Skip to main content

Spectra of the Spike Flow Graphs of Recurrent Neural Networks

  • Conference paper
Book cover Artificial Neural Networks – ICANN 2009 (ICANN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5769))

Included in the following conference series:

Abstract

Recently the notion of power law networks in the context of neural networks has gathered considerable attention. Some empirical results show that functional correlation networks in human subjects solving certain tasks form power law graphs with exponent approaching ≈ 2. The mechanisms leading to such a connectivity are still obscure, nevertheless there are sizable efforts to provide theoretical models that would include neural specific properties. One such model is the so called spike flow model in which every unit may contain arbitrary amount of charge, which can later be exchanged under stochastic dynamics. It has been shown that under certain natural assumptions about the Hamiltonian the large-scale behavior of the spike flow model admits an accurate description in terms of a winner-take-all type dynamics. This can be used to show that the resulting graph of charge transfers, referred to as the spike flow graph in the sequel, has scale-free properties with power law exponent γ= 2. In this paper we analyze the spectra of the spike flow graphs with respect to previous theoretical results based on the simplified winner-take-all model. We have found numerical support for certain theoretical predictions and also discovered other spectral properties which require further theoretical investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Li, L., Alderson, D., Tanaka, R., Doyle, J.C., Willinger, W.: Towards a theory of scale-free graphs: Definition, properties, and implications (extended version) (2005)

    Google Scholar 

  2. Albert, R., Jeong, H., Barabási, A.L.: Diameter of the world-wide web. Science 401, 130–131 (1999)

    Google Scholar 

  3. Barabási, A.L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., Vicsek, T.: Evolution of the social network of scientific collaborations. Physica A 311(4), 590–614 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Redner, S.: How popular is your paper? an empirical study of the citation distribution. European Physical Journal B 4(2), 131–134 (1998)

    Article  Google Scholar 

  5. Montoya, J.M., Solé, R.V.: Small world patterns in food webs. Journal of Theoretical Biology 214(3), 405–412 (2002)

    Article  Google Scholar 

  6. i Cancho, R.F., Solé, R.V.: The small-world of human language. Proceedings of the Royal Society of London B 268(1482), 2261–2265 (2001)

    Article  Google Scholar 

  7. Bhalla, U.S., Iyengar, R.: Emergent properties of networks of biological signaling pathways. Science 283(5400), 381–387 (1999)

    Article  Google Scholar 

  8. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabási, A.L.: The large-scale organization of metabolic networks. Nature 407(6804), 651–653 (2000)

    Article  Google Scholar 

  9. Abello, J., Buchsbaum, A., Westbrook, J.: A functional approach to external graph algorithms. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 332–343. Springer, Heidelberg (1998)

    Google Scholar 

  10. Aiello, W., Chung, F., Lu, L.: A random graph model for massive graphs. In: STOC 2000: Proceedings of the thirty-second annual ACM symposium on Theory of computing, pp. 171–180. ACM, New York (2000)

    Chapter  Google Scholar 

  11. Amaral, L.A., Scala, A., Barthelemy, M., Stanley, H.E.: Classes of small-world networks. Proc. Natl. Acad. Sci. U.S.A. 97(21), 11149–11152 (2000)

    Article  Google Scholar 

  12. Koch, C., Laurent, G.: Complexity and the Nervous System. Science 284(5411), 96–98 (1999)

    Article  Google Scholar 

  13. Eguíluz, V.M., Chialvo, D.R., Cecchi, G.A., Baliki, M., Apkarian, A.V.: Scale-free brain functional networks. Phys. Rev. Lett. 94(1) (2005)

    Google Scholar 

  14. Sporns, O., Chialvo, D.R., Kaiser, M., Hilgetag, C.C.: Organization, development and function of complex brain networks. Trends. Cogn. Sci. 8(9), 418–425 (2004)

    Article  Google Scholar 

  15. Chung, F., Lu, L.: Complex Graphs and Networks (Cbms Regional Conference Series in Mathematics). American Mathematical Society, Boston (2006)

    Google Scholar 

  16. Perotti, J.I., Tamarit, F.A., Cannas, S.A.: A scale-free neural network for modelling neurogenesis. Physica A Statistical Mechanics and its Applications 371, 71–75 (2006)

    Article  Google Scholar 

  17. Stauffer, D., Aharony, A., da Fontoura Costa, L., Adler, J.: Efficient hopfield pattern recognition on a scale-free neural network. The european physical journal B (32), 395–399 (2003)

    Google Scholar 

  18. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science (286), 509–512 (1999)

    Google Scholar 

  19. Piȩkniewski, F., Schreiber, T.: Emergence of scale-free spike flow graphs in recurrent neural networks. In: Proc. IEEE Symposium Series in Computational Intelligence - Foundations of Computational Intelligence, Honolulu, Hawai USA, pp. 357–362 (2007)

    Google Scholar 

  20. Piȩkniewski, F., Schreiber, T.: Spontaneous scale-free structure of spike flow graphs in recurrent neural networks. Neural Networks 21(10), 1530–1536 (2008)

    Article  MATH  Google Scholar 

  21. Schreiber, T.: Spectra of winner-take-all stochastic neural networks (2008). In review, available at arXiv, http://arxiv.org/abs/0810.3193

  22. Chung, F.R.K.: Spectral Graph Theory. CBMS Regional Conference Series in Mathematics, vol. 92. American Mathematical Society (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Piekniewski, F. (2009). Spectra of the Spike Flow Graphs of Recurrent Neural Networks. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds) Artificial Neural Networks – ICANN 2009. ICANN 2009. Lecture Notes in Computer Science, vol 5769. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04277-5_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04277-5_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04276-8

  • Online ISBN: 978-3-642-04277-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics