) the consistent tuples for x1 and x2 are in {〈1, 1〉 〈2, 1〉 〈2, 2〉}. For
the second scenario (s1 = a and s2 = b) the consistent tuples for x1 and x2 are
in {〈1, 2〉 〈2, 1〉 〈2, 2〉}. For the third scenario (s1 = b and s2 = a) the consistent
tuples for x1 and x2 are in {〈1, 1〉 〈2, 1〉 〈2, 2〉}. For the fourth scenario (s1 = b and
s2 = b) the consistent tuples for x1 and x2 are in {〈1, 2〉 〈2, 1〉 〈2, 2〉}. Algorithm
H introduces three decision variables PT [i] ∈ {1, 2} for all i ∈ {0, 1, 2}. Table 3
shows the result of algorithm H. None of the values is pruned, but there exists
no satisfying policy in which PT [0] = 1. 2

Indeed, we conjecture that maintaining GAC on a global chance-constraint
is intractable in general even if maintaining GAC on its deterministic version is
polynomial.

Case 2: When θh = 1 the global chance-constraint h can be reformulated as
h↓p, ∀p ∈ Ψ . If all deterministic constraints are simultaneously GAC, then this
reformulation is equivalent to algorithm H. Nevertheless, even in this special
case, we still lose in terms of pruning.

Theorem 4 GAC on h is stronger than GAC on the reformulation.

Proof: We consider the same example as in the previous proof but with θh = 1
instead. All deterministic constraints are simultaneously GAC, but PT [i] = 1
cannot be extended to any satisfying policy. 2

6 Computational Experience

In this section, we present our computational experience, which shows that our
approach outperforms the state-of-the-art approach in [9] both in terms of run
time and explored nodes, and that it is also able to achieve stronger pruning.

In our experiments we considered a number of randomly generated SCSPs.
The SCSPs considered feature five chance-constraints over 4 integer decision vari-
ables, x1, . . . , x4 and 8 stochastic variables, s1, . . . , s8. The decision variable do-
mains are: D(x1) = {5, . . . , 10}, D(x2) = {4, . . . , 10}, D(x3) = {3, . . . , 10}, and
D(x4) = {6, . . . , 10}. The domains of stochastic variables s1, s3, s5, s7 comprise
2 integer values each. The domains of stochastic variables s2, s4, s6, s8 comprise
3 integer values each. The values in these domains have been randomly gener-
ated as uniformly distributed in {1, . . . , 5}. Each value appearing in the domains
of random variables s1, s3, s5, s7 is assigned a realization probability of 1

2
. Each

value appearing in the domains of random variables s2, s4, s6, s8 is assigned a
realization probability of 1

3
. There are five chance-constraints in the model, the

first embeds an equality, c1 : Pr{x1s1 +x2s2 +x3s3 +x4s4 = 80} ≥ α, the second
and the third embed inequalities, c2 : Pr{x1s5 + x2s6 + x3s7 + x4s8 ≤ 100} ≥ β

and c3 : Pr{x1s5 + x2s6 + x3s7 + x4s8 ≥ 60} ≥ β. Parameters α and β take
values in {0.005, 0.01, 0.03, 0.05, 0.07, 0.1} and {0.6, 0.7, 0.8}, respectively. The
fourth chance-constraint embeds again an inequality, but in this case the con-
straint is defined over a subset of all the decision and random variables in the
model: c4 : Pr{x1s2 + x3s6 ≥ 30} ≥ 0.7. Finally, the fifth chance-constraint
embeds an equality also defined over a subset of all the decision and random
variables in the model: c5 : Pr{x2s4 + x4s8 = 20} ≥ 0.05.

We considered 3 possible stage structures. In the first stage structure we
have only one stage, 〈V1, S1〉, where V1 = {x1, . . . , x4} and S1 = {s1, . . . , s8}.
In the second stage structure we have two stages, 〈V1, S1〉 and 〈V2, S2〉, where
V1 = {x1, x2}, S1 = {s1, s2, s5, s6}, V2 = {x3, x4}, and S1 = {s3, s4, s7, s8}. In
the third stage structure we have four stages, 〈V1, S1〉, 〈V2, S2〉, 〈V3, S3〉, and
〈V4, S4〉, where V1 = {x1}, S1 = {s1, s5}, V2 = {x2}, S1 = {s2, s6}, V3 = {x3},
S3 = {s3, s7}, and V4 = {x4}, S4 = {s4, s8}.

The propagation strategy discussed in Section 5 requires an existing propa-
gator A for the deterministic constraints. Since the only constraints appearing
in the SCSPs described above are linear (in)equalities, we borrowed a simple
bound-propagation procedure for linear (in)equalities implemented in Choco 1.2
[6], a JAVA open source CP solver. The variable selection heuristic used during
the search is the domain over dynamic degree strategy, while the value selection
heuristic selects values from decision variable domains in increasing order.

In order to assess efficiency and effectiveness, we compared our approach
(GCC) — which models the discussed SCSPs using five global chance-constraints,
one for each chance-constraint in the model — against the deterministic equiv-
alent CSPs generated using the state-of-the-art scenario-based approach in [9]
(SBA).

Firstly, we wish to underline that SBA, the approach discussed in [9], requires
a much larger number of constraints and decision variables to model the prob-

lems above. Specifically, the single-stage problem is modeled, in [9], using 6484
decision variables and 6485 constraints, while GCC — our approach — requires
only 4 decision variables and 5 constraints; this is mainly due to the fact that,
in addition to the 4 decision variables required to build the policy tree, SBA
introduces 1296 binary decision variables for each of the 5 chance-constraints in
the model; furthermore, SBA also introduces 1297 reification constraints for each
chance-constraint in the model, similarly to what shown in Example 1 (Fig. 2).
The two-stage problem is modeled by SBA using 6554 decision variables (74 for
the policy tree and 6480 binary decision variables) and 6485 constraints, while
GCC requires only 74 decision variables and 5 constraints; finally, the four-stage
problem is modeled by SBA using 6739 decision variables and 6485 constraints,
while GCC requires only 259 decision variables and 5 constraints.

As discussed above, in our comparative study we considered 18 different pos-
sible configurations for the parameters α and β. For each of these configurations,
we generated 15 different probability distributions — i.e. sets of values in the do-
mains — for the random variables in our model. These probability distributions
were divided in three groups and employed to generate 5 single-stage problems,
5 two-stage problems and 5 four-stage problems. Therefore the test bed com-
prised, in total, 270 instances. To each instance we assigned a time limit of 240
seconds for running the search. The computational performances of GCC and
SBA are compared in Fig. 3. All the experiments were performed on an Intel(R)
Centrino(TM) CPU 1.50GHz with 2Gb RAM. The solver used for our test is
Choco 1.2 [6].

In the test bed considered, GCC solved, in the given time limit of 240 seconds,
all the instances that SBA could solve within this time limit. In contrast, SBA
was often not able to solve — within the given time limit of 240 secs — instances
that GCC could solve in a few seconds. More specifically, both GCC and SBA
could solve 90 over 90 1-stage instances; on average GCC explored roughly 5
times less nodes and was about 2.5 times faster than SBA for these instances.
GCC could solve 45 over 90 2-stage instances, while SBA could only solve 18
of them; on average GCC explored roughly 400 times less nodes and was about
13 times faster than SBA for these instances. Finally, GCC could solve 31 over
90 4-stage instances, while SBA could only solve 10 of them; on average GCC
explored roughly 300 times less nodes and was about 15 times faster than SBA
for these instances.

In our computational experience, we also compared the effectiveness of the
filtering performed by SBA and GCC. In order to do so, we considered 90 two-
stage feasible instances randomly generated according to the strategy discussed
above (5 different probability distributions for the random variables and 18 dif-
ferent configurations for the parameters α and β). We considered a solution for
each of these instances, we randomly picked subsets of the decision variables
in the problem, we assigned them to the value they take in this solution, we
propagated according to SBA and GCC, respectively, and we compared the per-
centage of values pruned by each of these two approaches. In Fig. 4 we show the
results of this comparison, which is performed for a number of decision variables

100

101

102

103

104

105

100 101 102 103 104 105

S
B

A

GCC

Explored Nodes

•••••••••••••••••• •••
•••

•••

•••

•••

••••••

•••

•••

•••

•••

••••

•• •••

•

•• •••

•

•• •••

•••

•••

•••

•••

•••

•••

••••••
• •••••••

•
•••

•

•

• •••••• •••••••••

••••••••••••

•••

•••

•• ••
••

• •

•• •

•

••• •••

•

••••••
•••• •
•

•• •••
•••
••
•
•

••
•••

•

• ••• •

• •••••
• ••

•• •
••••••

•••

•• •

•••

•• •

•••

•• •

•• • •••
• ••

•••
•
•• •••

••

• •
• •

•

•••••• •••••

10−3

10−2

10−1

100

101

102

10−3 10−2 10−1 100 101 102

S
B

A

GCC

Run Times

•••• ••• •
•
• • ••
•••
•• •• •

• ••

••
•
••
•

•
•
•

• •
••••

••
•

•••

•
•
•

••
•

•
•
• •
•• •

•
•

•

••
•
••

•

•
• •

• •
• ••

•••

•••

•

••

• •
•

•••

•••••• • ••••••• ••••

•

•

• •••••••••••••••

•••
•••
•••
•••

•••

•
•
•

•• ••••• •••••••• •••

•

•••••• •••••••••••••••••• ••••••• ••••• •••••• •••••••••••

•••

•••

•••

•••

•••

••••• • •••• •••••• • • •••••• •••

•

•••••• •••••

Fig. 3. Scatter graphs for our computational experience. The top graph compares the
run time performance of SBA and GCC for the 270 instances in our test bed. The
bottom graph shows, instead, a comparison in terms of explored nodes.

assigned that ranges from 0% — this corresponds to a root node propagation —
to 90% of the decision variables that appear in the policy tree. In the graph, for
each percentage of decision variables assigned, we report — in percentage on the

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

P
er

ce
n
ta

g
e

o
f
va

lu
es

p
ru

n
ed

Percentage of decision variables assigned

Domain Reduction

SBA

+

+

+

+

+

+

+

+

+

+

+
GCC

•

•

•

•

•

•

•

•

•

•

•

Fig. 4. Effectiveness of the filtering performed by SBA and GCC

total amount of values in the initial decision variable domains — the minimum,
the maximum, and the average number of values pruned from the domains. As it
appears from the graph, if we consider the minimum percentage of values pruned
by the two approaches, GCC always achieves a stronger pruning than SBA in the
worst case. Furthermore, as the maximum percentage of values pruned reported
in the graph witnesses, GCC is able to achieve a much stronger pruning than
SBA in the best case. On average, GCC always outperforms SBA, by filtering
up to 8.64% more values when 60% of the decision variables are assigned and at
least 3.11% more values at the root node.

7 Related Works

Closely related to our approach are [7, 8]. In these works ad-hoc filtering strate-
gies for handling specific chance-constraints are proposed. However, the filtering
algorithms presented in both these works are special purpose, incomplete, and
do not reuse classical propagators for conventional constraints. Other search and
consistency strategies, namely a backtracking algorithm, a forward checking pro-
cedure [10] and an arc-consistency [1] algorithm have been proposed for SCSPs.
But these present several limitations and cannot be directly employed to solve
multi-stage SCSPs as they do not explicitly feature a policy tree representation
for the solution of a SCSP. Finally, efforts that try to extend classical CSP frame-
work to incorporate uncertainty have been influenced by works that originated in
different fields, namely chance-constrained programming [4] and stochastic pro-

gramming [3]. To the best of our knowledge the first work that tries to create

a bridge between Stochastic Programming and Constraint Programming is by
Benoist et al. [2]. The idea of employing a scenario-based approach for building
up constraint programming models of SCSPs is not novel, since Tarim et al. [9]
have already used this technique to develop a fully featured language — Stochas-
tic OPL — for modeling SCSPs. Our work proposes an orthogonal approach to
solving SCSPs that could easily be integrated with the compilation approach of
[9] to make it more efficient.

8 Conclusions

We proposed generic filtering algorithms for global chance-constraints. Our fil-
tering algorithms are parameterized with conventional propagators for the corre-
sponding deterministic version of the global chance-constraint. Our experimental
results show that our approach outperforms the approach in [9], both in terms
of run time and explored nodes. We also showed, experimentally, that our ap-
proach produces stronger pruning than the approach in [9]. An interesting open
question is to determine if it is tractable to maintain GAC on global chance-
constraints for which GAC on the corresponding deterministic constraints is
tractable. Future works may investigate the tractability of GAC for classes of
global chance-constraints and ways of making algorithm H incremental.

References

1. T. Balafoutis and K. Stergiou. Algorithms for stochastic csps. In Frédéric Ben-
hamou, editor, Principles and Practice of Constraint Programming, CP 2006, Pro-

ceedings, volume 4204 of LNCS, pages 44–58. Springer, 2006.
2. T. Benoist, E. Bourreau, Y. Caseau, and B. Rottembourg. Towards stochastic

constraint programming: A study of online multi-choice knapsack with deadlines.
In Toby Walsh, editor, Principles and Practice of Constraint Programming, CP

2001, Proceedings, volume 2239 of LNCS, pages 61–76. Springer, 2001.
3. J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer

Verlag, New York, 1997.
4. A. Charnes and W. W. Cooper. Deterministic equivalents for optimizing and

satisficing under chance constraints. Operations Research, 11(1):18–39, 1963.
5. H. Jeffreys. Theory of Probability. Clarendon Press, Oxford, UK, 1961.
6. F. Laburthe and the OCRE project team. Choco: Implementing a cp kernel.

Technical report, Bouygues e-Lab, France, 1994.
7. R. Rossi, S. A. Tarim, B. Hnich, and S. Prestwich. A global chance-constraint

for stochastic inventory systems under service level constraints. Constraints,
13(4):490–517, 2008.

8. R. Rossi, S. A. Tarim, B. Hnich, and S. D. Prestwich. Cost-based domain filtering
for stochastic constraint programming. In Peter J. Stuckey, editor, Principles and

Practice of Constraint Programming, CP 2008, Proceedings, volume 5202 of LNCS,
pages 235–250. Springer, 2008.

9. S. A. Tarim, S. Manandhar, and T. Walsh. Stochastic constraint programming: A
scenario-based approach. Constraints, 11(1):53–80, 2006.

10. T. Walsh. Stochastic constraint programming. In Frank van Harmelen, editor, Eu-

ropean Conference on Artificial Intelligence, ECAI’2002, Proceedings, pages 111–
115. IOS Press, 2002.

