Skip to main content

Time Coding of Input Strength Is Intrinsic to Synapses with Short Term Plasticity

  • Conference paper
  • 1987 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5768))

Abstract

Many neocortical synapses adapt their postsynaptic response to the input rate of the presynaptic neuron through different mechanisms of short term plasticity: Steady state postsynaptic firing rates become invariant to the presynaptic frequency. Still, timing may convey information about presynaptic rate: The postsynaptic current is shown here analytically to peak earlier when presynaptic input frequency increases. An approximate 1ms/10Hz coding sensitivity for AMPA, and 1ms/1Hz for NMDA receptors in post synaptic potentials was found by a multicompartmental synapse simulation using detailed kinetic channel models. The slower the ion channels, the more expressed the time lag signal, but the same time the less the available headroom when compared at identical frequencies. Such timing code of input strength is transmitted most efficiently when postsynaptic amplitude is normalized by the input rate. Short term plasticity is a mechanism local to the synapse that provides such normalizing framework.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chance, F.S., Abbott, L.F., Reyes, A.D.: Gain modulation from background synaptic input. Neuron 35(4), 773–782 (2002)

    Article  Google Scholar 

  2. Abbott, L.F., Regehr, W.G.: Synaptic computation. Nature 431(7010), 796–803 (2004)

    Article  Google Scholar 

  3. Wark, B., Lundstrom, B.N., Fairhall, A.: Sensory adaptation. Current Opinion in Neurobiology 17(4), 423–429 (2007)

    Article  Google Scholar 

  4. Zucker, R.S., Regehr, W.G.: Short-term synaptic plasticity. Annual Review of Physiology 64(1), 355–405 (2002)

    Article  Google Scholar 

  5. Grande, L.A., Spain, W.J.: Synaptic depression as a timing device. Physiology  20(3), 201–210 (2005)

    Article  Google Scholar 

  6. Yang, H., Xu-Friedman, M.A.: Relative roles of different mechanisms of depression at the mouse endbulb of held. Journal of Neurophysiology 99(5), 2510–2521 (2008)

    Article  Google Scholar 

  7. Hemond, P., Epstein, D., Boley, A., Migliore, M., Ascoli, G.A., Jaffe, D.B.: Distinct classes of pyramidal cells exhibit mutually exclusive firing patterns in hippocampal area CA3b. Hippocampus 18(4), 411–424 (2008)

    Article  Google Scholar 

  8. Varela, J.A., Sen, K., Gibson, J., Fost, J., Abbott, L.F., Nelson, S.B.: A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. Journal of Neuroscience 17(20), 7926–7940 (1997)

    Google Scholar 

  9. Fuhrmann, G., Segev, I., Markram, H., Tsodyks, M.: Coding of temporal information by activity-dependent synapses. Journal of Neurophysiology  87(1), 140–148 (2002)

    Google Scholar 

  10. Graham, B., Stricker, C.: Short term plasticity provides temporal filtering at chemical synapses. In: Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN 2008, Part II. LNCS, vol. 5164, pp. 268–276. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Clements, J., Lester, R., Tong, G., Jahr, C., Westbrook, G.: The time course of glutamate in the synaptic cleft. Science 258(5087), 1498–1501 (1992)

    Article  Google Scholar 

  12. Partin, K.M., Fleck, M.W., Mayer, M.L.: AMPA receptor flip/flop mutants affecting deactivation, desensitization, and modulation by cyclothiazide, aniracetam, and thiocyanate. Journal of Neuroscience 16(21), 6634–6647 (1996)

    Google Scholar 

  13. Dingledine, R., Borges, K., Bowie, D., Traynelis, S.F.: The glutamate receptor ion channels. Pharmacological Reviews 51(1), 7–62 (1999)

    Google Scholar 

  14. Raghavachari, S., Lisman, J.E.: Properties of quantal transmission at ca1 synapses. Journal of Neurophysiology 92(4), 2456–2467 (2004)

    Article  Google Scholar 

  15. Zhang, W., Howe, J.R., Popescu, G.K.: Distinct gating modes determine the biphasic relaxation of nmda receptor currents. Nature Neuroscience 11(12), 1373–1375 (2008)

    Article  Google Scholar 

  16. Dayan, P., Abbott, L.F.: Theoretical Neuroscience. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  17. Destexhe, A., Mainen, Z., Sejnowski, T.: Kinetic models of synaptic transmission. In: Methods in Neuronal Modeling, pp. 1–25. MIT press, Cambridge (1998)

    Google Scholar 

  18. Clements, J.D., Westbrook, G.L.: Activation kinetics reveal the number of glutamate and glycine binding sites on the N-methyl–aspartate receptor. Neuron 7(4), 605–613 (1991)

    Article  Google Scholar 

  19. Destexhe, A., Mainen, Z.F., Senowski, T.J.: An efficient method for computing synaptic conductances based on a kinetic-model of receptor-binding. Neural Computation 6(1), 14–18 (1994)

    Article  Google Scholar 

  20. Segev, I., Rall, W.: Computational study of an excitable dendritic spine. Journal of Neurophysiology 60(2), 499–523 (1988)

    Google Scholar 

  21. Matsuzaki, M., Ellis-Davies, G.C.R., Nemoto, T., Miyashita, Y., Iino, M., Kasai, H.: Dendritic spine geometry is critical for ampa receptor expression in hippocampal ca1 pyramidal neurons. Nature Neuroscience 4(11), 1086–1092 (2001)

    Article  Google Scholar 

  22. Tsay, D., Yuste, R.: On the electrical function of dendritic spines. Trends in Neurosciences 27(2), 77–83 (2004)

    Article  Google Scholar 

  23. Araya, R., Eisenthal, K.B., Yuste, R.: Dendritic spines linearize the summation of excitatory potentials. Proceedings of the National Academy of Sciences 103(49), 18799–18804 (2006)

    Article  Google Scholar 

  24. Elhilali, M., Fritz, J.B., Klein, D.J., Simon, J.Z., Shamma, S.A.: Dynamics of precise spike timing in primary auditory cortex. Journal of Neuroscience  24(5), 1159–1172 (2004)

    Article  Google Scholar 

  25. Gasparini, S., Migliore, M., Magee, J.C.: On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons. Journal of Neuroscience  24(49), 11046–11056 (2004)

    Article  Google Scholar 

  26. Womelsdorf, T., Schoffelen, J.M., Oostenveld, R., Singer, W., Desimone, R., Engel, A.K., Fries, P.: Modulation of neuronal interactions through neuronal synchronization. Science 316(5831), 1609–1612 (2007)

    Article  Google Scholar 

  27. Spruston, N.: Pyramidal neurons: dendritic structure and synaptic integration. Nature Reviews Neuroscience 9(3), 206–221 (2008)

    Article  MathSciNet  Google Scholar 

  28. Rumsey, C.C., Abbott, L.F.: Synaptic democracy in active dendrites. Journal of Neurophysiology 96(5), 2307–2318 (2006)

    Article  Google Scholar 

  29. Chadderton, P., Margrie, T.W., Hausser, M.: Integration of quanta in cerebellar granule cells during sensory processing. Nature 428(6985), 856–860 (2004)

    Article  Google Scholar 

  30. Womelsdorf, T., Fries, P.: The role of neuronal synchronization in selective attention. Current Opinion in Neurobiology 17(2), 154–160 (2007)

    Article  Google Scholar 

  31. Fries, P., Nikolic, D., Singer, W.: The gamma cycle. Trends in Neurosciences  30(7), 309–316 (2007)

    Article  Google Scholar 

  32. Mongillo, G., Barak, O., Tsodyks, M.: Synaptic theory of working memory. Science 319(5869), 1543–1546 (2008)

    Article  Google Scholar 

  33. Song, S., Miller, K.D., Abbott, L.F.: Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience  3(9), 919–926 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hajnal, M.A. (2009). Time Coding of Input Strength Is Intrinsic to Synapses with Short Term Plasticity. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds) Artificial Neural Networks – ICANN 2009. ICANN 2009. Lecture Notes in Computer Science, vol 5768. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04274-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04274-4_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04273-7

  • Online ISBN: 978-3-642-04274-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics