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Abstract. Different algorithms have been proposed in the literature
to cluster gene expression data, however there is no single algorithm
that can be considered the best one independently on the data. In this
work, we applied the concepts of Meta-Learning to relate features of
gene expression data sets to the performance of clustering algorithms. In
our context, each meta-example represents descriptive features of a gene
expression data set and a label indicating the best clustering algorithm
when applied to the data. A set of such meta-examples is given as input
to a learning technique (the meta-learner) which is responsible to acquire
knowledge relating the descriptive features and the best algorithms. In
our work, we performed experiments on a case study in which a meta-
learner was applied to discriminate among three competing algorithms
for clustering gene expression data of cancer. In this case study, a set
of meta-examples was generated from the application of the algorithms
to 30 different cancer data sets. The knowledge extracted by the meta-
learner was useful to understanding the suitability of each clustering
algorithm for specific problems.

1 Introduction

New biotechnology methodologies, such as microrrays, allow the measurement
of the expression of all genes of a cell sample. Medical researchers can use such
methodologies to measure the expression of cancer cell samples of several patients
with distinct cancer types. With these data, machine learning methods can be
applied to perform computational diagnosis, i.e., to classify the type of a cancer
cell based only on the gene expression profile. Another analysis of particular
interest is the application of clustering to search for cancer tissues sharing similar
molecular signatures. As demonstrated in [1] and [2], this kind of analysis does
not only allows to distinguish between distinct cancer types, but also it has lead
to the discovery of new cancer sub-types. Such gene expression data sets impose
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several challenges to clustering methods, as they usually have a small number of
observations (<100 cancer tissues), high dimensionality (> 1,000 of genes), the
distribution of cancer types is unbalanced and there is a high level of noise [3].

While several clustering methods have been proposed in the bioinformatics
literature, there is no consensus in the community on which method should
be preferably used [4,5,6]. Recently, [7] performed a large scale evaluation of
classical clustering methods over 35 data sets of cancer gene expression, which
showed that k-means and mixture of multivariate Gaussians had best clustering
performance for most of the data sets. That work also showed that hierarchical
methods perform poorly for the majority of the sets. Despite of these experi-
mental evidences, medical researchers are still faced with the question on which
is the most appropriate method for a particular data set. As in other Machine
Learning domains, there is a large variety of clustering algorithms considered
suitable to be employed in the cluster analysis of given gene expression data
sets. The selection of such algorithms requires empirical knowledge that is not
easy to acquire. In general, the choice of algorithms is basically driven by the
familiarity of biological experts to the algorithm, rather than the characteristics
of the algorithms themselves and of the data [6].

This work is a first attempt to investigate the performance of clustering algo-
rithms on gene expression data, by extracting rules that relate the characteristics
of the data sets of gene expression to the performance achieved by the algorithms.
The proposed work is directly derived from the Meta-Learning framework [8,9],
originally proposed to support algorithm selection for classification and regres-
sion problems. According to [10], Meta-Learning can be defined by consider-
ing four aspects: (a) the problem space, P , representing the set of instances of
a given problem class (usually classification and regression problems); (b) the
meta-attribute space, M , that contains characteristics used to describe the prob-
lems (e.g., number of training examples, correlations between attributes, among
others); (c) the algorithm space, A, that is the set of candidate algorithms to
solve the problems in P ; (d) a performance metric, Y , that measures the perfor-
mance of an algorithm on a problem (e.g., classification accuracy estimated by
cross-validation).

In this framework, Meta-Learning receives as input a set of meta-examples,
in which each meta-example is derived from the empirical evaluation of the
algorithms in A on a given problem in P . More specifically, each meta-example
stores: (1) the values of the meta-attributes M extracted from a problem; and (2)
the best candidate algorithm, considering the performance information Y . Hence,
the meta-learner is only another learning technique that relates a set of predictor
attributes (the meta-attributes) to a target attribute (the best algorithm).

The concepts of Meta-Learning have been extensively applied to select algo-
rithms for classification and regression tasks (e.g., [11,12]). In recent years, Meta-
Learning has been extended to other domains of application, as reported in [10].
In [13,14], for instance, the authors proposed the use of Meta-Learning to select
algorithms for time series forecasting. In [15], the authors applied Meta-Learning
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to support the design of planning systems. In [16], Meta-Learning is employed
to analyze the performance of meta-heuristics for optimization problems. Con-
sidering these applications, Meta-Learning can be viewed as a more general
framework to algorithm selection. Hence, one would expect it to be useful in
analyzing experiments in clustering of gene expression data.

In the current work, we applied a Meta-Learning procedure to analyze the
experiments performed with three clustering algorithms (k-means, finite mixture
of Gaussians and spectral clustering), since they were the winners among the
seven clustering methods considered initially, on 30 data sets of cancer gene
expression. Each data set was described by 13 descriptive meta-attributes and
associated to a class label, which indicates the best clustering algorithm among
the three candidates. In order to verify the viability of our proposal, different
learning techniques (including Support Vector Machines, k-NN and two ensemble
techniques) were used as meta-learners. We also applied the MLRules ensemble
algorithm to extract interpretable knowledge, which provided useful insights on
what makes an algorithm to perform better than another.

Section 2 describes the generation of meta-examples in our domain, as well as
the techniques used for Meta-Learning. Section 3 introduces the experiments that
evaluate the Meta-Learning process and discusses the obtained results. Finally,
Section 4 presents some final remarks and future work.

2 Experimental Work

This research is directly derived from a previous work [7], in which we performed
an empirical evaluation of clustering methods on different data sets of cancer
gene expression. In the present work, we applied Meta-Learning to analyze the
results of our clustering experiments, aiming to extract useful knowledge for
selecting clustering methods. In this section, we briefly describe the experiments
performed in [7], followed by the description of how the meta-examples were
produced in the current work.

In [7], seven distinct clustering algorithms were analyzed: single linkage (SL),
complete linkage (CL), average linkage (AL), k-means (KM), finite mixture of
Gaussians (FMG), spectral clustering (SP), and Shared Nearest Neighbors al-
gorithm (SNN). Also, four different proximity measures were employed, when
applicable: Pearson’s Correlation coefficient, Cosine, Spearman’s correlation co-
efficient and Euclidean Distance. In the case of the Euclidean Distance, four
different versions were applied: original (Z0), standardized (Z1), scaled (Z2) and
ranked (Z3). The algorithms were evaluated in [7] over a set of 35 microarray
datasets (See Table 1). These data sets present different values for characteris-
tics such as type of microarray chip (second column), number of samples (third
column), number of classes (fourth column) and distribution of samples within
the classes (fifth column). In terms of the data sets, it is important to point out
that microarray technology is usually available in two different platforms, cDNA
and Affymetrix.
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2.1 Meta-data

For each gene expression data set, we generated a meta-example composed by
features (meta-attributes) that describe the data set and a label indicating the
algorithm that obtained the best results. The criterion used for this labeling
process and the meta-attributes considered are described in this section.

Table 1. Gene expression data sets considered

Dataset Name Array Type N k Samples per class Class label
Armstrong-2002-v1 Affy 72 2 24, 48 FMG
Armstrong-2002-v2 Affy 72 3 24, 20, 28 FMG
Bhattacharjee-2001 Affy 203 5 139, 17, 6, 21, 20 FMG

Chowdary-2006 Affy 104 2 62, 42 -
Dyrskjot-2003 Affy 40 3 9, 20, 11 FMG
Golub-1999-v1 Affy 72 2 47, 25 KM
Golub-1999-v2 Affy 72 3 38, 9, 25 -
Gordon-2002 Affy 181 2 31, 150 FMG
Laiho-2007 Affy 37 2 8, 29 SP

Nutt-2003-v1 Affy 50 4 14, 7, 14, 15 FMG
Nutt-2003-v2 Affy 28 2 14,14 FMG
Nutt-2003-v3 Affy 22 2 7,15 -

Pomeroy-2002-v1 Affy 34 2 25,9 FMG
Pomeroy-2002-v2 Affy 42 5 10, 10, 10, 4, 8 SP
Ramaswamy-2001 Affy 190 14 11, 10, 11, 11, 22, 10, 11, 10, 30, 11, 11,11, 11, 20 KM

Shipp-2002-v1 Affy 77 2 58,19 SP
Singh-2002 Affy 102 2 50, 52 SP
Su-2001 Affy 174 10 26, 8, 26, 23,12, 11, 7, 27, 6, 28 KM

West-2001 Affy 49 2 25,24 FMG
Yeoh-2002-v1 Affy 248 2 43, 205 FMG
Yeoh-2002-v2 Affy 248 6 15, 27, 64, 20, 79, 43 KM

Alizadeh-2000-v1 cDNA 42 2 21, 21 KM
Alizadeh-2000-v2 cDNA 62 3 42, 9, 11 FMG
Alizadeh-2000-v3 cDNA 62 4 21, 21, 9, 11 FMG

Bittner-2000 cDNA 38 2 19, 19 KM
Bredel-2005 cDNA 50 3 31, 14, 5 FMG
Chen-2002 cDNA 179 2 104, 75 -

Garber-2001 cDNA 66 4 17, 40,4, 5 FMG
Khan-2001 cDNA 83 4 29, 11, 18, 25 -

Lapointe-2004-v1 cDNA 69 3 11, 39, 19 FMG
Lapointe-2004-v2 cDNA 110 4 11, 39, 19, 41 KM

Liang-2005 cDNA 37 3 28, 6, 3 FMG
Risinger-2003 cDNA 42 4 13, 3, 19, 7 KM

Tomlins-2006-v1 cDNA 104 5 27, 20, 32, 13, 12 KM
Tomlins-2006-v2 cDNA 92 4 27, 20, 32, 13 KM

Performance evaluation. In order to evaluate the performance of each com-
bination of algorithm and proximity measure considered, an external validation
index was used, the corrected Rand (cR) index [17]. The corrected Rand index
takes values from -1 to 1, with 1 indicating a perfect agreement between the
partitions generated by the clustering algorithm and the true classes known a
priori, and values near 0 or negatives corresponding to cluster agreement found
by chance. Unlike the majority of other indices, the cR is not biased towards a
given algorithm or number of clusters in the partition [17].

The labeling of each meta-example was done according to the following pro-
cedure: at first, for each clustering algorithm, we selected the proximity measure
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that achieved the best results, i.e., the largest cR indices. In order to do so, we
took into account only the partition with the number of clusters equal to the
number of actual classes in the respective data set [7]. Finally, in order to detect
the best algorithm for each data set, a ranking of the algorithms was made.

Only three algorithms were selected as class labels: FMG, KM and SP, since
they were the only winners. In case of ties among these three algorithms, the
data set on which it happened was excluded for generating a meta-example.
This occurred in five data sets, indicated in Table 1 by a “-” at the last column.
Hence, an actual number of 30 meta-examples were produced.

Meta-attributes. For the construction of the meta-dataset we used a set of 14
descriptive attributes (meta-attributes). Some of them were first proposed for the
case of supervised learning tasks [9]. Recently, they have been also employed in
the non-supervised learning context [18]. The samples (examples) considered in
our study are labeled, i.e., they have a class label vector Y = {yi}, yi ∈ {1, ..., k},
where k is the number of classes for each data set. The class distribution among
examples can be defined as C = {c1, ..., ck}, cj =

∑N
j 1(yi = j). Based on this

and in other statistics, we define our set of meta-attributes as:

1. LgE: log10 of the number of examples. A raw indication of the available
amount of training data.

2. LgREA: log10 of the ratio of the number of examples by the number of
attributes. A rough indicator of the number of examples available to the
number of attributes.

3. PMV: percentage of missing values. An indication of the quality of the data.
4. MN: multivariate normality, which is the proportion of examples transformed

via T 2 that are within 50% of a Chi-squared distribution (degree of freedom
equal to the number of attributes describing the example). A rough indicator
of the approximation of the data distribution to a normal distribution.

5. SK: skewness of the T 2 vector. Same as the previous item.
6. Chip: type of microarray technology used (either cDNA or Affymetrix).
7. PFA: percentage of the attributes that were kept after the application of the

attribute selection filter.
8. PO: percentage of outliers. In this case, the value stands for the proportion

of T 2 distant more than two standard deviations from the mean. Another
indicator of the quality of the data.

9. NRE: normalized relative entropy. An indicator of how uniformly examples
are distributed among classes, i.e. the divergence between the actual class
distribution and an uniform distribution. Its calculation is made using the
Kullback-Leibler divergence equation, normalized by 2 log k, where k is the
total number of classes. Let P (cj) = cj

N be the probability of the uniform
class distribution, the normalized entropy is given by the equation:

NE =

∑k
j=1 P (cj) log(P (cj)

1/k )

2 log k
(1)
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10. SC10: “small” clusters. A measure of the number of classes with size inferior
to the threshold θ = 10. Its value is given by: SCθ =

∑k
j=1 1(cj < θ)/k.

11. SC15: same measure of previous item, but with its threshold set to θ = 15.
12. BC: “big” clusters. A measure of the number of classes with size superior to

the threshold θ = 50, given by: BCθ =
∑k

j=1 1(cj > θ)/k.
13. k-NN outliers: classification error obtained by the k-NN algorithm (k = 3)

[19]. Another indicator of the quality of the data.

2.2 Meta-learner

We evaluated six algorithms as meta-learners: J48, PART, MLRules [20], Ran-
dom Forest, k-Nearest Neighbors (k-NN) and also Support Vector Machines
(SVM). With the exception of the SVM experiments, which were performed
using the libSVM1 package, all experiments were executed within the WEKA
framework 2.

The J48 algorithm is the WEKA implementation of the C4.5 decision tree
algorithm. The varied parameters were the confidence factor (from 2−15 to 215)
and the minimum number of instances per leaf (from 2 to 7). Another method
considered is the PART algorithm, which actually builds a partial C4.5 decision
tree in each iteration, making the “best” leaf into a rule. For the experiments
with PART, we used the same parameter values evaluated for the J48 algorithm.

The random forest algorithm belongs to the so-called “ensemble methods”,
a combination of various methods that generate many classifiers (in this case,
decision trees) aggregating their results. This method has several features, which
include the possibility to be used on a mixture of discrete and continuous de-
scriptors, to classify binary or multi-class data sets and work with data sets
where there are more variables than observations. The algorithm also presents
good performance even when most predictive variables are noise [21]. For this
work, we fixed the number of trees parameter to 100 and varied the number of
attributes to be selected in each tree from 1 to 15. Another ensemble method
evaluated was the Maximum likelihood rule ensembles (MLRules), which is a re-
cent rule induction algorithm for solving classification problems via probability
estimation. The ensemble is built minimizing the negative loglikelihood to esti-
mate the class conditional probability distribution. We varied the minimization
technique (Newton and gradient) and the shrinkage parameter in {0.1, 0.2, ..., 1}.

SVMs are supervised learning methods that construct a separating hyper-
plane in an n-dimensional space, trying to maximize the margin between the
classes. We executed the experiments considering polynomial and RBF kernels.
For polynomial kernel, we varied the cost and the degree parameters in the in-
tervals [2−15, 215] and [2, 6] respectively. For RBF kernel we varied both the cost
and gamma parameters in the interval [2−15, 215]. For the k-NN algorithm, we
varied k in the interval [1, 20].

Classification experiments were developed according to the leave-one-out pro-
cedure, with some remarks: as the class distribution of the meta-examples was
1 http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
2 http://www.cs.waikato.ac.nz/ml/weka/
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unbalanced (class distribution is, respectively, 16 examples for FMG, 10 for KM
and 4 for SP), this could led to overfitting towards the classes with larger num-
ber of examples (FMG and KM). So, in order to make class distribution more
uniform, each example from the FMG, KM and SP classes was replicated 2, 3
and 8 times, respectively. This replication process was performed only in the
training data. Thus, by doing so, an example would never be at the same time
on the training and test sets. Rule extraction experiments were developed em-
ploying the same balanced data, except by the fact that we did not evaluate the
accuracy of the obtained model using the leave one out procedure: instead, we
utilized the full training set.

3 Results and Discussion

3.1 Meta-learner

The average test accuracy of the leave-one-out experiments realized with the five
methods compared can be seen in Table ??. According to this table, Random
Forest obtained the best classification accuracy followed by MLRules. All other
methods had a cross-validation accuracy equal or lower than the base line error
(taking the majority class as reference). This is probably a consequence of the
difficulty of the classification problem, as there are very few samples to classify
(30 samples) and one of the classes (SP) has only four samples. Ensemble meth-
ods, like Random Forest, are often expected to have a better performance on
such difficult classification scenarios, which is confirmed in our study.

Table 2. Accuracy rates - runs over balanced meta-data

Method Accuracy
PART 40.00%
J48 30.00%
MLRules 56.67%
k-NN 53.33%
SVM 53.33%
Random Forest 63.33%
Base Line Error 53.33%

3.2 Rule Mining

The next step in our analysis was to extract interpretable knowledge from the
meta-learning learning analysis of the data. Our goal is to discover explana-
tory (partial) models of performance of clustering algorithms on cancer gene
expression data. Observing the generated rules, one can notice the suitability of
clustering algorithms studied, as well as the actual relations to characteristics
(meta-attributes), with respect to the underlying structure in the data sets.

In order to do so, we used the MLRules algorithm with all data as training
set and Newton steps as minimization technique and shrinkage to 0.5. A total of
100 rules were generated, but we selected only the ten rules with biggest weights
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Fig. 1. Rules induced by the MLRules algorithm

for analysis. The produced rules can be seen in Figure 1. They are listed in a
pseudo-code like structure to ease readability.

Here, at each rule one can find, respectively, the method indicated (KM, FMG
and SP), the number of meta-examples classified by the node and how many are
misclassified (in parenthesis), as well as the rule weight. Interestingly to notice
that, in general, rules that suggest the KM method involves the LgE and the ERN
meta-attributes. This agrees with literature information, in which this method
tends to find equal sized clusters (low ERN, rules 3 and 6) and is very sensitive
to a small number of training patterns (low LgE, rules 5 and 6). We can also
observe the presence of the meta-attribute PO (percentual of outliers) requiring
bigger values in most of the rules that suggest the MFG method, an indication
that this method presents good tolerance to datasets with a high number of
outliers (rules 1, 2 and 9). Only one rule related to the Spectral algorithm was
generated (rule 8), possibly due to the small number of examples labeled with
this class available. The Spectral method employed in [18] is based in a Gaussian
similarity function, which matches the requirements of data normality. This fact
agrees with the assertive MN > 0.419 on rule 8. Furthermore, the rule suggests
the use of the Spectral method in the presence of outliers.

Another interesting fact is the presence of chip type in rule 3. It is well known
in the microarray literature that cDNA and Affymetrix chips generate expression
values with distinct characteristics [22]. The cDNA arrays are based on log-ratios
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of the expression between the reference cell (tumor) and a control cell (healthy
cell), whereas Affymetrix data is based only on the tumor cell and expression
values should reflect the absolute count of transcripts in that cell. As a result,
the log-ratios used in cDNA measurements make the expression values to have
a normal distribution. Differently, Affymetrix expression values are positive and
have a distribution skewed towards lower expression values. Furthermore, mea-
surements of cDNA chips are less susceptible to probe problems in a specific chip,
as a problematic probe will have the same effects to both control and reference
values [22]. While there is no consensus in the microarray literature regarding
the data quality and microarray platform, the cDNA chip type verification on
rule 3 is another indication that data from cDNA microarrays are less sensitive
to noise, suggesting the k-means method in this case.

The rules induced by MLRules could be susceptible to overfitting, as
there are very few examples in the data sets. Nevertheless, as discussed in pre-
vious paragraphs, the rules extracted are in accordance to general knowledge in
the clustering literature. Thus, rather than proposing the use of the rules and the
attribute thresholds in their own, we interpret them as “soft” guidelines to the
choice of a clustering method given a certain cancer gene expression data set.

4 Final Remarks

In this paper, we presented a preliminary study that explores the ability to
automatically generate rules to guide the choice of clustering algorithms for
gene expression data. One of the our main contributions is to show that two
rule-based ensemble classifiers — random forests and MLRules — on average,
presented the most accuracy rates in predicting the best clustering algorithm for
gene expression data sets. We emphasize that the classification problem analyzed
here is a difficult one, as there are very few meta-examples. Thus, no classification
method had a high classification accuracy.

Another contribution of this work was to extract rules for the selection of
clustering algorithms, by using an rule ensemble algorithm. Overall, the rules ex-
tracted give us some interesting guidelines for choosing the method. For instance,
in the case of gene expression data from cDNA microarrays, k-means method
should not be used when class size distribution is not uniform. Although, when
a large number of samples is present, the method is preferred. Finite mixture of
Gaussians should be used when there are few samples and a non-uniform class
distribution. In cases where the data follows a normal distribution and there’s a
large amount of outliers, Spectral clustering is adequate. Such guidelines, based
on meta-attributes of data sets, had not been empirically demonstrated before
in the gene expression literature. As a future work, we will try to increase the
number of meta-examples, as well as investigate other meta-attributes.
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