Skip to main content

The Meccano Method for Automatic Tetrahedral Mesh Generation of Complex Genus-Zero Solids

  • Conference paper
Proceedings of the 18th International Meshing Roundtable

Abstract

In this paper we introduce an automatic tetrahedral mesh generator for complex genus-zero solids, based on the novel meccano technique. Our method only demands a surface triangulation of the solid, and a coarse approximation of the solid, called meccano, that is just a cube in this case. The procedure builds a 3-D triangulation of the solid as a deformation of an appropriate tetrahedral mesh of the meccano. For this purpose, the method combines several procedures: an automatic mapping from the meccano boundary to the solid surface, a 3-D local refinement algorithm and a simultaneous mesh untangling and smoothing. A volume parametrization of the genus-zero solid to a cube (meccano) is a direct consequence. The efficiency of the proposed technique is shown with several applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bazilevs, Y., Calo, V.M., Cottrell, J.A., Evans, J., Hughes, T.J.R., Lipton, S., Scott, M.A., Sederberg, T.W.: Isogeometric analysis: Toward unification of computer aided design and finite element analysis. In: Trends in Engineering Computational Technology, pp. 1–16. Saxe-Coburg Publications, Stirling (2008)

    Chapter  Google Scholar 

  2. Cascón, J.M., Montenegro, R., Escobar, J.M., Rodríguez, E., Montero, G.: A new meccano technique for adaptive 3-D triangulations. In: Proc. 16th Int. Meshing Roundtable, pp. 103–120. Springer, Berlin (2007)

    Google Scholar 

  3. Carey, G.F.: Computational grids: generation, adaptation, and solution strategies. Taylor & Francis, Washington (1997)

    Google Scholar 

  4. Escobar, J.M., Rodríguez, E., Montenegro, R., Montero, G., González-Yuste, J.M.: Simultaneous untangling and smoothing of tetrahedral meshes. Comput. Meth. Appl. Mech. Eng. 192, 2775–2787 (2003)

    Article  MATH  Google Scholar 

  5. Escobar, J.M., Montero, G., Montenegro, R., Rodríguez, E.: An algebraic method for smoothing surface triangulations on a local parametric space. Int. J. Num. Meth. Eng. 66, 740–760 (2006)

    Article  MATH  Google Scholar 

  6. Floater, M.S.: Parametrization and smooth approximation of surface triangulations. Comp. Aid. Geom. Design 14, 231–250 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Floater, M.S.: One-to-one Piece Linear Mappings over Triangulations. Mathematics of Computation 72, 685–696 (2002)

    Article  MathSciNet  Google Scholar 

  8. Floater, M.S.: Mean Value Coordinates. Comp. Aid. Geom. Design 20, 19–27 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In: Advances in Multiresolution for Geometric Modelling, Mathematics and Visualization, pp. 157–186. Springer, Berlin (2005)

    Chapter  Google Scholar 

  10. Floater, M.S., Pham-Trong, V.: Convex Combination Maps over Triangulations, Tilings, and Tetrahedral Meshes. Advances in Computational Mathematics 25, 347–356 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Freitag, L.A., Knupp, P.M.: Tetrahedral mesh improvement via optimization of the element condition number. Int. J. Num. Meth. Eng. 53, 1377–1391 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Freitag, L.A., Plassmann, P.: Local optimization-based simplicial mesh untangling and improvement. Int. J. Num. Meth. Eng. 49, 109–125 (2000)

    Article  MATH  Google Scholar 

  13. Frey, P.J., George, P.L.: Mesh generation. Hermes Sci. Publishing, Oxford (2000)

    MATH  Google Scholar 

  14. George, P.L., Borouchaki, H.: Delaunay triangulation and meshing: application to finite elements. Editions Hermes, Paris (1998)

    MATH  Google Scholar 

  15. Knupp, P.M.: Achieving finite element mesh quality via optimization of the jacobian matrix norm and associated quantities. Part II-A frame work for volume mesh optimization and the condition number of the jacobian matrix. Int. J. Num. Meth. Eng. 48, 1165–1185 (2000)

    Article  MATH  Google Scholar 

  16. Knupp, P.M.: Algebraic mesh quality metrics. SIAM J. Sci. Comp. 23, 193–218 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kossaczky, I.: A recursive approach to local mesh refinement in two and three dimensions. J. Comput. Appl. Math. 55, 275–288 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Li, X., Guo, X., Wang, H., He, Y., Gu, X., Qin, H.: Harmonic Volumetric Mapping for Solid Modeling Applications. In: Proc. of ACM Solid and Physical Modeling Symposium, pp. 109–120. Association for Computing Machinery, Inc. (2007)

    Google Scholar 

  19. Lin, J., Jin, X., Fan, Z., Wang, C.C.L.: Automatic polyCube-maps. In: Chen, F., Jüttler, B. (eds.) GMP 2008. LNCS, vol. 4975, pp. 3–16. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Montenegro, R., Escobar, J.M., Montero, G., Rodríguez, E.: Quality improvement of surface triangulations. In: Proc. 14th Int. Meshing Roundtable, pp. 469–484. Springer, Berlin (2005)

    Chapter  Google Scholar 

  21. Montenegro, R., Cascón, J.M., Escobar, J.M., Rodríguez, E., Montero, G.: Implementation in ALBERTA of an automatic tetrahedral mesh generator. In: Proc. 15th Int. Meshing Roundtable, pp. 325–338. Springer, Berlin (2006)

    Chapter  Google Scholar 

  22. Montenegro, R., Cascón, J.M., Escobar, J.M., Rodríguez, E., Montero, G.: An Automatic Strategy for Adaptive Tetrahedral Mesh Generation. Appl. Num. Math. 59, 2203–2217 (2009)

    Article  MATH  Google Scholar 

  23. Schmidt, A., Siebert, K.G.: Design of adaptive finite element software: the finite element toolbox ALBERTA. Lecture Notes in Computer Science and Engineering, vol. 42. Springer, Berlin (2005)

    MATH  Google Scholar 

  24. Schmidt, A., Siebert, K.: ALBERTA - An Adaptive Hierarchical Finite Element Toolbox, http://www.alberta-fem.de/

  25. Tarini, M., Hormann, K., Cignoni, P., Montani, C.: Polycube-maps. ACM Trans. Graph 23, 853–860 (2004)

    Article  Google Scholar 

  26. Thompson, J.F., Soni, B., Weatherill, N.: Handbook of grid generation. CRC Press, London (1999)

    MATH  Google Scholar 

  27. Wang, H., He, Y., Li, X., Gu, X., Qin, H.: Polycube Splines. Comp. Aid. Geom. Design 40, 721–733 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cascón, J.M., Montenegro, R., Escobar, J.M., Rodríguez, E., Montero, G. (2009). The Meccano Method for Automatic Tetrahedral Mesh Generation of Complex Genus-Zero Solids. In: Clark, B.W. (eds) Proceedings of the 18th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04319-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04319-2_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04318-5

  • Online ISBN: 978-3-642-04319-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics