

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor de la comunicación de congreso publicada en:
This is an author produced version of a paper published in:

Artificial Neural Networks – ICANN 2009: 19th International Conference,
Limassol, Cyprus, September 14-17, 2009, Proceedings, Part I. Lecture Notes

in Computer Science, Volumen 5768. Springer, 2009. 90-99.

DOI: http://dx.doi.org/10.1007/978-3-642-04274-4_10

Copyright: © 2009 Springer-Verlag

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1007/978-3-642-04274-4_10

Statistical Instance-based Ensemble Pruning for

Multi-class Problems

Gonzalo Mart́ınez-Muñoz1,2, Daniel Hernández-Lobato1, and Alberto Suárez1

1 Universidad Autónoma de Madrid, EPS, Madrid 28049 Spain
2 Oregon State University, Corvallis, OR 97331 USA

Abstract. Recent research has shown that the provisional count of votes
of an ensemble of classifiers can be used to estimate the probability
that the final ensemble prediction coincides with the current majority
class. For a given instance, querying can be stopped when this proba-
bility is above a specified threshold. This instance-based ensemble prun-
ing procedure can be efficiently implemented if these probabilities are
pre-computed and stored in a lookup table. However, the size of the ta-
ble and the cost of computing the probabilities grow very rapidly with
the number of classes of the problem. In this article we introduce a
number of computational optimizations that can be used to make the
construction of the lookup table feasible. As a result, the application of
instance-based ensemble pruning is extended to multi-class problems. Ex-
periments in several UCI multi-class problems show that instance-based
pruning speeds-up classification by a factor between 2 and 10 without
any significant variation in the prediction accuracy of the ensemble.

Key words: Instance based pruning, ensemble learning, neural net-
works

1 Introduction

Ensemble methods generate a collection of diverse classifiers by introducing vari-
ations in the algorithm used to train the base predictors or in the conditions un-
der which learning takes place [1–5]. The classification of an unlabeled instance
by the ensemble is obtained by combining the predictions of the individual clas-
sifiers. In majority voting, each classifier in the ensemble is asked to predict the
class label of the instance considered. Once all the classifiers have been queried,
the class that receives the greatest number of votes is returned as the final
decision of the ensemble. The time needed to classify an instance increases lin-
early with the size of the ensemble. However, in many cases, it is not necessary
to compute the predictions of every classifier to obtain a reliable estimate of
the prediction of the complete ensemble. Assuming that the classifiers of the
ensemble are generated independently when conditioned to the training data1,

1 Note that this is different from assuming that the classifiers are unconditionally
independent.

2 Gonzalo Mart́ınez-Muñoz, Daniel Hernández-Lobato, and Alberto Suárez

the class labels predicted by the ensemble members can be seen as independent
identically distributed random variables. With this assumption, it is possible to
compute the probability that the current majority class coincides with the fi-
nal ensemble prediction, on the basis of the known class votes. Therefore, for a
given instance, the querying process can be halted when this probability is above
a specified threshold. This dynamical instance-based ensemble pruning can be
used in practice to speed-up the classification process [6, 7].

For statistical IB-pruning to be effective, the probability that the final de-
cision of the ensemble will not change when taking into account the remaining
votes needs to be rapidly computed. A possible implementation is to store pre-
computed values of these probabilities in a lookup table. The difficulty is that
both the size of the table and the cost of evaluating the probability values grow
very quickly with the number of class labels. Hence, applying IB-pruning to
classification problems with more than two classes remains a challenging task.

In this work we introduce several techniques that can be applied to reduce the
size of the lookup table and to optimize the process of computing these probabil-
ity values. With the proposed optimizations, IB-pruning can be effectively used
to reduce the time of classification by ensembles also in multi-class problems.
Specifically, in this work problems with up to 11 different classes are considered.
In the problems investigated, the number of classifiers queried is reduced by a
factor between ≈ 2 and ≈ 10. The empirical rates of disagreement between the
class predicted by the dynamically pruned ensembles and the complete ones are
close to the confidence level specified and often below it. Furthermore, the actual
differences in classification error between these two ensembles are very small; in
fact, much smaller than the disagreement rates.

The article is structured as follows: Statistical instance-based ensemble prun-
ing is briefly reviewed in Section 2. Section 3 describes the optimizations that
make the application of IB-pruning to problems with more than two classes prac-
ticable. Section 4 illustrates the improvements in classification speed that can be
achieved when IB-pruning is used in a variety of multi-class problems. Finally,
the conclusions of this work are summarized in Section 5.

2 Statistical Instance-Based Ensemble Pruning

Consider an ensemble composed of T classifiers {h(x)i}
T
i=1. The class assigned to

an unlabeled instance, x, when majority voting is used to combine the outputs
of the ensemble classifiers is

arg max
y

T
∑

t=1

I(ht(x) = y), y ∈ Y , (1)

where ht(x) is the prediction of the t-th ensemble member, I is an indicator
function and Y = {y1, . . . , yl} is the set of possible class labels.

The predictions of the classifiers in the ensemble can be summarized in the
vector T ≡ {T1, T2, . . . , Tl;

∑l
i=1 Ti = T} where Ti is the number of members

Statistical Instance-based Ensemble Pruning for Multi-class Problems 3

in the ensemble that predict class yi for the instance to be classified. Similarly,
the vector that stores the prediction of the first t ≤ T classifiers in the ensemble
is t ≡ {t1, t2, . . . , tl;

∑l
i=1 ti = t; ti ≤ Ti, i = 1, 2, . . . , l}. Assuming the individ-

ual classifiers of the ensemble are built independently when conditioned to the
training data, the probability that the class labels predicted by the subensemble
of size t < T and by the complete ensemble of size T coincide is

P̃(t, T) =
∑

T

∗

[

(T − t)!

(t + l)T−t

l
∏

i=1

(ti + 1)Ti−ti

(Ti − ti)!

]

, (2)

where (a)n = a(a+1) · · · (a+n−1) is the Pocchammer symbol, or rising factorial,
with a and n nonnegative integers, and the asterisk indicates that the summation
runs over all values of T such that

∑l
i=1 Ti = T , {Ti ≥ ti, i = 1, 2, . . . , l}, and

Tk∗

t
> Tj for j 6= k∗

t
, where k∗

t
is the majority class after querying the first t

classifiers. See [6] for further details.
If it is acceptable that the coincidence between these two predictions is not

necessarily certain, but occurs with a high confidence level π, (2) can be used
to stop the querying process after the predictions of t classifiers in the ensemble
are known, when the vector of class predictions of the current subensemble t is
such that P̃(t, T) ≥ π. Since the fraction of examples that are assigned a differ-
ent class label by the pruned ensemble of size t and the complete subensemble
is at most 1 − π, the differences in error should be smaller than this disagree-
ment rate. In practice, the changes in class labels affect both correctly labeled
examples and misclassified examples in approximately equal numbers, and the
differences in error rates are much smaller than this upper bound. Therefore, for
a given instance the partial ensemble prediction can be used instead of the com-
plete ensemble to save time in the classification process at the expense of small
differences in the assignment of class labels, which generally do not translate
into large differences in generalization performance.

To determine whether the polling process can be stopped it is necessary to
know the values of P̃(t, T), whose computation can be costly. Since for a given
number of classes l and ensemble size T , these probabilities only depend on t,
they can be pre-computed and stored in a lookup table. The difficulty is that
for l < T both the size of the lookup table that stores pre-computed probability
values and the cost of computing each entry in the table are nearly exponential
in the number of different class labels l. The number of different entries in this
table is

(

T+l
T

)

, namely the number of different ways in which T objects can be
assigned to l+1 classes. The extra class corresponds to the unknown predictions
of the classifiers that have not been queried.

The cost of evaluating (2) depends on the number of vectors T involved in the
summation. This number is different for each entry of the table and is given by
the number of values of T such that Tk∗

t
is the majority class. As a consequence

of the constraints Ti ≥ ti its value decreases as the value of the components
of t increase. Thus, the maximum number of different vectors T, Cmax(T, l), is
obtained for the entry corresponding to t = 0. This is the worst possible scenario
which sets an upper bound on the time-complexity of evaluating (2).

4 Gonzalo Mart́ınez-Muñoz, Daniel Hernández-Lobato, and Alberto Suárez

The value of Cmax(T, l) can be expressed in terms of N(n, r,m), the number
of different ways of decomposing a positive integer n into r non-negative integers
that are all smaller or equal than m,

n1 + n2 + · · · + nr = n ni ≤ m i = 1, 2, . . . , r .

If m ≥ n the problem reduces to computing the different ways of assigning n
objects to r classes with repetitions allowed, namely

(

n+r−1
n

)

. Otherwise, it is
given by the formula

N(n, r,m) =























⌊n/(m+1)⌋
∑

i=0

(−1)i

(

r

i

)(

n − i(m + 1) + r − 1

n − i(m + 1)

)

if n ≤ mr

0 otherwise

. (3)

To calculate Cmax(T, l) we need to count the number of different vectors
T involved in the summation in which the minority votes can be distributed
among the l − 1 minority classes. Assume that the majority class gets i votes.
The number of different ways of distributing the remaining votes among the
remaining l − 1 classes, so that all of the minority classes receive less than i
votes is N(T − i, l − 1, i − 1). Summing over all possible values of i, we obtain

Cmax(T, l) =
T

∑

i=⌈T/l⌉

N(T − i, l − 1, i − 1). (4)

Figure 1 (left) displays in log scale the size of the table and the maximum
number of operations needed to calculate each element in the table (Cmax(T, l))
as the number of class labels l increases for T = 101. These two numbers grow
very rapidly with the number of classes l. The increase from l − 1 classes to l
classes corresponds in both cases to a multiplicative factor of ≈ T/l. In conse-
quence, the problem quickly becomes intractable even for relatively small num-
bers of classes. For T = 101 and l = 2, . . . , 7, the maximum number of vectors T

involved in the summation (and table sizes) are: 51 (5253), 1734 (182104), 44867
(4780230), 937747(101340876),16489227(1807245622), 250881300(27883218168),
respectively. Thus, even for l = 3, building the lookup table is costly: The ta-
ble has 182, 104 entries and computing each entry demands as much as 1, 734
operations whose time-complexity is O(l).

3 Optimizations

In this section we describe several exact optimizations that can be applied to
build the lookup table in a more efficient way3. First, each of the terms in the
summation in (2) can be computed faster if the factors that are repeatedly used

3 Source code available at http://www.eps.uam.es/~gonzalo/publications/

Statistical Instance-based Ensemble Pruning for Multi-class Problems 5

10 20 30 40 50 60 70 80 90 100
10

0

10
10

10
20

10
30

10
40

10
50

10
60

number of classes

#

T=101

Table size (Not optimized)
C

max

Table size (Optimized)

t
2

t 3

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

0

5

10

15

20

25

30

35

40

45

50

Fig. 1. (Left) Size of the lookup table (with and without optimizations) and complexity
of the computation of the table entries (Cmax(T, l)) as a function of number of classes
of the lookup or T = 101. (Right) Lookup table for T = 101, π = 0.99 and l = 3

in the calculation are stored in auxiliary tables. Second, the size of the lookup
table can also be reduced by storing the minimal amount of information that
is needed to reach a decision on when to stop querying classifiers. Finally, some
of the terms contribute with the same value to the sum in (2). Therefore, it is
sufficient to compute this value only once and then multiply the result by the
number of equivalent terms.

The calculation of each term inside the summation in (1) requires the com-
putation of the product of one factor of the form

(T − t)!/(t + l)T−t . (5)

and of l factors of the form

(ti + 1)Ti−ti
/(Ti − ti)! (6)

The number of different values that these factors can have is determined by Ti,
ti and t. The variables Ti and t take values in the range [0, T] and ti ≤ Ti.
Therefore, for a given T there are only (T + 1)T/2 different outcomes for (6)
and T + 1 for (5). This is a fairly small number of values that can be easily pre-
computed and stored in an auxiliary table. Thus, each term in the summation
that appears in (2) can be readily computed as a product of l of these factors.
In addition, to avoid numerical difficulties with the computations that involve
factorials, (6) and (5) are calculated using the prime-factor decomposition of the
numbers involved.

Regarding the reduction of the size of the lookup table, the following opti-
mizations can be made: Instead of storing probabilities, it is sufficient to gener-
ate a table whose entries correspond to the distribution of votes in the minority
classes only. The value stored in the table for each entry is the minimum number
of votes for the majority class needed to estimate the complete ensemble predic-
tion with a confidence level π, given the observed minority classes. The size of the

6 Gonzalo Mart́ınez-Muñoz, Daniel Hernández-Lobato, and Alberto Suárez

lookup table can be further reduced if the votes in t are kept in memory sorted
in decreasing order. The overhead associated to keeping the votes sorted when
new predictions are known is very small, of O(l) per classifier queried. Thus,
the first element in t corresponds to the currently observed majority class. The
remaining observations correspond to the minority classes which are used as in-
dexes for the lookup table. Because ti ≥ ti+1 for all i, the value of ti is at most
⌈T/i⌉ − 1 for i = 1, 2, . . . , l.

The dependence of the size of the table on the number of classes with and
without the optimizations described is shown in the left plot of Fig. 1 for an
ensemble of size T = 101. The right plot of Fig. 1 displays the lookup table for
l = 3, T = 101 and π = 99%. The value stored in the position of the table
labeled by the pair (t2, t3) corresponds to the minimum number of votes of the
majority class t∗1(t2, t3) that are needed to anticipate the ensemble prediction
with a confidence level π = 99% when the two minority classes have received
t2 and t3 votes, respectively. The triangular shape of the table is given by the
constrains t1 > t2 ≥ t3. The critical values of the majority class are plotted using
an inverted gray scale: a darker color indicates that higher values for the majority
class are needed to stop the voting process, according to the scale displayed on
the right-hand side of the figure.

The optimizations introduced thus far allow to compute lookup tables for
small and intermediate values of l, the total number of classes. In problems
with a larger number classes, the rapid growth in the number of terms that
need to be considered makes the calculation of (2) unfeasible. Nevertheless, this
computation is manageable for instances that during the classification process
have received votes in at most k classes. Instances that have votes in more than
k classes can be classified by querying all the classifiers in the ensemble, without
pruning. An instance that has received votes in only k classes when t classifiers
have been queried is characterized by a vector t whose l−k last components are
zero: tk+1 = tk+2 = . . . = tl = 0. For these instances, it is sufficient to compute
a lookup table with the same dimensions as a table designed for a problem with
k classes. Note that if ti = 0 then (6) is equal to one independently of the
value of Ti. This observation can be used to simplify the computation of (2) in
two ways: First, in each of the terms in the summation (2) it is not necessary
to multiply by the factors of the form (6) for classes i = k + 1, k + 2, . . . , l,
because they are all equal to one. Second, when t = {t1, t2, . . . , tk, 0, . . . , 0} all
terms T of the form {T1, . . . , Tk, ∗, . . . , ∗} contribute with the same value in
(2). For a particular value of T1, T2, . . . , Tk, the number of terms T of the form

{T1, . . . , Tk, ∗, . . . , ∗}, is N(T −
∑k

i=1 Ti, l − k, T1 − 1); that is, the number of

ways in which the remaining votes, T −
∑k

i=1 Ti, can be decomposed among the
remaining l − k classes so that none of these classes receives more votes than
T1. Thus, the terms of the form {T1, . . . , Tk, ∗, . . . , ∗} can be grouped and their
contribution in (2) calculated by computing the value of one of them and then

multiplying by their count N(T −
∑k

i=1 Ti, l−k, T1−1). Using this optimization
the actual number of different terms that need to be computed in (2) grows

Statistical Instance-based Ensemble Pruning for Multi-class Problems 7

6 4

7 7 3

7 7 7 2 t
3

6 7 8 8 t
1

1

6 6 7 8 8 8 0

0 1 2 3 4 5 6 7

t
2

T
1

T
2

T
3

6 4 5

6 5 4

7 2 6

7 3 5

7 4 4

7 5 3

7 6 2

8 0 7

8 1 6

8 2 5

8 3 4

8 4 3

...

13 0 2

13 1 1

13 2 0

14 0 1

14 1 0

15 0 0

T
1
≥t

1
 && T

2
≥5 && T

3
≥1

all

T=15

3 classes

π=0.99

6 4

7 7 3

7 7 7 2 t
3

6 7 7 8 t
1

1

6 6 7 8 8 8 0

0 1 2 3 4 5 6 7

t
2

T
1

T
2

T
3

#

4 0 2 1

...

4 3 1 6

4 3 2 10

4 3 3 12

5 0 0 6

5 0 1 10

...

7 0 0 36

7 0 1 33

7 0 2 28

7 0 3 21

...

13 1 1 1

13 2 0 1

14 0 0 3

14 0 1 1

14 1 0 1

15 0 0 1

T
1
≥t

1
 && T

2
≥5 && T

3
≥1

T=15

6 classes (k=3)

π=0.99

all

*

*

*

*

Fig. 2. Lookup table computation process for T = 15 and l = 3 (left) and for T = 15,
l = 6 and k = 3 (Right)

slowly with l for fixed k. For example, for T = 101 and k = 3 the number of final
vectors T to be computed grow from 44867 with l = 4 to 59821 with l = 101.

Fig. 2 illustrates the process of construction of the lookup table for T = 15,
l = 3 and k = 3 (left part of the figure) and for T = 15, l = 6 and k = 3
(right part). On the left-hand side the list of final vectors T that have to be
analyzed during the computation of the lookup table are shown. Note that not
all of them have to be taken into account to compute every entry of the table.
For instance, to calculate the entry (t2 = 0, t3 = 0) all combinations (T1, T2, T3)
are needed. For entry (t2 = 5, t3 = 1) only combinations such that T2 ≥ 5 and
T3 ≥ 1 are used. In the case of l = 6 classes and k = 3 (right part of the figure)
the procedure for computing the table is equivalent except that each term is
multiplied by the number of equivalent vectors T that contribute with the same
value (fourth column of the list of combinations, under the header #).

4 Experiments

The performance of the instance-based pruning procedure described is illustrated
in experiments on benchmark multi-class problems from [8]. For each problem,
we generate 100 random partitions of the data into two disjoint sets that contain
2/3 and 1/3 of the instances, respectively. The first set is used for constructing
the ensembles while the second one is used for evaluation. For each of these
partitions, we build a bagging ensemble composed of 101 neural networks [1].
In bagging, each network is trained on a different bootstrap sample of the data
available. The neural networks are single layer feed forward networks with 5
units in the hidden layer and soft-max outputs. They are trained using a maxi-
mum of 1, 000 epochs using the quasi-Newton method BFGS. These choices were

8 Gonzalo Mart́ınez-Muñoz, Daniel Hernández-Lobato, and Alberto Suárez

Table 1. Results for the analyzed datasets

classes Disagreement Classification Error # of NN (Q1 Q2 Q3)
Dataset (k) (in %) IB-Pruning No pruning

Dermatology 6 0.034±0.166 2.82±1.31 2.80±1.31 10.9 (8.0 8.0 10.0)
DNA 3 0.090±0.108 5.20±0.68 5.19±0.68 12.0 (7.0 7.0 9.0)
E-coli 8 0.196±0.485 23.84±11.22 23.80±11.27 34.7 (8.0 11.0 63.0)

(k = 5) 18.48% instances with votes for more than 5 classes
Glass 6 0.310±0.651 31.18±5.01 31.17±4.93 31.4 (10.0 18.0 45.0)
Iris 3 0.080±0.394 4.78±2.59 4.82±2.68 9.8 (7.0 7.0 7.0)
LED24 10 0.149±0.139 28.40±1.79 28.40±1.79 21.9 (8.0 8.0 14.0)

(k = 5) 9.24% instances with votes for more than 5 classes
New-Thyroid 3 0.056±0.274 3.94±2.13 3.94±2.11 9.7 (7.0 7.0 7.0)
Satellite 6 0.128±0.068 12.23±0.68 12.23±0.68 14.8 (8.0 8.0 10.0)
Segment 7 0.042±0.094 2.91±0.55 2.90±0.55 11.6 (8.0 8.0 8.0)

(k = 5) 0.74% instances with votes for more than 5 classes
Vehicle 4 0.408±0.395 17.82±2.04 17.79±2.01 24.1 (7.0 11.0 29.0)
Vowel 11 0.364±0.305 23.32±2.44 23.24±2.40 50.2 (14.0 31.0 101.0)

(k = 5) 29.99% instances with votes for more than 5 classes
Waveform 3 0.284±0.169 16.87±1.28 16.85±1.28 18.7 (7.0 9.0 17.0)
Wine 3 0.068±0.334 2.19±1.89 2.15±1.91 9.4 (7.0 7.0 7.0)

made so that a good overall accuracy is obtained in the classification problems
investigated. The nnet R package [9] is used to train the neural networks. The
performance of the ensembles is estimated on the test set. For each instance
to be classified, the networks in the ensemble are queried at random without
repetition. The vector of votes t is updated so that its elements remain sorted.
The querying process is stopped when t1 is equal or greater than the entry of
the lookup table corresponding to the minority classes {t2, . . . , tl}. For problems
with l ≤ 6 the complete lookup table for all possible values of t is computed.
For problems with more than six classes, k = 5 is used to compute the lookup
table. In these problems, if an instance receives votes for more than five classes
after t queries, then the full ensemble is used to predict its class label. All the
lookup tables are computed using π = 99% and T = 101.

Table 1 summarizes the results for the datasets investigated. The values re-
ported correspond to averages over the 100 random partitions into training and
test data. The standard deviations are also reported after the ± symbols. The
second column of the table displays l, the number of classes of each problem and,
if different, the k value used to generate the table. If k 6= l, the percentage of
instances that require querying all the networks in the ensemble is also indicated.
The third column displays the average disagreement rates between the predic-
tions of the full ensemble and the predictions of the ensemble when IB-pruning
is used. The generalization error and standard deviation of these predictions are
given in the fourth and fifth columns, respectively. Finally, the sixth column
displays the average number of neural networks used by IB-pruning to classify
each instance and the quartiles between parenthesis.

Statistical Instance-based Ensemble Pruning for Multi-class Problems 9

Table 2. Execution time

l k time (sec.) Cmax table size

3 3 0.76 1,734 884
4 4 13.9 44,867 8,037
5 5 758.4 937,747 46,262
6 6 24,757 16,489,227 189,509
6 5 10,126 16,489,227 46,262
7 5 15,037 18,798,419 46,262
8 5 18,579 19,398,244 46,262
9 5 19,279 19,605,911 46,262
10 5 20,143 19,692,158 46,262
11 5 20,270 19,732,838 46,262
12 5 20,417 19,754,960 46,262

The disagreement rates between the pruned and the complete ensemble class
estimates are under 1−π in all the problems investigated. Furthermore, the dif-
ferences in classification error between the complete ensemble and the IB-pruned
ensemble are almost negligible, well below the disagreement rates. This means
that the changes in the class labels occur in approximately the same numbers
of correctly and incorrectly classified instances. A paired two-sided Wilcoxon
sign test at 5% indicates that these differences in classification error are not
statistically significant in any of the problems investigated. The average number
of neural networks used to classify the different instance varies significantly in
different problems. This value is below 10 on average for Iris, New-Thyroid and
Wine. For Vowel approximately half of the networks need to be queried on av-
erage. These figures indicate an increment of the classification speed in a factor
that varies between 2 for Vowel and 10.7 for Wine. The smaller improvement
for Vowel is due to the fact that 30.2% of instances have votes for more than
5 classes and, in consequence, they are classified using all the classifiers in the
ensemble, i.e. 101 neural networks.

Table 2 displays the costs of constructing the lookup table for different values
of l and k. The computations have been performed in a 2.4 Ghz Intel Xeon
processor. The times reported in the second column of the table are given in
seconds. The third column displays the values of Cmax, the number of terms
in the sum in (2) when t = 0. Finally, the last column gives the sizes of the
lookup tables constructed. The time needed to compute the lookup table grows
very quickly with l, when k = l (first four rows of the table). This is mainly due
to the fast increase in the number of terms in the sum in (2), and, to a lower
extent, to the larger table size. If the value k is kept fixed (last seven rows of
the table), the size of the table remains constant as l increases. In addition, the
growth of the maximum number of terms in the sum in (2) is much slower. The
combination of these factors leads to a fairly slow increment in the time needed
to build the table for increasing values of l and constant k.

10 Gonzalo Mart́ınez-Muñoz, Daniel Hernández-Lobato, and Alberto Suárez

5 Conclusions

Majority voting is often used to combine the decisions of the classifiers that make
up an ensemble. In most cases, it is not necessary to query all classifiers in the
ensemble to estimate the final class prediction with a high level of confidence.
Assuming that, for a given instance, the predictions of the classifiers are indepen-
dent random variables, it is possible to calculate the probability that the majority
class obtained after querying t classifiers will not change after querying the re-
maining T −t classifiers of the ensemble. If some uncertainty in the estimation of
the class prediction of the complete ensemble is acceptable, the querying process
can be stopped when this probability exceeds a specified threshold π, typically
high, but smaller than 1. Because less classifiers are queried, this instance-based
pruning procedure can be used to increase the classification speed, provided that
the values of these probabilities are readily available. A possible solution is to
compute them and then store them in a lookup table. The difficulty is that the
size of the lookup table and the cost of computing the values to be stored in
it grow very fast as the number class labels of the problem increases. In this
article we propose several techniques that can be used to optimize this process,
and allow the application of IB-pruning in multi-class problems. Experiments
in problems with up to 11 classes show that the classification speed can be im-
proved by a factor between ≈ 2 and ≈ 10, depending on the problem considered,
without any significant variation in the classification error of the ensemble. The
optimized tables are smaller and can be stored in the working memory of a stan-
dard desktop computer. They can be computed off-line for a given ensemble size,
number of classes (l) and value of k and can then be used for any classification
task and ensemble type, provided that the classifiers are trained independently.

References

1. Breiman, L.: Bagging predictors. Machine Learning 24(2) (1996) 123–140
2. Breiman, L.: Random forests. Machine Learning 45(1) (2001) 5–32
3. Mart́ınez-Muñoz, G., Suárez, A.: Switching class labels to generate classification

ensembles. Pattern Recognition 38(10) (2005) 1483–1494
4. Rodriguez, J.J., Kuncheva, L.I., Alonso, C.J.: Rotation forest: A new classifier

ensemble method. IEEE Transactions on Pattern Analysis and Machine Intelligence
28(10) (2006) 1619–1630

5. Mart́ınez-Muñoz, G., Sánchez-Mart́ınez, A., Hernández-Lobato, D., Suárez, A.:
Class-switching neural network ensembles. Neurocomputing 71(13-15) (2008) 2521–
2528 Artificial Neural Networks (ICANN 2006).

6. Hernández-Lobato, D., Mart́ınez-Muñoz, G., Suárez, A.: Statistical instance-based
pruning in ensembles of independent classifiers. IEEE Transanctions on Pattern
Analysis and Machine Intelligence 31(2) (2009) 364–369

7. Fan, W.: Systematic data selection to mine concept-drifting data streams. In:
KDD’04, ACM (2004) 128–137

8. Asuncion, A., Newman, D.: UCI machine learning repository (2007)
9. Venables, W.N., Ripley, B.D.: Modern Applied Statistics with S. Springer, New

York (2002)

