Skip to main content

Height Defuzzification Method on L  ∞  Space

  • Conference paper
  • 2000 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5768))

Abstract

The mathematical framework for studying of a fuzzy approximate reasoning is presented in this paper. One of the defuzzification methods besides the center of gravity method which is the best well known defuzzification method are described. The continuity of the defuzzification methods and its application to a fuzzy feedback control are discussed.

The paper was supported in part by Grant-in-Aid for Young Scientists (B) #19700225 from Japan Society for the Promotion of Science (JSPS).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mamdani, E.H.: Application of fuzzy algorithms for control of simple dynamic plant. Proc. IEE 121(12), 1585–1588 (1974)

    Google Scholar 

  2. Tanaka, K., Sugeno, M.: Stability Analysis of Fuzzy Systems and Construction Procedure for Lyapunov Functions. Transactions of the Japan Society of Mechanical Engineers (C) 58(550), 1766–1772 (1992)

    Article  Google Scholar 

  3. Hojo, T., Terano, T., Masui, S.: Fuzzy Feedback Control Rules Based on Optimality. Journal of Japan Society for Fuzzy Theory and Systems 5(5), 1200–1211 (1993)

    MathSciNet  Google Scholar 

  4. Diamond, P.: Stability and periodicity in fuzzy differential equations. IEEE Trans. Fuzzy Syst. 8(5), 583–590 (2000)

    Article  MATH  Google Scholar 

  5. Furuhashi, T.: Stability Analysis of Fuzzy Control Systems Based on Symbolic Expression. Journal of Japan Society for Fuzzy Theory and Systems 14(4), 357–365 (2002)

    Google Scholar 

  6. Gonda, E., Miyata, H., Ohkita, M.: Self-Tuning of Fuzzy Rules with Different Types of MSFs. Journal of Japan Society for Fuzzy Theory and Intelligent Informatics 16(6), 540–550 (2004)

    Google Scholar 

  7. Ishibuchi, H., Nii, M.: Generating Fuzzy Classification Rules from Trained Neural Networks. Journal of Japan Society for Fuzzy Theory and Systems 9(4), 512–524 (1997)

    Google Scholar 

  8. Nomura, H., Wakami, N.: A Method to Determine Fuzzy Inference Rules by a Genetic Algorithm. The Transactions of the Institute of Electronics, Information and Communication Engineers (A) J77-A(9), 1241–1249 (1994)

    Google Scholar 

  9. Shidama, Y., Yang, Y., Eguchi, M., Yamaura, H.: The compactness of a set of membership functions and its application to fuzzy optimal control. The Japan Society for Industrial and Applied Mathematics 6(1), 1–13 (1996)

    Google Scholar 

  10. Yang, Y., Wasaki, K., Eguchi, M., Shidama, Y., Kimura, M.: The Compactness of a Set of Fuzzy Membership Function in NBV and Its Application. IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences J82-A(4), 523–529 (1999)

    Google Scholar 

  11. Mitsuishi, T., Kawabe, J., Wasaki, K., Shidama, Y.: Optimization of Fuzzy Feedback Control Determined by Product-Sum-Gravity Method. Journal of Nonlinear and Convex Analysis 1(2), 201–211 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Mitsuishi, T., Kawabe, J., Wasaki, K., Shidama, Y.: Optimization of Fuzzy Feedback Control in L ∞  Space. In: Proc. International Conference on Fuzzy Systems (FUZZ-IEEE 2001), vol. 2, pp. 896–899 (2001)

    Google Scholar 

  13. Mitsuishi, T., Endou, N., Shidama, Y.: Continuity of Nakamori Fuzzy Model and Its Application to Optimal Feedback Control. In: Proc. IEEE International Conference on Systems, Man and Cybernetics, pp. 577–581 (2005)

    Google Scholar 

  14. Mizumoto, M.: Improvement of fuzzy control (II). In: Proc. 4th Fuzzy System Symposium, pp. 91–96 (1988)

    Google Scholar 

  15. Terano, T.: Practical Fuzzy Control Technology. IEICE, Tokyo (1991)

    Google Scholar 

  16. Mizumoto, M.: Improvement of fuzzy control (IV) - Case by product-sum-gravity method. In: Proc. 6th Fuzzy System Symposium, pp. 9–13 (1990)

    Google Scholar 

  17. Nakamori, Y., Ryoke, M.: Identification of fuzzy prediction models through hyperellipsoidal clustering. IEEE Transactions on Systems, Man and Cybernetics SMC 24(8), 1153–1173 (1994)

    Article  Google Scholar 

  18. Miller, R.K., Michel, A.N.: Ordinary Differential Equations. Academic Press, New York (1982)

    MATH  Google Scholar 

  19. Riesz, F., Sz.-Nagy, B.: Functional Analysis. Dover Publications, New York (1990)

    MATH  Google Scholar 

  20. Dunford, N., Schwartz, J.T.: Linear Operators Part I: General Theory. John Wiley & Sons, New York (1988)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mitsuishi, T., Shidama, Y. (2009). Height Defuzzification Method on L  ∞  Space. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds) Artificial Neural Networks – ICANN 2009. ICANN 2009. Lecture Notes in Computer Science, vol 5768. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04274-4_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04274-4_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04273-7

  • Online ISBN: 978-3-642-04274-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics