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Abstract. A new classification algorithm based on combination of ker-
nel density estimators is introduced. The method combines the estima-
tors with different bandwidths what can be interpreted as looking at the
data with different “resolutions” which, in turn, potentially gives the al-
gorithm an insight into the structure of the data. The bandwidths are
adjusted automatically to decrease the classification error. Results of the
experiments using benchmark data sets show promising performance of
the proposed approach when compared to classical algorithms.
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1 Introduction

Classification based on density estimators is one of the basic methods used in
machine learning (see e.g. [1] for an introduction to the subject). Among the
non-parametric density estimation methods, the most popular are the Gaussian
Mixture Model (GMM) and the Kernel Density Estimator (KDE), the latter
also called the Parzen windows method. In KDE, in order to get the density
estimate in a given point, a distance-based influence of all points from the train-
ing set on that point is calculated. A “kernel function” is used to put a rela-
tively greater emphasis on points that are closer than on those which are placed
further. Typically, kernel’s definition includes a parameter called “bandwidth”
which determines how much emphasis is put on the closest points.

A method to estimate the density (but not to make a classification) using a
linear combination of predefined GMMs and KDEs was introduced in [2]. The
parameters of the combination are computed using the stacking meta-learning
method with the EM algorithm. In [3], another fusion of GMM and KDE is
proposed. The GMM algorithm is used to assign a weight to each of the prede-
fined KDE models. Yet another meta-learning approach – boosting – is proposed
in [4]. The base boosted classifiers are simple algorithms based on KDE; each
of the training points gets a different weight in each algorithm’s iteration. A
different meta-learning approach is proposed in [5]. Authors use ensemble aver-
aging method based on GMMs to estimate the density. Boosting and bagging
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meta-learning algorithms are also used in [6] for the density estimation. The
EM algorithm is used to maximize training data likelihood but the classification
error is not directly optimized. In [7], authors describe an algorithm which uses
“Gaussian product kernel estimators” where the bandwidths are chosen inde-
pendently for each class-dimension combination. What is more, the bandwidths
can vary depending on the localization in the feature space.

In this paper, we propose a new classification method which is based on a
combination of KDEs. The algorithm is significantly different from each of the
above mentioned methods, since it optimizes directly the classification error
and does not use explicitly any meta-learning algorithm. The combined kernels
bandwidth is not predefined but adjusted to the data.

The method exhibits some similarities to the Ghosh et al. approach [8], where
the authors introduced a method which is at heart a binary classifier. They
search for an optimal bandwidth using the cross-validation method for each of
the 2 classes independently. As a result, they obtain a pair of bandwidth values
which can be interpreted as a point in a 2-dimensional bandwidth space. In order
to classify a given test point, a couple of density estimations are made. Each of
them corresponds to a pair from the neighborhood of the optimal bandwidth
values pair in the bandwidth space. The estimation results are transformed in a
certain way and their weighted sum is computed. The sum yields the final classes
probabilities. The main difference between the method presented in [8] and our
approach is that the latter one is simpler (and possibly faster) because the pa-
rameter space that is searched is one-dimensional instead of two-dimensional.

The paper is organized as follows: Sect. 2 contains a description of the pro-
posed algorithm, Sect. 3 presents results of the tests on benchmark data sets
and comparison with the literature results, Sect. 4 concludes the paper.

2 Algorithm Description

Every classification machine learning algorithm has two modes of operation:
training phase and classification/recall phase. In Sections 2.1, 2.2, 2.3 we describe
the classification phase and Sect. 2.4 contains a description of the training phase.

2.1 Introduction

The problem of classification is to create a decision rule d(x) : R
d → {ω1, ω2,

. . . , ωc} to classify a d-dimensional observation (point) x into one of c classes ωi.
The rule is usually built using the observations from a training set, its robustness
is tested on the observations from a testing set. One possibility to create such a
rule is to employ the Bayesian classifier of the form

dB(x) = arg max
wi

P̂ (ωi|x) = arg max
wi

p̂(x|ωi)P̂ (ωi)
p̂(x)

, (1)

where P̂ (ωi|x) is a posterior probability estimator of class ωi, P̂ (ωi) is a prior
estimator of class ωi (in practice, it is equal to the fraction of observations from



Classification Based on Combination of Kernel Density Estimators 127

a given class in the training set), p̂(x|ωi) is an estimated probability density
function of class ωi, and p̂(x) =

∑c
i=1 p̂(x|ωi)P̂ (ωi) is a normalization factor.

All of the quantities in this formula are simple to compute except for the class
probability density estimate p̂(x|ωi).

One of the most popular density estimators is the Kernel Density Estimator.
When applied in the Bayesian classifier, it has the form of

p̂h(x|ωi) =
1

|Di|
∑

x′∈Di

1
hd

φ
(x − x′

h

)
, (2)

where Di is the set of observations belonging to class ωi, the function φ(x) :
R

d → [0,∞) is a density function called “kernel function” and h is a smoothing
factor called “bandwidth”.

One of the most popular choices for the kernel function is the Gaussian kernel.
In the general case, it has the form of

φ(x) =
1

(2π)d/2|Σ|1/2
exp

[
−1

2
(x − μ)TΣ−1(x − μ)

]
, (3)

where the covariance matrix Σ is responsible for the hyper-ellipsoidal shape of
the kernel (cf. [1, Sect. 2.5.2]). Generally, the shape of the kernel should be ad-
justed to match the layout of the training points in the feature space. There are
two approaches to reach this goal. The first one is to set an appropriate shape
of the kernel i.e. to adjust the covariance matrix to match the data. The second
one is to let the covariance matrix be fixed and equal to the identity matrix
Σ = I (the shape of the kernel will be circular in this case) and to transform
the feature space instead (this method was used e.g. in [7]). We have chosen
the second approach because it makes the algorithm simpler to analyze and is
less computationally intensive. During the experiments, two different transfor-
mations were used: standardization and whitening, the latter implemented with
Principal Component Analysis (PCA).

2.2 Combination of Estimators

The kernel’s bandwidth parameter specifies how smooth the resulting estima-
tion of density function will be. The larger the factor, the smoother and less
concentrated on the training points the estimation of the density function. We
can also interpret the bandwidth as a “resolution” of the data view – the larger
the bandwidth, the smaller resolution and the more general view on the data
(i.e. the density assumes similar values even in distant points of the space, which
makes them difficult to distinguish).

The main idea presented in this paper is to combine a certain number of KDEs
with different bandwidths which are selected to match the analyzed data set.
Such an approach of looking at the data with different “resolutions” should give
a better insight into the data structure and result in a better classification than a
method using a single “resolution”. In this “multi-resolution” case, the formula
for posterior probability estimator will be an average of different-bandwidth
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KDEs: p̂(x|ωi) = 1
E

∑E
j=1 p̂hj (x|ωi), where E is the number of KDEs, and hj is

individual bandwidth of j-th KDE.
The other underlying idea is to make the estimators’ bandwidths related in

some way. It is proposed that bandwidths of different estimators decrease in an
exponential manner. This way it is possible to combine vastly different data view
“resolutions”. As a result, bandwidth is a function of the following form:

hj(a) = hmin + aj(hmax − hmin) , (4)

where j ∈ {1, . . . , E} is an estimator number, a ∈ [0, 1] is a parameter deter-
mining how fast the bandwidths decrease, [hmin, hmax] is a range of bandwidth
values.

2.3 Bandwidth Range

The first question to be answered is what is a “sensible” bandwidth range in
(4). If one uses a very small bandwidth, numerical problems occur. If a given
testing point is far from any other point in the training set, then every class-
conditional density in the given point will be close to zero and, as a result, p̂(x)
in the denominator of the Bayes classifier formula (1) will be close to zero. For
a sufficiently small bandwidth, the value will be smaller than the computer’s
machine precision and, as a consequence, assumed to be equal to zero. This, in
turn, will make the formula impossible to evaluate. The next problem is that
for small bandwidths one can get unreliable and possibly misleading information
for classification [8, Sect. 2.2]. To deal with these problems, we decided to take
an approach similar, but not the same, to the one presented in [8]. We chose a
small ratio 1

ξ of the smallest non-zero percentile of the pairwise distances of the
transformed data points from the training set as the lower limit. The ξ is a radius
of a sphere which contains 99% of kernel’s probability mass – it is assumed that
outside this sphere, the kernel’s influence on the overall density is negligible.
In the presented algorithm, the Gaussian kernel is used, and for such a kernel
it can be shown that ξ =

√
F−1

χ2(d)(0.99), i.e. it is a square root of inverted χ2

distribution function with d degrees of freedom in point 0.99.
The proposed solution is not always sufficient to solve the above mentioned

problems. In extreme situations, an outlier point can be situated far away from
all the training points, and in such case the algorithm would not be able to
evaluate the formula (1) even for larger bandwidths. We can note that in such
situations (i.e. outlier point or, equivalently, a very small bandwidth) the KDE
classification result mimics the result of Nearest Neighbor algorithm [9, p.251].
Thus, if the denominator of the formula (1) is equal to zero (i.e. the value is
smaller than the computer’s machine precision), the probabilities that would
be yielded by the Nearest Neighbor algorithm are returned as the classification
result.

The upper limit of the bandwidth range, on the other hand, is set to be
the 99-th percentile of pairwise distances of the transformed data points in the
training set. As can be seen, when calculating the lower and the upper limits,
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small and large percentiles are used instead of simply using the minimum and
the maximum. The reason is making the calculations resistant to outlier points,
which could unnecessarily widen the bandwidth range. Apart from that, the
estimation of both lower and upper limits is rather conservative.

2.4 Algorithm Training

In this section the training phase in which the parameters of KDEs combination
(especially a) are computed is described. Parameter a in (4) is selected to min-
imize the classification error on the training set. The classification error that is
minimized is the Mean Squared Error (MSE) defined as

MSE(P̂ (·),D) =
1
|D|

∑

x∈D

c∑

i=1

(P̂ (ωi|x) − ti(x))2 , (5)

where D is the data set on which the error is computed, P̂ (ωi|x) is the algo-
rithm’s posterior probability estimation for class ωi, and ti(x) is a vector whose
i-th component, where i corresponds to the actual class ωi, is 1 and all other
components are 0.

The training phase of the algorithm consists of several steps. 1) As the first
step, the sequence of the training instances is randomly permuted. The ran-
domization is required for the cross-validation folds (which are created from the
data in later steps) to be independent as much as possible (e.g. we do not want
to cumulate all of the samples from one class in one fold) which is a standard
requirement in the cross-validation method. It is worth noting that, apart from
this step, the algorithm is completely deterministic. 2) In the next step, the data
is transformed. The transformation parameters (e.g. for standardization trans-
formation: sample expected values and sample standard deviations) are saved –
they will be used later to build the classification error function. 3) Next, us-
ing the transformed data, a “sensible” bandwidth range (as it was described in
Sect. 2.3) is calculated. The range will be searched for the optimal bandwidth
value. 4) Finally, in the last step, the value of a that minimizes the 10-fold strat-
ified cross-validation estimator of a classification error function is searched for.
The minimization is performed in a exhaustive way with a grid-search method.
In this method, we compute the value of the cross-validation estimator function
in 100 equidistant points from range [0, 1] (see Fig. 1 for an example of examined
error values and location of the optimal a). As a result of the training phase, the
optimal a is obtained along with the transformation parameters, transformed
data and bandwidth range. These values will be used later in the classification
phase.

The construction of 10-fold stratified cross-validation estimator of the clas-
sification error function needs some further explanation. First, 10 splits of the
training data are created. Each split consists of two disjoint data sets: the fitting
set D which is used to train the classifier, and the validation set Dv which is
used to compute the classification error of the trained algorithm. For each split,
the classification MSE (5) defined as Error(a) = MSE(P̂ (·; a),Dv) is calculated,
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Fig. 1. An example of classification errors for different parameter a values. The algo-
rithm with 2 KDEs and standardization transformation is tested on the Boston housing
data set. Examined error types: cross-validation MSE on the training set (line 1 ), cross-
validation error rate on the training set (line 2 ), MSE on the test set (line 3 ), error
rate on the test set (line 4 ). The optimal a value found by the algorithm is equal to the
global minimum of the cross-validation MSE error on the training set (vertical line).

where a is the bandwidths’ decrease parameter from (4), P̂ (ωi|x; a) is the pos-
terior probability estimator from (1) dependent on a. The MSE function is used
instead of direct use of the error rate function (i.e. misclassification ratio) be-
cause it seems to be less affected by the random dependencies in the data (see
Fig. 1). The function uses the training set transformation computed in step 2 of
the training phase to transform the data in each of the cross-validation splits.
The reason the transformation is not computed for every split’s fitting set in-
dependently, as would a standard cross-validation procedure suggest, is that we
want the bandwidths calculated for every split to correspond to the same values
in the original non-transformed space. If the transformations were calculated
independently, the same bandwidth value would correspond to different band-
width values in each split in the original space. The priors used in each split are
also estimated on the whole training set (for similar reasons).
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3 Experiments

The efficacy of the proposed algorithm was compared with the results published
in [10] and [8]. In [10], the authors consider 33 classification algorithms and verify
them using different data sets, which establishes a broad comparison base for
the proposed algorithm. Among the data sets examined in [10], the ones that
matched the proposed algorithm (i.e. sets with numerical attributes only) were
chosen. The raw error rates used for comparison were retrieved from the article’s
appendix available at one of the author’s website. In [8], on the other hand, the
authors compare the algorithm they introduced with literature results. The same
data is used in this paper to compare our method with that of [8].

The following data sets were used in the experiments: Boston housing (Boston
housing, used in [10]), breast cancer (Wisconsin breast cancer data set, collected
at the University of Wisconsin by W.H. Wolberg [11], used in [10]), glass (forensic
glass data, used in [8]), Indian diabetes (PIMA Indian diabetes, used in [10]),
liver disorders (BUPA liver disorders, used in [10]), Ripley’s synthetic (Ripley’s
synthetic data, used in [8]), satellite image (StatLog satellite image, used in [10]),
sonar (sonar data, used in [8]), vehicle silhouette (StatLog vehicle silhouette,
used in [10]). All of the data sets except for Ripley’s synthetic were downloaded
from the UCI Machine Learning Repository [12]; the Ripley’s synthetic data set
was downloaded from [13]. In the cited articles, some of the original data sets
were preprocessed and we executed the same preprocessing steps. When testing
our algorithm, we followed the methodology used in adequate articles with an
exception for the holdout experiments (for data sets with a selected testing set).
The holdout experiments were executed 10 times instead of once, because our
algorithm is non-deterministic and repeating the experiment several times results
in a more unbiased efficacy estimation.

3.1 Results

During the experiment, the algorithm was tested with data standardization
transformation and number of estimators equal to: 1 (E=1 ), 2 (E=2 ), 5 (E=5 ),
or the number of classes in the data set (E=cl.no.). For comparison, the algo-
rithm was also tested with data whitening transformation and the number of
estimators equal to: 1 (PCA E=1 ), or the number of classes in the data set
(PCA E=cl.no.).

Four of the algorithms yielded results better than the literature ones on at
least one data set (see Table 1), and one of them (E=2 ) yielded results better
than the literature ones on 2 data sets. On average, the results yielded by E=2,
E=5, E=cl.no. were better than the results of the simplest version E=1 (average
differences equal to .0035, .0018, .002, resp.); the results yielded by PCA E=1,
PCA E=cl.no. were worse (average differences equal to -.01, -.012, resp.).

When comparing the classification results, it might be helpful to check at
which quantile is a given result situated among the literature results (Fig. 2)
(the quantiles were calculated using ecdf function in the R environment [14]).
This method potentially allows to assess if the improvement of the result is
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Table 1. Comparison of experimental results. Error rate (misclassification error) for
different algorithm versions and different data sets was measured. The results that are
better than the best literature result (best lit.) are marked with an asterisk. All of the
results are given with the same number of decimal places as in the respective literature
source.

data set best lit. E=1 E=2 E=5 E=cl.no. PCA E=1 PCA E=cl.no.

Boston housing .221 .239 .247 .249 .245 .243 .247
breast cancer .0278 .0323 .0323 .0323 .0323 .0661 .0661
glass .236 .252 .233* .247 .247 .271 .308
Indian diabetes .221 .251 .256 .259 .256 .264 .269
liver disorders .279 .405 .365 .365 .365 .321 .310
Ripley’s synthetic .090 .105 .094 .097 .094 .105 .094
satellite image .098 .097* .095* .095* .096* .292 .288
sonar .135 .194 .222 .216 .222 .181 .181
vehicle silhouette .145 .286 .285 .284 .286 .208 .205

meaningful (e.g. the same error rate improvement for a difficult data set can be
more important than for a simple one). As can be seen in Fig. 2, the results of all
of the algorithm’s versions were situated among the top-50% literature results
in 4 out of 9 examined data sets (except for PCA E=1 where the ratio was 5
out of 9). On average, the quantile results yielded by E=2, E=cl.no. were better
than the results of the simplest version E=1 (average differences equal to .0168,
.0101, resp.); the results yielded by E=5, PCA E=1, PCA E=cl.no. were worse
(average differences equal to -.0034, -.11, -.0797, resp.).

In summary, the results yielded by all of the algorithm’s versions are promis-
ing when compared to the literature results. Although the error rate on some
of the data sets was high, it can be argued that according to the no free lunch
theorem [1, Sect. 9.2.1] no single classifier can achieve great results on all of the
problems. Furthermore, the algorithms that used the whitening transformation
generally yielded worse results than the others. On the other hand, the whitening
transformation improved the results on some of the data sets (see e.g. results on
data set liver disorders in Fig. 2), so we can conclude that this transformation
can improve or worsen the results depending on the data. What is more, al-
though various algorithm’s versions excelled in the classification of various data
sets, the version which seemed to be generally the best is the one which uses
two KDEs with standardization transformation (E=2 ). This version yielded the
results that were better than the best literature results on two data sets: glass
and satellite image. The results were also better, on average, than the results
of the simplest version which uses one KDE (E=1 ); this observation justifies
application of 2-element KDEs combination instead of a simpler version with a
single KDE.
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Fig. 2. Comparison of the experimental results with the literature results. Each panel
contains relative error rates of a certain algorithm version on different data sets. Each
point corresponds to a quantile position of the experiment result among the literature
results. For example, in the panel E=1, 4 results are among 50% best literature results
and 5 results are among 50% worst literature results. Points at quantile 0 correspond
to the results that are as good as the best literature result or better; points at quantile
1 correspond to the results that are as bad as the worst literature result or worse.

4 Conclusions and Future Work

A new classification algorithm based on a combination of Kernel Density Esti-
mators, where the classification error is minimized directly is presented in the
paper. The algorithm performs well on the benchmark data sets when compared
to the literature results; one of the algorithm’s versions yields the results which
are better on two data sets than the best ones reported in the literature. These
results confirm the algorithm’s potential, especially in the domains related to
the examined data sets. It will be the object of further research to examine the
detailed characteristics of these data sets, and, as a result, to determine which
algorithm version matches best each data set domain.

The next steps of the algorithm’s development involve applying a numeri-
cal optimization method (e.g. one of the pseudo-Newton algorithms) instead of
the exhaustive optimization currently employed, which should result in signifi-
cantly shorter training times. Other extension paths concern testing other KDEs
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combination functions, applying other kernel types (e.g. p-Gaussian), and re-
moving non-typical observations (similarly to [15]) from the training set which
may lead to better classification results.

Acknowledgments. The authors would like to thank prof. Jan Mielniczuk for
valuable suggestions concerning the algorithm’s design and development.
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