VirusMeter: Preventing Your Cellphone from Spies

Lei Liu' and Guanhua Yan? and Xinwen Zhang® and Songqing Chen'

! Department of Computer Science
George Mason University
2 Information Sciences Group (CCS-3)
Los Alamos National Laboratory
3 Computer Science Lab
Samsung Information Systems America

Abstract. Due to the rapid advancement of mobile communication
technology, mobile devices nowadays can support a variety of data ser-
vices that are not traditionally available. With the growing popularity
of mobile devices in the last few years, attacks targeting them are also
surging. Existing mobile malware detection techniques, which are often
borrowed from solutions to Internet malware detection, do not perform
as effectively due to the limited computing resources on mobile devices.
In this paper, we propose VirusMeter, a novel and general malware detec-
tion method, to detect anomalous behaviors on mobile devices. The ra-
tionale underlying VirusMeter is the fact that mobile devices are usually
battery powered and any malicious activity would inevitably consume
some battery power. By monitoring power consumption on a mobile de-
vice, VirusMeter catches misbehaviors that lead to abnormal power con-
sumption. For this purpose, VirusMeter relies on a concise user-centric
power model that characterizes power consumption of common user be-
haviors. In a real-time mode, VirusMeter can perform fast malware de-
tection with trivial runtime overhead. When the battery is charging (re-
ferred to as a battery-charging mode), VirusMeter applies more sophis-
ticated machine learning techniques to further improve the detection
accuracy. To demonstrate its feasibility and effectiveness, we have im-
plemented a VirusMeter prototype on Nokia 5500 Sport and used it to
evaluate some real cellphone malware, including FlexiSPY and Cabir.
Our experimental results show that VirusMeter can effectively detect
these malware activities with less than 1.5% additional power consump-
tion in real time.

Keywords: mobile malware, mobile device security, anomaly detection,
power consumption

1 Introduction

With the ever-improving chip design technology, the computing power of micro-
processors is continuously increasing, which enables more and more features on
mobile devices that were not available in the past. For example, today many
cellphones come with various data services, such as text messaging, emailing,
Web surfing, in addition to the traditional voice services. Due to their all-in-one
convenience, these increasingly powerful mobile devices are gaining a lot of pop-
ularity: It has been expected a mobile population of 5 billion by 2015 [1] and out

of 1 billion camera phones to be shipped in 2008, smartphones represent about
10% of the market or about 100 million units [2]. Moreover, the new generation
of mobile devices provide a more open environment than their ancestors. They
now can not only run sandbox applications shipped from original manufacturers,
but also install and execute third-party applications that conform to the norms
of their underlying operating systems.

The new features brought by exotic applications, although rendering mobile
devices more attractive to their users, also open the door for malicious attacks.
By the end of 2007, there were over 370 different mobile malware in the wild [21].
The debut of Cabir [3] in 2004, which spreads through Bluetooth connections, is
commonly accepted as the inception of modern cellphone virus [4]. Since then, a
number of malware instances have been found exploiting vulnerabilities of mo-
bile devices, such as Cabir [9] and Commwarrior [8]. These mobile malware have
created serious security concerns to not only the mobile users, but also the net-
work operators, such as information stealing, overcharging, battery exhaustion,
and network congestion.

Despite the immense security threats posed by mobile malware, their de-
tection and defense is still lagging behind. Many signature- and anomaly-based
schemes for IP networks have been extended for mobile network malware de-
tection and prevention [12,30,31]. For example, Hu and Venugopal proposed to
extract signatures from mobile malware samples and then scan network traffic
for these signatures [20]. Similar to their counterparts on IP networks, however,
signature-based approaches can easily be circumvented by various techniques,
such as encryption, obfuscation, and packing. On the other hand, anomaly-based
detection schemes often demand accurate and complete models for normal states
and are thus prone to high false alarm rates.

Recently, behavioral signatures have also been proposed for mobile malware
detection [10]. They have their own limitations. On one hand, monitoring API
calls within an emulated environment and running sophisticated machine learn-
ing algorithms for detection are hardly practical for resource-constrained mobile
devices due to high detection overhead, not mentioning that most manufactur-
ers do not publicize all relevant APIs on commodity mobile devices. On the
other hand, stealthy malware can mimic user behavior or hide its activities
among normal user activities to evade detection by API tracking. For example,
FlexiSPY[5]-like malware that perform eavesdropping does not show anomalies
in the order of relevant API calls, since they are typically implemented as if the
user has received an incoming call. To detect energy-greedy malware and variants
of existing malware, Kim et al. proposed to use power signatures based on sys-
tem hardware states tainted by known malware [22]. Their approach, however,
is mainly useful for detecting known malware and their variants.

In this study, we propose VirusMeter, a novel and general mobile malware
detection method, to detect malware on mobile devices without demanding ex-
ternal support. The design of VirusMeter is based on the fact that mobile devices
are commonly battery powered and any malware activity on a mobile device will
inevitably consume battery power. VirusMeter monitors and audits power con-
sumption on mobile devices with a behavior-power model that accurately char-
acterizes power consumption of normal user behaviors. Towards this goal, Virus-

Meter needs to overcome several challenges. First, VirusMeter requires a power
model that can accurately characterize power consumption of user behaviors on
mobile devices, but such a model is not readily available as yet. Second, Virus-
Meter needs to measure battery power in real time. Existing research however
shows that precise battery power measurement is difficult due to many electro-
chemical properties. In addition, although in practice mobile devices commonly
have battery power indicators, their precision varies significantly from device
to device. Examining the battery capacity frequently also incurs high compu-
tational overhead, rendering it hardly practical in reality. Third, as VirusMeter
aims to run on on-the-shelf mobile devices without external support, it must be
lightweight itself, without consuming too much CPU (and thus battery power);
otherwise, it can adversely affect the detection accuracy.

To overcome these challenges, we design a user-centric power model that,
as opposed to a system-centric model which requires in-depth understanding
of various system-level behaviors and states, has only a small number of states
based on common user operations. VirusMeter is designed to run in two modes:
It, when in a real-time detection mode, performs fast malware detection, but
when in a battery-charging mode, applies advanced machine learning techniques
to detect stealthy malware with high accuracy.

To demonstrate its feasibility and effectiveness, we implement a VirusMeter
prototype on Nokia 5500 Sport and evaluate its performance with real-world
smartphone viruses including Cabir and FlexiSPY. The results show that Virus-
Meter can effectively detect the malware by consuming less than 1.5% additional
power in a real-time mode. In a battery-charging mode, VirusMeter, by using
advanced machine learning techniques, can considerably improve the detection
rate up to 98.6%.

The remainder of the paper is organized as follows. Some related work is
presented in section 2. We overview the VirusMeter design in section 3. We
present our model designs, data collection, and model checking for VirusMeter
in sections 4, 5, 6, respectively. We present our implementation in section 7 and
evaluation results in section 8. We discuss some limitations and future work in
section 9 and make concluding remarks in section 10.

2 Related Work

The increasing popularity of mobile devices with faster microchips and larger
memory space has made them a lucrative playground for malware spreading.
Existing studies [21] show that there are more than 370 mobile malware in the
wild. As Symbian occupies the largest cellphone OS market share, it has been tar-
geted by most of these mobile malware. Different approaches have been employed
to classify existing mobile malware. For instance, mobile viruses have been clas-
sified based on their infection vectors, such as Bluetooth, MMS, memory cards,
and user downloading [13,21]. Currently, user downloading, Bluetooth, and MMS
are the most popular channels for mobile malware propagation. Several studies
on mobile malware have focused on understanding their propagation behaviors.
For example, an agent-based model has been developed to study worms spread-
ing over short-range radio and cellular messaging systems [11]. A probabilistic

queuing model is proposed for the spreading of mobile worms over wireless con-
nections [23], and a detailed mathematical model is also developed in [32] to
characterize specifically the propagation process of Bluetooth worms. To detect
Bluetooth worm outbreaks, Su et al. proposed to deploy monitors in high-traffic
areas [29]. To simulate worm propagation in mobile phone networks, Fleizach et
al. [17] developed a simulator with great details, including realistic topologies,
provisioned capacities of cellular networks, and realistic contact graphs.

Some early studies on defense schemes against mobile malware have mainly
focused on understanding their attack characteristics. For example, various po-
tential attacks from a compromised cellphone and the corresponding defenses
have been studied [15,16,19,26]. An algorithm based on user interactions is pro-
posed to identify vulnerable users [12]. In [30], several schemes have been studied
to mitigate DoS attacks via queuing in the network. To prevent cross service
boundary attacks, a labeling technique is used to separate the phone interface
from the PDA interface of a mobile device [24]. Sarat et al. [27] proposed to
integrate commonwalk lengths and node frequencies to detect worms and deter-
mine their propagation origins. Recently, SmartSiren [13] showed how to use a
proxy to detect malware by analyzing collected user communication logs. Bose et
al. [10] proposed to extract behavioral signatures for mobile malware detection.

So far, existing schemes either have limited effectiveness by targeting partic-
ular situations (such as attacks through SMS), and/or demand significant infras-
tructure support, and/or demand non-trivial computing resources from mobile
devices. By contrast, VirusMeter is a general approach, regardless of how mal-
ware invade into a system or whether they are known in advance. VirusMeter is
also lightweight and can run on a mobile device without any external support.
A previous approach that also aims to detect energy-greedy anomalies [22] is
closest to VirusMeter. However, it is only effective to detect known malware and
their variants, and works only for a single process mode which stealthy malware
can easily evade by activating itself on when a user process is active.

3 Overview of VirusMeter Design

The rationale behind VirusMeter is the fact that any malware activities on a mo-
bile device must consume some battery power. Hence, abnormal battery power
consumption is a good indicator that some misbehavior has been conducted.
Accordingly, VirusMeter monitors battery power usage on a mobile device and
compares it against a pre-defined power consumption model to identify abnormal
activities due to mobile malware.

Figure 1 shows the work flow of VirusMeter when executed on a mobile de-
vice. VirusMeter can run at either the system level or the application level (our
current implementation is at the application level). Running at the system level
is more robust against attacks since mobile OSes, such as Symbian and Windows
Mobile, are often only accessible to device manufacturers or authorized parties.
As shown in the figure, VirusMeter, using APIs provided by the underlying
mobile OS, collects necessary information of supported services as well as the
current remaining battery capacity. VirusMeter, based on the pre-defined power

c
o
Dai LOg] . —
Collecgon Power E?etng(r:]t?on Other S _g
Vireaer et Applications %_
s st M
ET_ [!
> APIs - e |
g (CMsvSession...) VirusMeter ‘g
b S
® —_—

Comms | | Telephone Networkin% Other

Kernel Services and Hardware Interface

system

Fig. 1. VirusMeter Runs on a Mobile Device

model, calculates how much power could have been consumed due to these ser-
vices and then compares it against the actually measured power consumption.
The comparison result portends whether abnormal power draining has occured:
If the difference exceeds a pre-specified threshold, VirusMeter raises an alarm
indicating the existence of potential malware. Such comparison can be done in
real time (a real-time mode) for fast malware detection, or when the battery is
charging (a battery-charging mode) for high detection accuracy.

The alarms raised by VirusMeter are instrumental to further revealing ma-
licious activities of the mobile malware. For instance, the user can check the
communication records of her mobile device provided by the network operator
to see whether there are any suspicious phone calls or text messages; she can
also run more advanced virus removal tools to clean the mobile device. Hence,
VirusMeter is a valuable tool to expose malware on mobile devices to their users
at their early stages, thus preventing them from continuously compromising the
service security or data confidentiality of the mobile device.

The pre-defined power model in VirusMeter is user-centric, which is relative
to system-centric models that typically have too many system-level states. This
model is constructed by VirusMeter itself when the device is in a clean state.
VirusMeter consists of three major components: User-Centric Power Model,
Data Collector, and Malware Detector. Figure 2 shows these components and
the work flow of VirusMeter.

While the logic of VirusMeter is straightforward, we still need to overcome
several challenges before VirusMeter becomes practically deployable on commod-
ity mobile devices: (1) Accurate power modeling: An accurate yet simple
power consumption model is crucial to the effectiveness of VirusMeter for mal-
ware detection. (2) Precise power measurement: Both model construction
and data collection rely on precise power measurement. (3) Low execution
overhead: For VirusMeter to be practically deployable, its own power con-
sumption should not adversely affect the power-based anomaly detection.

In the following sections, we shall present more design and implementation
details that address these challenges.

data collector/Symbian APIs

,ijr
Al
I L

user events system events
\ |

V
state
machine

V
user operations |
user—centric
power model

Fig. 2. VirusMeter Architecture

detector

4 Building A User-Centric Power Model for VirusMeter

4.1 Existing Battery Power Models

Generally speaking, a battery’s power consumption rate can be affected by two
groups of factors, environmental factors such as signal strength, environmental
noises, temperature, humidity, the distance to the base station, the discharging
rate, the remaining battery power, etc., and user operations such as phone calls,
emailing, text messaging, music playing, etc. Three types of power models have
been suggested so far:

(1) Linear Model: In this simple model the remaining capacity after oper-
ating duration t4 is given by

to+ta
P.=P, - d(t)dt = P, — I X tg, (1)
t=to

where P, is the previous battery power, and d(t) is the draining rate at time ¢.
With the assumption that the operating mode does not change for ¢4 time units,
d(t) stays the same during this period and is denoted as I. Once the operation
mode changes, the remaining capacity is re-calculated [28].

(2) Discharge Rate Dependent Model: In this model, the discharge rate
is considered to be related to the battery capacity. For this purpose, c is defined
as the fraction of the effective battery capacity P.ss and the maximum capacity

Pz, i€, c= %. Then the battery power is calculated as
to+ta
PT:cxPp—/ d(t)dt =c x P, — I x t4. (2)
t=to

¢ changes with the current; it becomes close to 1 when the discharge rate is low,
and approaches 0 when the discharge rate is high [6,28].

(3) Relaxation Model: This model is based on a common phenomenon
called relaxation [14,18], which refers to the fact that when a battery is dis-
charged at a high rate, the diffusion rate of the active ingredients through the
electrolyte and electrode will fall behind, and the battery reaches its end of life
even if there are active materials available. If the discharge current is cut off or re-
duced, the diffusion and transport rate of active materials will catch up with the
depletion of the materials [25]. Although this is the most comprehensive model
characterizing a real battery, the model involves more than 50 electro-chemical
and physical input parameters [25].

All these models calculate the battery power consumption from a physical
and electrical perspective, although their inputs are remarkably different. The
relaxation model can provide more accurate battery estimation than the lin-
ear model. However, even with aid of external instruments, measuring over 50
parameters could be difficult and expensive in practice. In addition, since Virus-
Meter aims to run on commodity mobile devices, it purely relies on publicly
available system functions (without external support) to collect data; most of
the 50 parameters in the relaxation model, however, cannot be captured with
available APIs. Furthermore, a model with as many as 50 parameters is too cum-
bersome and thus not suitable for resource-constrained devices. The other two
models model have similar problems, as the power draining rate and discharge
rate are hard to measure without external power measurement instruments.

4.2 User-Centric Power Model

Due to the difficulties of measuring the input parameters of existing power mod-
els, we decide to build a user-centric power model for VirusMeter. In this model,
the amount of power consumed is characterized as a function of common user
operations and relevant environmental factors. Moreover, this model has only a
few states, which is in contrast to those system-centric power models that need
cumbersomely profile all system behaviors and are thus difficult to build without
in-depth understanding of the mobile OS and its underlying hardware.

To derive a user-centric model from scratch, we investigate the power con-
sumption of common types of user operations on mobile devices in different
environments. The following types of user operations are now considered: (1)
Calling: its power consumption is mainly dependent on the conversation dura-
tion. VirusMeter treats incoming and outgoing calls separately. (2) Messaging:
its average power consumption depends on both the sizes and the types of the
messages. MMS and SMS are the two message types being considered. Also,
sending and receiving messages are treated as different activities. (3) Emailing:
its power consumption is mainly decided by the amount of traffic, which we can
get by querying the email message size. (4) Document processing: we assume
that the duration of the operation is the deciding factor. (5) Web surfing: Web
surfing is more complicated than the above as a user may view, download, or be
idle when surfing the Web. Currently we calculate the average power consump-
tion simply based on the amount of traffic involved and also the surfing duration.
(6) Idle: for a large amount of time, a user may not operate on the device for
anything. During this period, however, system activities such as signaling may

still take place. Under such a state, the power consumption is intuitively relevant
to its duration. (7) Entertainment and others: currently, we simply assume the
average power consumption is determined by the duration of the activities. This,
admittedly, is a coarse model and further study is required.

For environmental factors, the following two types are being considered: (1)
Signal strength: signal strength impacts the power consumption of all the above
operations. The weaker of the signal strength, the more power consumption is
expected. (2) Network condition: for some of the operations, network conditions
are also important. For example, the time, and thus the power, needed to send
a text message depends on the current network condition.

In VirusMeter, the battery power consumed between two measurements can
be described as a function of all these factors during this period:

AP = f(Dloys SStaits Thheg: S

call> msg»

iall? SS%sg’N'g;Lsg"'vadlevSSzkdle)v (3)
where AP represents the power consumption, D the duration of the operation,
SS the signal strength, T the type of the text message, and N the network

condition. 4,5, and k represent the index of the user operation under discussion.

To this end, what is missing in this user-centric power model is the function
itself in Equation 3. This is derived from the following three different approaches:

Linear Regression: Linear regression generates a mathematical function
which linearly combines all variables we have discussed with techniques such as
least square functions; it can thus be easily stored and implemented in a small
segment of codes that run on commodity mobile devices with trivial overhead.
While linear regression may incur little overhead, which makes it suitable for
real-time detection, its accuracy depends on the underlying assumption of the
linear relationship between variables.

Neural Network: An artificial neural network (ANN), often referred to as
a “neural network” (NN), is a mathematical or computational model inspired by
biological neural networks. It consists of an interconnected group of artificial neu-
rons that process information using a connectionist approach for computation.
Neural networks are commonly used for non-linear statistical data modeling.
They can be used to model complex relationships between inputs and outputs
or to find patterns in data. In VirusMeter, we use neural network as a regres-
sion tool, in which the neural network model, unlike the linear regression model,
cannot easily be presented as a mathematical function.

Decision Trees: A decision tree is a predictive model that maps the obser-
vations of an item to conclusions of its target value. In a decision tree, branches
represent conjunctions of features that lead to leaves that represent classifica-
tions. In VirusMeter we build a classification tree in which branches represent
normal or malware samples. We train the decision tree with both normal and
malware data samples. When a new piece of data sample is fed into the decision
tree, it can tell if the new data is normal or not, as well as which malware most
likely caused the abnormal power consumption.

5 Constructing State Machines for Data Collection

To train the three power models presented in the previous section, VirusMeter
needs to collect some data. For the linear and neural network model construction,
only clean data are needed. For decision tree construction, both clean data and
dirty data (the data when malware programs are present) are needed. In this
section, we present how VirusMeter collects these data to train the models.

Currently, we mainly consider the user operations defined in the previous sec-
tion and their corresponding power consumption in VirusMeter. Although the
power consumption can be queried using public APIs, there is no interface that
could be directly called for the user operations. As it is common for commodity
devices to provide some APIs for third parties to query, register, and monitor
system-level events or status, we construct a state machine to derive user opera-
tions (which we also call external events) from system events (which we also call
internal events). In this state machine, state transitions are triggered by internal
events when they appear in a certain order and satisfy certain timing constraints.
For example, during a normal incoming call, a ring event must precede another
answer key event, but cannot happen more than 25 seconds before the answer
key event, because ringing lasts for less than 25 seconds in our experimental
cellphone before the call is forwarded to the voicemail service.

One may wonder whether we can simply use these state machines to detect
malware without power auditing. This is possible but can potentially miss some
malware for two reasons. On one hand, stealthy malware can easily evade de-
tection by mimicing normal user behaviors that can be derived from the state
machine. On the other hand, it is difficult, if not impossible, to build a state
machine that exhaustively characterizes all possible user operations. The state
machine in VirusMeter covers only the internal events corresponding to those
common user operations that we have defined. Due to these concerns, we still
need the power model for mobile malware detection.

Algorithm 1 State Machine Construction for Each User Operation

1: Run a monitor program on the clean cellphone.

2: Execute a defined user operation, such as a phone call.

3: Monitor and record all related internal events during the test period and their
properties.

4: Find the correlation between a user operation and the internal events, their depen-
dency and sequences.

5: Query and record all parameters of the events.

Repeat the experiment.

7: Abstract the common event sequence from the recording. These internal events are
used to build the state machine.

@

VirusMeter performs Algorithm 1 to construct the state machine for each user
operation defined previously. Figure 3 shows an example of the obtained state
machine for receiving a phone call. In this figure, the triggering events are marked
on the transition arrows. Starting in the Idle state, the state machine transits

to the Ring state after a ring event. If the user decides to answer the call by
pressing the answer key, the answer key event is generated, which makes the state
machine move to the Answer state if the answer key event happens half a second
to 25 seconds after the Ring state. On a Symbian cell phone, we can observe an
EStatusAnswering event. At this time, the state machine starts a timer. When
the user terminates the call by pressing the cancel key or hanging it up, the
state machine turns to the End state followed by a Symbian EStatusDisconnecting
event. The state machine now stops the timer and calculates the calling duration.
Finally the state machine returns to Idle state and generates a receiving call
operation with the call duration. In a similar approach, we conduct experiments
to build state machines for other user operations we have defined.

O

cal operation
(receiving)

(duration)

start timer

EstatusAnswering

Fig. 3. State Machine for Receiving a Phone Call

6 Model Checking for Malware Detection

With the power model and the state machines available, VirusMeter can perform
malware detection in a straightforward manner: we use the power model to
predict how much power should be consumed and then compare it against the
measured power consumption. If abnormal power consumption is observed, an
alert is raised. Here, VirusMeter is designed with two running modes:

— Real-time mode: VirusMeter uses the linear regression power model to predict
power consumption due to its low computational cost.

— Battery-charging mode: Although linear regression is easy to perform, it may
generate false detection results since (1) it implicitly assumes a linear rela-
tionship among all variables, and (2) power measurements may have fluc-
tuations due to electro-chemical battery properties. Thus, VirusMeter accu-
mulates power consumption measurement data and uses the neural network
model and the decision tree algorithm to perform malware detection when
the battery is charging.

It is noted that both modes can also run off the mobile device. For example,
the device manufacturer or the service operator may provide such a service

10

that a user can submit the collected measurement data to a server for malware
detection. This however will increase the communication cost on the mobile
device.

7 Practical Issues in VirusMeter Implementation

As Symbian is the most popular mobile OS, we implement a prototype of Virus-
Meter on Nokia 5500 Sport, supported by Symbian OS 9.1. Figure 4 shows the
modules of VirusMeter implementation. Currently, it is implemented as a user-
level application and a user can choose to start it or to shut it down manually.
The implementation program uses a client/server architecture which is widely
used for Symbian applications. Figure 5 shows the user interface once VirusMeter
is installed on our experimental device.

keyboard module) g \L&iulel
eleph odul -5
= | ephone modulg
3| s
o =
| ® Charging Mode,
! B
Data Collection Detector
I
. I
client; server
i

Fig. 4. Modularized VirusMeter Imple- Fig.5. VirusMeter = Imple-
mentation mented on a Nokia 5500 Sport

7.1 Power Measurement Precision and Power Model Construction

The power consumption data are collected through the APIs provided by Sym-
bian for power status changes. In the prototype implementation, however, we
find that the precision of the power capacity measurement is not sufficient. In
fact, the precision returned by the APIs of mobile devices varies significantly. For
example, iPhone can return the current power capacity at 1% precision. Many
other devices, including the one in our experiments, return the power consump-
tion data only at the level of battery bars shown on the screen. On the Nokia
5500, these bars are at the 100, 85, 71, 57, 42, 28, 14, and 0 percent of the full
capacity. We call the battery supply between two of these successive values as
a power segment. To overcome the precision challenge, we perform experiments
long enough so that the power consumption is sufficient to cross a segment. As-
suming a constant draining rate during the experiments, we expect the power
measurement through this method is more accurate.

Accordingly, it is necessary to transform the power model in Equation 3 be-
cause if we were to still follow Equation 3, many experiment samples would have
the same constant dependent value AP, which is bad for the linear regression
and neural network regression. To make the regression as accurately as possible,
we transform the function as follows. Because in all our experiments, the signal
strength is always good (at level 6 and 7) but the duration of idle time has a

11

large range, we select idle time at the best signal strength as the dependent
variable, and transform our model to

Didle = f/(iall’SséalhTr]rlLsg?ngsg7sszzsg7N%sg"'7AP7 Sszkdle)‘ (4)

For environmental factors, VirusMeter is currently only concerned about the
signal strength and network condition. Through the API, VirusMeter can di-
rectly query the current signal strength. There are 7 levels of signal strength on
Nokia 5500, from 1 to 7. We, however, cannot directly query APIs for network
conditions when a user performs a certain operation, such as text messaging. In
the experiments, we have observed that if the network congestion is severe, the
duration for sending or receiving messages increase significantly. Therefore, to
make the power model more accurate, we introduce the sending time into it, and
the duration is measured as follows. In Symbian, sending a message leads to a
sequence of events that can be captured by VirusMeter: first, an index is created
in the draft directory; when the creation is complete, the index is moved to
the sending directory; when sending is successful, the index will be moved to
the sent directory. Hence, the operation time can be measured from the time
when the index is created to the time when it is moved to the sent directory.
Following the similar idea, we further refine the parameter input for receiving
messages and other networking operations.

Note that our power model is built in such a way due to insufficient power
precision, but a malware does not need to be active throughout a segment of
battery power to be detected by VirusMeter. Instead, no matter how long the
malware is active, we can always feed the runtime data collected during an entire
power segment for malware detection, and our experiments in the next section
will show that it is still very effective.

7.2 Data Collection Rules

To construct the power model, we need to collect not only the power consump-
tion data under normal user operations (clean data) for the three power models,
but also dirty data when malware is present for training the decision tree. Con-
strained by the precision of the battery power measurement offered by Symbian
OS, we treat all user operations conducted in one battery segment as a batch to
achieve more accurate detection. As our goal is to detect malware whose activ-
ities lead to abnormal power consumption no matter how long they are active,
we collect clean data under various circumstances for model construction: (1) In
some experiments, our data collection just focuses on a single user operation. For
example, in a battery segment, we only send SMS text messages, and in another
one, we only receive SMS text messages; (2) In some experiments, mixed user
operations are conducted. For example, in a battery segment, we make phone
calls and also receive text messages; (3) For each user operation, we consider var-
ious properties of the activity. For instance, we send text messages with different
sizes ranging from ten bytes to a thousand bytes; and (4) In all experiments, we
avoid abnormal conditions, which decrease the accuracy of our power models.
Dirty data are also necessary to train the decision trees. The power consump-
tion of a malware program may vary significantly in different environments. For

12

example, different usage frequencies or spy call durations on FlexiSPY cause
great difference in power consumption. In another example, the power consumed
by the Cabir worm depends on how many Bluetooth devices exist in the neigh-
borhood. Based on such considerations, we collect dirty data as follows: (1)
During dirty data collection, we conduct experiments to cover as many differ-
ent scenarios as possible, including both high power consumption cases and low
power consumption cases; and (2) For the purpose of model training, the fraction
of high and low power consumption data samples are randomly selected.

7.3 Stepwise Regression for Data Pre-Processing and Time-Series
Data Analysis

The data we have collected, including both clean and dirty data, have 41 variables
that are measurable through the Symbian APIs. To simplify the model by elimi-
nating insignificant factors, we first use the stepwise regression technique [7]
to pre-process the collected data. Stepwise regression is a statistical tool that
helps find the most significant terms and remove least significant ones. Besides
that, stepwise regression also provides information that help to merge variables.
Using stepwise regression, we found that the idle time with signal strength level
6 is insignificant. This is because in our experimental environment, we often have
good signal strength at level 7. The signal strength 6 is relatively rare. Thus, we
merge the signal strength 6 to the signal strength 7.

To further improve the model accuracy, we collect data samples from multiple
segments and use the average to smooth out the fluctuations due to the internal
electro-chemical battery properties. Based on this idea, we generate three sets
of input for each power model. If a model is built from data samples collected
in a single battery power segment, we call them “short-term” experiments. If a
model is built from data samples from seven segments, we call them “middle-
term” experiments. Note that Nokia 5500 only has seven battery segments. We
can further feed data samples collected in more than one battery lifecycle. In our
experiments, we use four battery lifecycles, which correspond to 28 segments, and
we call them “long-term” experiments. A stealthy malware that does not con-
sume much power in one segment may not be caught in a short-term detection,
but can be caught in the middle- or long-term detection.

8 Evaluation Results

In this section, we use actual mobile malware, including FlexiSPY, Cabir, and
some variants of Cabir, to evaluate the effectiveness of VirusMeter. FlexiSPY is
a spyware program that runs on either Symbian OS or Blackberry handhelds.
Once installed, it conducts eavesdropping, call interception, GPS tracking, etc.
It monitors phone calls and SMS text messages and can be configured to send
them to a remote server. We test three major types of misbehaviors supported by
FlexiSPY: eavesdropping (spy call), call interception, and message (text message
and email) forwarding. Figure 6 shows the information flow of FlexiSPY. The
Cabir malware exploit Bluetooth to spread themselves. We obtained 3 Cabir

13

variants and in the experiments, we used two of them for decision tree training
and the other one for testing.

We have several sets of experiments to examine common malware behaviors
that consume low (such as Cabir), medium (such as text-message forwarding),
and high battery power (such as eavesdropping). We also evaluate false positives
and the runtime overhead, i.e., power consumption, of VirusMeter.

++
et JET

= . —

FlexiSPY transfer
phone activities log
FlexiSPY to FlexiSPY web
on target

read SMS, email, call logs
and location on FlexiSPY web

monitor phone eavesdrops
and controls target

Fig. 6. FlexiSPY Running on Nokia 5500 Sport and the Information Flow

8.1 Experiments on Eavesdropping Detection

When using FlexiSPY to eavesdrop on a cellphone, the attacker makes a call to
a previously configured phone number and then the phone is activated silently
without user authentication. Our power measurement shows that eavesdropping
has a similar power consumption rate as a normal call. In our experiments, we
make spy calls of different time durations uniformly ranging from 1 minute to
30 minutes. More than 50 samples are collected in this and each of the following
detection rate experiments. Table 1 shows the detection rates (true positives).

Table 1. Detection Rate (%) on Eavesdropping

Short-Term|Middle-Term|Long-Term
Linear Regression 85.1 89.9 87.1
Neural Network 89.3 90.9 93.0
Decision Tree 89.8 90.2 88.9

The results show that for eavesdropping, both middle-term and long-term
experiments can improve the detection rates for linear regression and neural
network, compared with short-term detection. In fact, even the short-term lin-
ear regression achieves a detection rate over 85%. This is because eavesdropping
consumes a lot of power, which makes short-term detection quite accurate. Sur-
prisingly, the long-term detection based on linear regression generates a worse

14

result than mid-term detection. Our conjecture is that due to the inaccurate
linear relationship between variables, more errors may be accumulated in the
long-term experiments, which leads to worse results. This may apply to long-
term decision tree as well.

8.2 Experiments on Call Interception Detection

FlexiSPY can also perform call interceptions, which enables the attacker to mon-
itor ongoing calls. A call interception differs from eavesdropping in that the call
interception can only be conducted when a call is active. After FlexiSPY is in-
stalled, when the victim makes a call to a pre-set phone number, the attacker
will automatically receive a notification via text message and silently call the
victim to begin the interception.

Table 2. Detection Rate (%) on Call Interception

Short-Term|Middle-Term|Long-Term
Linear Regression 66.8 79.5 82.4
Neural Network 82.9 86.0 90.5
Decision Tree 84.8 86.8 86.9

In our detection experiments, we again perform call interceptions with dif-
ferent time durations uniformly ranging from 1 minute to 30 minutes. Table 2
shows the detection rate. The short-term linear regression detection results are
not very good when compared to neural network and decision tree. This is be-
cause the call interception only consumes slightly more battery power than a
normal phone call and it only works when a call is active. But middle-term and
long-term experiments can significantly improve the detection rate for linear re-
gression. The results confirm that for stealthy malware that consumes only a
small amount of power, a more accurate model or a longer detection time can
help improve the detection accuracy.

8.3 Experiments on Text-message Forwarding and Information
Leaking Detection

FlexiSPY can also collect user events, such as call logs, and then deliver collected
information via a GPRS connection periodically at a pre-configured time inter-
val. Clearly, transferring data through GPRS consumes power and the power
consumption depends on the time interval and the characteristics of user oper-
ations such as the number of text messages sent during each interval.

Table 3. Detection Rate (%) on Text Message Forwarding

Short-Term|Middle-Term|Long-Term
Linear Regression 89.5 93.0 96.4
Neural Network 90.3 94.8 98.6
Decision Tree 88.7 89.1 90.7

15

In our detection experiments, we set the interval from 30 minutes to 6 hours,
with an interval of 30 minutes. Under each setting, we keep sending and receiv-
ing text messages of different sizes ranging from 10 bytes to 1000 bytes.Table 3
shows the detection results. We can see all three approaches achieve detection
rates above 88%. The long-term detection with linear regression and neural net-
work can achieve a detection rate up to 98.6%. Our analysis shows that this is
because such a FlexiSPY functionality consumes additional power other than
communication: although when the interval is large, FlexiSPY may not transfer
data for a while, FlexiSPY still needs to monitor and save information related to
user activities, which also consumes battery power. Thus, even in short-term ex-
periments, the detection rate is quite high. To our surprise, decision tree does not
achieve comparable results to linear regression and neural networks for middle-
term and long-term detection. We believe that the performance of decision tree
is highly related to the training dataset, for which we are currently constrained
by a limited number of malware samples.

8.4 Experiments on Detecting Cabir

Cabir, a cellphone worm spreading via Bluetooth, searches nearby Bluetooth
equipments and then transfers a sis file to them once found. The power con-
sumption of Cabir mainly comes from two parts: neighbor discovery and file
transferring. Because Bluetooth normally does not consume significant battery
power, we conduct the experiments in an environment full of Bluetooth equip-
ments, in which Cabir keeps finding new equipments and thus consumes a non-
trivial amount of power. To control the frequency of file transferring, we repeat-
edly turn off Bluetooth on these devices for a random amount of time after a
transfer completes and then turns it on again.

Table 4. Detection Rate (%) on Cabir

Short-Term|Middle-Term|Long-Term
Linear Regression 84.6 89.8 92.9
Neural Network 88.6 93.4 93.5
Decision Tree 86.8 87.6 88.7

Table 4 shows the detection results. For linear regression, the middle-term
and long-term detection can remarkably improve the detection result. The table
also indicates that although Bluetooth discovery and file transferring only con-
sume a limited amount of battery power, it can be detected with a reasonably
high rate by VirusMeter at real time.

8.5 Experiments on Detecting Multiple Malware Infections

Previous detection experiments all involve only one malware program running
on the cellphone. It is possible that a mobile device is infected by more than one
malware program and each malware program could perform different attacks
simultaneously. To test such cases, we activate both FlexiSPY and Cabir on our
experimental cellphone and randomly conduct various attack combinations.

16

Table 5. Detection Rate (%) on Multiple Malware Infection

Short-Term|Middle-Term|Long-Term
Linear Regression 84.8 87.9 88.1
Neural Network 88.9 90.2 92.0
Decision Tree 72.6 76.3 73.6

Table 5 shows the detection rates. The results show that both linear re-
gression and neural network still have reasonably high true positive rates. But
decision tree results in a much higher false negative rate than in single malware
infection experiments. Although it is seemingly counterintuitive, the underlying
principle of these three approaches can explain this: linear regression and neural
network regression only predict the power consumption of normal user opera-
tions rather than describing power consumption of specific malware activities,
which is the objective of decision tree. However, our decision tree model is not
trained with a mixture of malware samples. Thus for data samples collected
when multiple malware programs are active, its performance is the worst.

8.6 False Positive Experiments

In addition to the detection rates, we also conduct experiments to evaluate false
positives. By feeding power models with a clean dataset, we can get the predic-
tion result and calculate the false positive rate. For this purpose, we collect more
than 100 clean data samples for experiments.

Table 6. VirusMeter False Positive Rate (%)

Short-Term|Middle-Term|Long-Term
Linear Regression 224 14.2 10.3
Neural Network 10.0 5.1 4.3
Decision Tree 15.2 15.1 14.4

Table 6 shows the false positive rates. The results show that linear regression
in short-term detection has the highest false positive rate. This is due to the
inaccuracy of the underlying assumption of linear regression model. However,
both middle-term and long-term experiments can significantly reduce the false
positive rates. With a more accurate power model, neural network achieves the
best results among the three for all three terms.

8.7 VirusMeter Overhead Measurement

As VirusMeter targets to run on commodity devices, its power consumption over-
head is a great concern. As we cannot directly measure the power consumption
of VirusMeter, we conduct experiments as follows: with and without VirusMeter
running on the cellphone, we conduct the same set of user operations and then
compare the operating durations under these two scenarios. Figure 7 shows our
experimental results. We can see that with and without VirusMeter, the duration
of various user operations is very close. The average duration when VirusMeter

17

is off is 109.5 minutes across our experiments, while the average duration when
VirusMeter is on is 108 minutes. This indicates the VirusMeter running overhead
is less than 1.5%. Note the above results show the overhead when VirusMeter
uses the linear regression model. For the other two approaches, we do not eval-
uate their power consumption because they run in a battery-charging mode.

120

100

Duration (minutes)
IN o) 0
o o o

N
o
T
|

——VirusMeter—-Off
——VirusMeter-On

1 2 3 4 5 6 7 8
Experiments

Fig. 7. VirusMeter overhead evaluation

9 Further Discussion

VirusMeter, in principle, should have potential to detect any misbehavior with
abnormal power consumption as long as the battery power metering is suffi-
ciently accurate. Currently, precisions of battery power indicators vary signif-
icantly among different mobile OSes, which can affect the detection efficiency
of VirusMeter. This is particularly important for real-time detection. Practi-
cally, on our experimental device, this changes the real-time detection mode of
VirusMeter to a near-real-time mode.

Since VirusMeter relies on the user-centric power models to detect malware,
the accuracy of the models themselves is important. Qur experimental results
have shown that linear regression, although consuming trivial additional power,
may generate high false negative rates due to the inaccurate underlying assump-
tion between variables. On the other hand, in a battery-charging mode, neural
network often improves the detection rate remarkably due to lack of such an
assumption. The decision tree model does not perform as effectively as neural
networks in our experiments. We believe that our limited malware samples may
adversely affect its performance, and we plan to collect more samples in the
future to further evaluate this method. In addition, for some types of user oper-
ations, such as entertainment and Web surfing, more fine-grained profiling can
further improve the accuracy of the power model.

18

As we suggested, VirusMeter can also run in the battery-charging mode to
improve the detection accuracy. Malware may leverage this as well since when
the battery is charging, there is no way for VirusMeter to accurately measure
the power consumption without any external assistance. To capture this kind
of malware, VirusMeter needs external devices to measure how much power is
charged and how much power is consumed. On the other hand, currently most
mobile OSes are only accessible to manufacturers. If we place VirusMeter in the
mobile OS, VirusMeter becomes more resilient to those attacks that could fail
signature- or anomaly-based detection schemes. But if the mobile OS is also
cracked and the malware knows how to inject faked events, VirusMeter will also
fail because the data collected by VirusMeter cannot be trusted any more.

10 Conclusion

The battery power supply is often regarded as the Achilles’ heel of mobile de-
vices. Provided that any activity conducted on a mobile device, either normal or
malicious, inevitably consumes some battery power, VirusMeter exploits this to
detect existence of malware with abnormal power consumption. VirusMeter re-
lies on a concise lightweight user-centric power model and aims to detect mobile
malware in two modes: While the real-time detection mode provides immediate
detection, running VirusMeter under the battery-charging mode can further im-
prove the detection accuracy without concerns of resource consumption. Using
real-world malware such as Cabir and FlexiSpy, we experimentally show that
VirusMeter can effectively and efficiently detect their existence.

References
1. http://www.wellingtonfund.com/blog/2007/02/19/gmp-3gsm-wrapup/.
2. http://en.wikipedia.org/wiki/Smartphone.
3. http://www.viruslibrary.com/.
4. http://vx.netlux.org/29%a/.
5. http://www.flexispy.com/.
6. http://www.panasonic.com/inustrial_oem/battery/battery_oem/chem/lith/lith.htm.
7. http://en.wikipedia.org/wiki/Stepwise_regression.
8. Commwarrior. http://wuw.f-secure.com/v-descs/commwarrior.shtml.
9. Sprots fans in helsinki falling prey to cabir. http://news.zdnet.com.
10. A. Bose, X. Hu, K. Shin, and T. Park. Behavioral detection of malware on mobile

handsets. In Proceedings of Mobisys, Breckenridge, CO, June 2008.

11. A. Bose and K. Shin. On mobile virus exploiting messaging and bluetooth services.
In Proceedings of Securecomm, 2006.

12. A. Bose and K. Shin. Proactive security for mobile messaging networks. In Pro-
ceedings of WiSe, 2006.

13. J. Cheng, S. Wong, H. Yang, and S. Lu. Smartsiren: Virus detection and alert for
smartphones. In Proceedings of ACM MobiSys, San Juan, Puerto Rico, 2007.

14. C. Chiasserini and R. Rao. Pulsed battery discharge in communication devices. In
Proceedings of MobiComm, Seattle, WA, August 1999.

15. D. Dagon, T. Martin, and T. Starner. Mobile phones as computing devices: The
viruses are coming! In IEEE Pervasive Computing, 2004.

19

16. W. Enck, P. Traynor, P. McDaniel, and T. Porta. Exploiting open functionality in
sms-capable cellular networks. In Proceedings of CCS’05, November 2005.

17. C. Fleizach, M. Liljenstam, P. Johansson, G. Voelker, and A. Mehes. Can you
infect me now? malware propagation in mobile phone networks. In Proceedings of
WORMS, Alexandria, VA, November 2007.

18. T. Fuller, M. Doyle, and J. Newman. Simulation and optimization of the dual
lithium ion insertion cell. In Journal of Electrochem. Soc., volume 141, April 1994.

19. C. Guo, H. Wang, and W. Zhu. Smart-phone attacks and defenses. In Proceedings
of HotNets III, San Diego, CA, November 2004.

20. G. Hu and D. Venugopal. A malware signature extraction and detection method
applied to mobile networks. In Proceedings of IPCCC, April 2007.

21. M. Hypponen. http://www.usenix.org/events/sec07/tech/hypponen.pdf.

22. H. Kim, J. .Smith, and K. Shin. Detecting energy-greedy anomalies and mobile
malware variants. In Proceedings of Mobisys, Breckenridge, CO, June 2008.

23. J. Mickens and B. Noble. Modeling epidemic spreading in mobile networks. In
Proceedings of ACM WiSe, 2005.

24. C. Mulliner, G. Vigna, D. Dagon, and W. Lee. Using labeling to prevent cross-
service attacks against smart phones. In Proceedings of DIM VA, 2006.

25. S. Park, A. Savvides, and M. Srivastava. Battery capacity measurement and anal-
ysis using lithium coin cell battery. In Proceedings of ISLPED, August 2001.

26. R. Racic, D. Ma, and H. Chen. Exploiting mms vulnerabilities to stealthily exhaust
mobile phone’s battery. In Proceedings of SecureComm’06, August 2006.

27. S. Sarat and A. Terzis. On the detection and origin identification of mobile worms.
In Proceedings of WORMS, Alexandria, VA, November 2007.

28. T. Simunic, L. Benini, and G. Micheli. Energy-efficient design of battery-powered
embedded systems. In Proceedings of ISLPED, August 1999.

29. J. Su, K. Chan, A. Miklas, K. Po, A. Akhavan, S. Saroiu, E. Lara, and A. Goel.
A preliminary investigation of worm infections in a bluetooth environment. In
Proceedings of WORM, 2006.

30. P. Traynor, W. Enck, P. McDaniel, and T. Porta. Mitigating attacks on open
functionality in sms-capable cellular networks. In Proceedings of Mobicom’06, 2006.

31. D. Venugopal, G. Hu, and N. Roman. Intelligent virus detection on mobile devices.
In Proceedings of ACM PST, Markham, Ontario, Canada, October 2006.

32. G. Yan and S. Eidenbenz. Modeling propagation dynamics of bluetooth worms.
In Proceedings of ICDCS’07, 2007.

20

