Skip to main content

On 3D Anisotropic Local Remeshing for Surface, Volume and Boundary Layers

  • Conference paper
Proceedings of the 18th International Meshing Roundtable

Abstract

A simple strategy for generating anisotropic meshes is introduced. The approach belongs to the class of metric-based mesh adaptation procedures where a field of metric tensors governs the adaptation. This development is motivated by the need of generating anisotropic meshes for complex geometries and complex flows. The procedure may be used advantageously for cases where global remeshing techniques become either unfeasible or unreliable. Each of the local operations used is checked in a variety of ways by taking into account both the volume and the surface mesh. This strategy is illustrated with surface mesh adaptation and with the generation of meshes suited for boundary layers analysis.

Two simple mesh operators are used to recursively modify the mesh: edge collapse and point insertion on edge. It is shown that using these operators jointly with a quality function allows to quickly produce an quality anisotropic mesh. Each adaptation entity, ie surface, volume or boundary layers, relies on a specific metric tensor field. The metric-based surface estimate is used to control the deviation to the surface and to adapt the surface mesh. The volume estimate aims at controlling the interpolation error of a specific field of the flow. The boundary layers metric-based estimate is deduced from a level-set distance function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alauzet, F.: Size gradation control of anisotropic meshes. Finite Elements in Analysis and Design (2009) (Published online)

    Google Scholar 

  2. Alauzet, F., Frey, P.J., George, P.-L., Mohammadi, B.: 3D transient fixed point mesh adaptation for time-dependent problems: Application to CFD simulations. J. Comp. Phys. 222, 592–623 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magnetic Resonance in Medicine 56(2), 411–421 (2006)

    Article  Google Scholar 

  4. Baker, T.: Three-dimensional mesh generation by triangulation of arbitrary point sets. AIAA Paper, 87-1124 (1987)

    Google Scholar 

  5. Baum, J.D., Löhner, R.: Numerical simulation of pilot/seat ejection from an F-16. AIAA Paper, 93-0783 (1993)

    Google Scholar 

  6. Baum, J.D., Luo, H., Löhner, R.: Numerical simulation of blast in the world trade center. AIAA Paper, 95-0085 (1995)

    Google Scholar 

  7. Berger, M.: A panoramic view of Riemannian geometry. Springer, Berlin (2003)

    MATH  Google Scholar 

  8. Borouchaki, H., Hecht, F., Frey, P.J.: Mesh gradation control. Int. J. Numer. Meth. Engrg. 43(6), 1143–1165 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bottasso, C.L.: Anisotropic mesh adaption by metric-driven optimization. Int. J. Numer. Meth. Engng. 60, 597–639 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Castro-Díaz, M.J., Hecht, F., Mohammadi, B., Pironneau, O.: Anisotropic unstructured mesh adaptation for flow simulations. Int. J. Numer. Meth. Fluids 25, 475–491 (1997)

    Article  MATH  Google Scholar 

  11. Chen, L., Sun, P., Xu, J.: Optimal anisotropic simplicial meshes for minimizing interpolation errors in L p-norm. Math. Comp. 76(257), 179–204 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. do Carmo, M.: Differential geometry of curves and surfaces. Prentice-Hall, Englewood Cliffs (1976)

    MATH  Google Scholar 

  13. Dobrzynski, C., Frey, P.J.: Anisotropic delaunay mesh adaptation for unsteady simulations. In: Proc. of 17th Int. Meshing Rountable, pp. 177–194. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Dompierre, J., Vallet, M.G., Fortin, M., Bourgault, Y., Habashi, W.G.: Anisotropic mesh adaptation: towards a solver and user independent cfd. AIAA Paper, 97-0861 (1997)

    Google Scholar 

  15. Frey, P.J., Borouchaki, H.: Surface meshing using a geometric error estimate. Int. J. Numer. Methods Engng. 58(2), 227–245 (2003)

    Article  MATH  Google Scholar 

  16. Frey, P.J.: About surface remeshing. In: Proc. of 15th Meshing Rountable 15, pp. 123–136. Springer, Heidelberg (2000)

    Google Scholar 

  17. Frey, P.J., George, P.-L.: Mesh generation. Application to finite elements, 2nd edn. ISTE Ltd and John Wiley & Sons (2008)

    Google Scholar 

  18. George, P.L., Borouchaki, H.: Delaunay triangulation and meshing: application to finite elements. Hermès Science, Paris (1998)

    MATH  Google Scholar 

  19. George, P.L., Hecht, F., Saltel, E.: Fully automatic mesh generator for 3d domains of any shape. Impact of Comuting in Science and Engineering 2, 187–218 (1990)

    Article  MATH  Google Scholar 

  20. Hecht, F., Mohammadi, B.: Mesh adaptation by metric control for multi-scale phenomena and turbulence. AIAA Paper, 97-0859 (1997)

    Google Scholar 

  21. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  22. Li, X., Remacle, J.-F.: Anisotropic mesh gradation control. In: Proc. of 13th Meshing Rountable, Williamsburg, VA, USA (2004)

    Google Scholar 

  23. Löhner, R.: Regridding surface triangulations. J. Comp. Phys. 126, 1–10 (1996)

    Article  MATH  Google Scholar 

  24. Löhner, R.: Renumbering strategies for unstructured-grid solvers operating on shared-memory, cache-based parallel machines. Comput. Meth. Appl. Mech. Engrg. 163, 95–109 (1998)

    Article  MATH  Google Scholar 

  25. Löhner, R.: Generation of unstructured grids suitable for RANS calculations. AIAA Paper, 99-0662 (1999)

    Google Scholar 

  26. Löhner, R.: Applied CFD techniques. Wiley, New-York (2001)

    Google Scholar 

  27. Löhner, R.: Generation of viscous grids with ridges and corners. AIAA Paper, 07-3832 (2007)

    Google Scholar 

  28. Löhner, R., Parikh, P.: Three-dimensionnal grid generation by the advancing-front method. Int. J. Numer. Meth. Fluids 8(8), 1135–1149 (1988)

    Article  MATH  Google Scholar 

  29. Loseille, A.: Adaptation de maillage 3D anisotrope multi-échelles et ciblé à une fonctionnelle. Application à la prédiction haute-fidélité du bang sonique. PhD thesis, Université Pierre et Marie Curie, Paris VI, Paris, France (2008)

    Google Scholar 

  30. Loseille, A., Alauzet, F.: Continuous mesh model and well-posed continuous interpolation error estimation. RR-6846, INRIA (2009)

    Google Scholar 

  31. Loseille, A., Alauzet, F., Dervieux, A., Frey, P.J.: Achievement of second order mesh convergence for discontinuous flows with adapted unstructured mesh adaptation. AIAA Paper, 07-4186 (2007)

    Google Scholar 

  32. Marcum, D.L.: Adaptive unstructured grid generation for viscous flow applications. AIAA Journal 34(8), 2440–2443 (1996)

    Article  MATH  Google Scholar 

  33. Marcum, D.L.: Efficient generation of high-quality unstructured surface and volume grids. Engrg. Comput. 17, 211–233 (2001)

    Article  MATH  Google Scholar 

  34. Mavriplis, D.J.: An advancing front delaunay triangulation algorithm designed for robustness. J. Comp. Phys. 117, 90–101 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  35. Pain, C.C., Umpleby, A.P., de Oliveira, C.R.E., Goddard, A.J.H.: Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations. Comput. Meth. Appl. Mech. Engrg. 190, 3771–3796 (2001)

    Article  MATH  Google Scholar 

  36. Park, M.A.: Adjoint-based, three-dimensional error prediction and grid adaptation. AIAA Paper 42(9), 1854–1862 (2006)

    Article  Google Scholar 

  37. Peraire, J., Vahdati, M., Morgan, K., Zienkiewicz, O.C.: Adaptive remeshing for compressible flow computations. J. Comp. Phys. 72, 449–466 (1987)

    Article  MATH  Google Scholar 

  38. Ramamurti, R., Löhner, R.: Simulation of flow past complex geometries using a parallel implicit incompressible flow solver. AIAA Paper, CP-933 (1993)

    Google Scholar 

  39. Schall, E., Leservoisier, D., Dervieux, A., Koobus, B.: Mesh adaptation as a tool for certified computational aerodynamics. Int. J. Numer. Meth. Fluids 45, 179–196 (2004)

    Article  MATH  Google Scholar 

  40. Sethian, S.: Level-set methods and fast marching methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  41. Tam, A., Ait-Ali-Yahia, D., Robichaud, M.P., Moore, M., Kozel, V., Habashi, W.G.: Anisotropic mesh adaptation for 3D flows on structured and unstructured grids. Comput. Meth. Appl. Mech. Engrg. 189, 1205–1230 (2000)

    Article  MATH  Google Scholar 

  42. Vallet, M.-G., Manole, C.-M., Dompierre, J., Dufour, S., Guibault, F.: Numerical comparison of some hessian recovery techniques. Int. J. Numer. Meth. Engrg. 72, 987–1007 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Loseille, A., Löhner, R. (2009). On 3D Anisotropic Local Remeshing for Surface, Volume and Boundary Layers. In: Clark, B.W. (eds) Proceedings of the 18th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04319-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04319-2_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04318-5

  • Online ISBN: 978-3-642-04319-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics