Functional Adaptivity for Digital Library Services in
e-Infrastructures: The gCube Approach

Fabio Simeoni', Leonardo Candela?, David Lievens?,

Pasquale Pagano?, and Manuele Simi?

! Department of Computer and Information Sciences, University of Strathclyde, Glasgow, UK
fabio.simeoni@cis.strath.ac.uk
2 TIstituto di Scienza e Tecnologie dell’Informazione “Alessandro Faedo”, CNR, Pisa, Italy
{leonardo .candela, pasquale.pagano,manuele. simi}@isti .cnr.it
3 Department of Computer Science, Trinity College, Dublin 2, Ireland
david.lievens@cs.tcd.ie

Abstract. We consider the problem of e-Infrastructures that wish to reconcile the
generality of their services with the bespoke requirements of diverse user com-
munities. We motivate the requirement of functional adaptivity in the context of
gCube, a service-based system that integrates Grid and Digital Library technolo-
gies to deploy, operate, and monitor Virtual Research Environments defined over
infrastructural resources.

We argue that adaptivity requires mapping service interfaces onto multiple im-
plementations, truly alternative interpretations of the same functionality. We then
analyse two design solutions in which the alternative implementations are, re-
spectively, full-fledged services and local components of a single service. We as-
sociate the latter with lower development costs and increased binding flexibility,
and outline a strategy to deploy them dynamically as the payload of service plug-
ins. The result is an infrastructure in which services exhibit multiple behaviours,
know how to select the most appropriate behaviour, and can seamlessly learn new
behaviours.

1 Introduction

gCube' is a distributed system for the operation of large-scale scientific infrastructures.
It has been designed from the ground up to support the full lifecycle of modern scientific
enquiry, with particular emphasis on application-level requirements of information and
knowledge management. To this end, it interfaces pan-European Grid middleware for
shared access to high-end computational and storage resources [1], but complements
it with a rich array of services that collate, describe, annotate, merge, transform, in-
dex, search, and present information for a variety of multidisciplinary and international
communities. Services, information, and machines are infrastructural resources that
communities select, share, and consume in the scope of collaborative Virtual Research
Environments (VREs).

To gCube, VREs are service-based applications to dynamically deploy and moni-
tor within the infrastructure. To the users, they are self-managing, distributed Digital

! http://www.gcube-system.org

M. Agosti et al. (Eds.): ECDL 2009, LNCS 5714, pp. 51-62, 2009.
(© Springer-Verlag Berlin Heidelberg 2009

52 F. Simeoni et al.

Libraries that can be declaratively defined and configured, for arbitrary purposes and
arbitrary lifetimes. In particular, gCube is perceived as a Digital Library Management
System (DLMS) [5], albeit one that is defined over a pool of infrastructural resources,
that operates under the supervision of personnel dedicated to the infrastructure, and that
is built according to Grid principles of controlled resource sharing [8]. The ancestry of
gCube is a pioneering service-based DLMS [7] and its evolution towards Grid technolo-
gies took place in the testbed infrastructure of the Diligent project [4]. Five years after
its inception, gCube is the control system of D4Science, a production-level infrastruc-
ture for scientific communities affiliated with the broad disciplines of Environmental
Monitoring and Fishery and Aquaculture Resources Management?.

The infrastructural approach to DLMS design is novel and raises serious challenges,
both organisational and technical. Among the latter, we notice core requirements of
dynamic service management and extensive development support. The first is the very
premise of the approach; a system that does not transparently manage its own services
it is not a service-based DLMS. The second requirement constrains how one plans to
accommodate the first; a DLMS that achieves transparencies for users but denies them
to its developers is prone to error, is hard to maintain, and has little scope for evolution.

In this paper, we comment briefly on service management and development complex-
ity, overviewing relevant parts of the gCube architecture in the process (cf. Figure 1).
Our goal is not to present the solutions adopted in gCube, for which we refer to exist-
ing literature. Rather, we wish to build enough context to discuss in more detail a third
requirement: the ability of the system to reconcile the generality of its services with the
specific demands of its communities of adoption.

Functional adaptivity is key to the usefulness of the system; a DLMS that does not
serve a wide range of user communities, and does not serve each of them well, is simply
not adopted. In particular, we argue that functional adaptivity requires services that: (i)
can simultaneously manage multiple implementations of their own interface; (ii) can
autonomically match requests against available implementations; and most noticeably:
(iii) can acquire new implementations at runtime. Effectively, we advocate the need
for services that exhibit multiple behaviours, know how select the most appropriate
behaviour, and can learn new behaviours.

The rest of the paper is organised as follows. We set the context for the discussion
on functional adaptivity in Section 2 and show why a general solution requires multiple
implementations of service interfaces in Section 3. We motivate our choice to accom-
modate this multiplicity within individual services in Section 4, and then illustrate our
deployment strategy in Section 5. Finally, we draw some conclusions in Section 6.

2 Context

In a DLMS that commits to service-orientation, managing resources is tantamount to
managing services that virtualise or manipulate resources. In such system, services do
not run in pre-defined locations and are not managed by local administrators. Rather,
they are resources of the infrastructure and they are dynamically deployed and rede-
ployed by the system that controls it, where and when it proves most convenient. As an

Zhttp://www.ddscience.eu

Functional Adaptivity for Digital Library Services in e-Infrastructures 53

implication of dynamic deployment, the configuration, staging, scoping, monitoring, or-
chestration, and secure operation of services become also dynamic and a responsibility
of the system. Essentially, the baseline requirement is for a state-of-the-art autonomic
system.

In gCube, the challenge of

autonomicity is met primarily in —~
a layer of Core Services that = =
. Sa
are largely independent from the T Eg
DL domain and include: = §§
&
— Process Management Ser- R e L o et
vices execute declaratively Bggg O'genisation. Retrieval | g
] I Services Services |
specified workflows of ser- i | .:5
. ! Content & Metadat m (=]
vice invocations, distribut- i| Storage I'EE
. .. . : I
ing the optimisation, mon- Remda e 11, Index 45E
. . I 1! [Management | | E §&
itoring, and execution of :[Content]l Annotation];: |8
oo . |
individual steps across the g secunty RLNATEGCIeN g | 2
. o P S 1 —
infrastructure [6]; e e e e e o
- Securzt).) Sgrvzces enforce [Infurmar.lon J[TS J e— "
authentication and autho- Service | | Management ironl 23
risation policies, building Process Broker & Organisation | |© g
Management | | Matchmaker Support

over lower-level technolo-
gies to renew and delegate
credentials of both users
and services;

— VRE Management Services
host service implementa-
tions and translate interac-
tive VRE definitions into
declarative specifications
for their deployment and
runtime maintenance [2];

— Brokering and Matchmak-
ing Services inform deployment strategies based on information about the available
resources that a network of Information Services gathers and publishes within the
infrastructure.

ecocee
abling rids
scienc

for - -scien

Fig. 1. The gCube Architecture

The need for autonomicity bears on a second problem, the complexity of service de-
velopment and the impact of the associated costs on the scope and evolution of the
system. A system that aspires to manage its own services needs to raise non-trivial
requirements against their runtime behaviour, and thus on how this behaviour is im-
plemented. This adds to the complexity already associated with service development,
whether generically related to distributed programming (e.g. concurrency, performance-
awareness, tolerance to partial failure) or specifically introduced by open technologies
(e.g. reliance upon multiple standards, limited integration between development tools,
inadequate documentation). At highest risk here are the services of a second layer of

54 F. Simeoni et al.

the gCube architecture, the Information Management Services that implement DL func-
tionality, including:

— a stack of Information Organisation Services rooted in a unifying information
model of binary relationships laid upon storage replication and distribution ser-
vices. Services higher up in the stack specialise the semantics of relationships to
model compound information objects with multiple metadata and annotations, and
to group such objects into typed collections.

— a runtime framework of Information Retrieval Services that execute and optimise
structured and unstructured queries over a federation of forward, geo-spatial, or
inverted indices of dynamically selected collections [13].

gCube offers a number of tools to tame the complexity of service development, most
noticeably a container for hosting gCube services and an application framework to im-
plement them. These are the key components of gCore?, a minimal distribution of gCube
which is ubiquitously deployed across the infrastructure [9]. Built as an ad-hoc extension
of standard Grid technology*, gCore hides or greatly simplifies the systemic aspects of
service development, including lifetime, security, scope, and state management; at the
same time, it promotes the adoption of best practices in multiprogramming and dis-
tributed programming. This guarantees a qualitative baseline for gCube services and al-
lows developers to concentrate on domain semantics. Equally, it allows changes related
to the maintenance, enhancement, and evolution of the system to sweep transparently
across its services at the rhythm of release cycles.

3 Functional Adaptivity

The infrastructural approach to DLMS design emphasises the generality of services,
i.e. the need to serve user communities that operate in different domains and raise dif-
ferent modelling and processing requirements. Communities, on the other hand, expect
the infrastructure to match the specificity of those requirements and are dissatisfied
with common denominator solutions. Accordingly, the DLMS needs to offer generic
DL services that can adapt to bespoke requirements. In gCube, we speak of the func-
tional adaptivity of services and see it as an important implication of the autonomicity
that is expected from the system.

Abstraction, parameterisation, and composition are the standard design principles in
this context. One chooses generic data models to represent arbitrary relationships and
generic formats to exchange and store arbitrary models. One then defines parametric op-
erations to customise processes over the exchanged models and provides generic mech-
anisms to compose customised processes into bespoke workflows. In gCube, content
models, format standards, service interfaces, and process management services follow
precisely these design principles (cf. Section 1).

Often, however, we need novel algorithmic behaviour. In some cases we can specify
it declaratively, and then ask some service to execute it. Data transformations and dis-
tributed processes, for example, are handled in this manner in gCube, through services

http://wiki.gcore.research-infrastructures.eu
4http://www.globus.org

Functional Adaptivity for Digital Library Services in e-Infrastructures 55

that virtualise XSLT and WS-BPEL engines, respectively. In other cases, parameterisa-
tion and composition do not take us far enough.

Consider for example the case of the DIR Master, a gCube service used to optimise
the evaluation of content-based queries across multiple collections [12]. The service
identifies collections that appear to be the most promising candidates for the evaluation
of a given query, typically based on the likelihood that their content will prove relevant
to the underlying information need (collection selection). It also integrates the partial
results obtained by evaluating the queries against selected collections, thus reconciling
relevance judgements based on content statistics that are inherently local to each collec-
tion (result fusion). For both purposes, the service may derive and maintain summary
descriptions of the target collections (collection description). Collectively, the tasks of
collection description, collection selection, and result fusion identify the research field
of (content-based) Distributed Information Retrieval (DIR) [3].

Over the last fifteen years, the DIR field has produced a rich body of techniques to
improve the effectiveness and efficiency of distributed retrieval, often under different
assumptions on the context of application. Approaches diverge most noticeably in the
degree of cooperation that can be expected between the parties that manage the collec-
tions and those that distribute searches over them. With cooperation, one can guarantee
efficient, timely, and accurate gathering of collection descriptions; similarly, selection
and merging algorithms can be made as effective as they would be if the distributed
content was centralised. Without cooperation, collection descriptions are approximate
and require expensive content sampling and size estimation techniques; as a result, col-
lection selection and fusion are based on heuristics and their performance may fluctuate
across queries and sets of collections.

In gCube, we would like to cater for both scenarios, and ideally be able to accommo-
date any strategy that may be of interest within each scenario. However, DIR strategies
may diverge substantially in terms of inputs and in the processes triggered by those
inputs. As an example, cooperative fusion strategies expect results to carry content
statistics whereas uncooperative strategies may expect only a locally computed score
(if they expect anything at all). Similarly, some collection description strategies may
consume only local information and resources (e.g. results of past queries); others may
require interactions with other services of the infrastructure, and then further diverge as
to the services they interact with (e.g. extract content statistics from indices or perform
query-based sampling of external search engines).

It is unclear how these strategies could be declaratively specified and submitted to
a generic engine for execution. In this and similar contexts within the infrastructure,
functional adaptivity seems to call for the deployment of multiple implementations, a
set of truly alternative interpretations of DIR functionality. As we would like to preserve
uniform discovery and use of the DIR functionality, we also require that the alternative
implementations expose the same DIR Master interface.

4 The Design Space

Once we admit multiple implementations of the same interface, we need to decide on
the nature of the implementations and on the strategy for their deployment. There are at

56 F. Simeoni et al.

least two desiderata in this respect. Firstly, we would like to minimise the cost of devel-
oping multiple implementations, ideally to the point that it would not be unreasonable to
leverage expertise available within the communities of adoption. Secondly, we would
like to add new implementations dynamically, without interrupting service provision
in a production infrastructure. The convergence of these two goals would yield an
infrastructure that is open to third party enhancements and is thus more sustainable.

4.1 Adaptivity with Multiple Services

The obvious strategy in a service-oriented architecture is to identify multiple imple-
mentations with multiple services, e.g. allow many ‘concrete’ services to implement an
‘abstract’ DIR Master interface. gCube would standardise the interface and provide one
or more concrete services for it; the services would publish a description of their dis-
tinguishing features within the infrastructure; clients would dynamically discover and
bind to services by specifying the interface and the features they require. The approach
is appealing, for gCube already supports the dynamic deployment of services and gCore
cuts down the cost of developing new ones.

There are complications, however. Firstly, full-blown service development is overkill
when implementations diverge mildly and in part. Many DIR strategies, for example,
share the same approach to collection description but diverge in how they use descrip-
tions to select among collections and to merge query results. Server-side libraries can
reduce the problem by promoting reuse across service implementations [11]. Yet, ser-
vice development remains dominated by configuration and building costs that may be
unduly replicated.

Secondly, multiple services must be independently staged. This is inefficient when
we wish to apply their strategies to the same state and becomes downright problematic
if the services can change the state and make its replicas pair-wise inconsistent.

Thirdly, we would like the system to discover and select implementations on behalf
of clients. This is because they make no explicit choice, or else because their choice is
cast in sufficiently abstract terms that some intelligence within the system can hope to
resolve it automatically. In the spirit of autonomicity, the requirement is then for some
form of matchmaking of implementations within the infrastructure.

In its most general form, matchmaking concerns the dynamic resolution of process-
ing requirements against pools of computational resources. Grid-based infrastructures
use it primarily for hardware resources, i.e. to allocate clusters of storage and proces-
sors for high-performance and high-throughput applications; in gCube, we employ it
routinely to find the best machines for the deployment of given services (cf. Section 2).

Matchmaking of software resources is also possible. There is an active area of re-
search in Semantic Web Services that relies upon it to flexibly bind clients to services,
most often in the context of service orchestration. The assumption here is that (i) clients
will associate non-functional, structural, and behavioural requirements with their re-
quests, and (ii) distinguished services within the system will resolve their requirements
against service descriptions available within the infrastructure [10,15].

In practice, however, the scope of application for service-based matchmaking re-
mains unclear. We would like to use it for arbitrary interactions between services, not
only in the context of process execution. We would also like to use it as late as possible,

Functional Adaptivity for Digital Library Services in e-Infrastructures 57

based on evidence available at call time rather than mostly-static service descriptions.
Its impact on the operation of the infrastructure and the design of the system that con-
trols raise also some concerns. The ubiquitous mediation of a remote matchmaker at
runtime is likely to increase latencies; similarly, the necessity to distribute its load would
complicate considerably its design and model of use. Finally, just-in-time descriptions
seem costly to produce and publish, and the expressiveness of these descriptions is
likely to introduce novel standardisation costs. Service-based matchmaking remains an
interesting option for gCube, but the invasiveness of the approach and the current state
of the art does not encourage us to deploy it in a production infrastructure.

4.2 Adaptivity with Multiple Processors

We have explored another strategy for functional adaptivity which promises a smoother
integration with the current system. The underlying assumption is different: the diverse
implementations of a given functionality are mapped onto multiple components of a
single service, rather than onto multiple services. These components are thus local pro-
cessors that compete for the resolution of clients requests on the basis of functional and
non-functional requirements.

From a service perspective, \ /
the strategy may be summarised |:| |:|
as follows (cf. Figure 2). A \exma /
distinguished gatekeeper com- ’/'\ Y\

L oI T e (_ service

ponent receives requests and Lrwﬁ) Gatekee er) b
passes them to a local match- L Pt ,_
mgker as .1mp1101t evidence of 1.....\._..delegates ________
client requirements. The match- : O
maker cross-references this ev- 5 LS \\ N / dispatches
idence with information about . W 6 """""""""""
the available processors, as well ‘N Q ‘ Q O Q
as with any other local infor- LT A PIOCeSSOrS je sttt

mation that might bear on the P EEET LT L eI IS L Lo EE Lo L EE EEECEE ECEELEE :
identification of suitable proces-
sors. As there might be many
such processors for any given
request, the matchmaker ranks them all from the most suitable to the least suitable,
based on some quantification of its judgement. It then returns the ranking to the gate-
keeper. The gatekeeper can then apply any selection and dispatch strategy that is com-
patible with the semantics of the service: it may dispatch the request to the processor
with the highest rank, perhaps only if scored above a certain threshold; it may broadcast
it to all processors, it may dispatch it to the first processor that does not fail, and so on.

Placing multiple implementations within the runtime of a single service is uncon-
ventional but yields a number of advantages. The definition of processors is framed
within a model of local development based on the instantiation of service-specific ap-
plication frameworks. The model is standard and incremental with respect to overall
service behaviour; compared with full-blown service development, it promises lower
costs on average, and thus lends itself more easily to third-party adoption. Problems

Fig. 2. Matchmaking requests and processors

58 F. Simeoni et al.

of staging and state synchronisation across multiple services are also alleviated, as the
application of multiple strategies over the same state can occur in the context of a sin-
gle service. Finally, matchmaking has now a local impact within the infrastructure and
can easily exploit evidence available at call-time, starting from the request itself. In
particular, it can be introduced on a per-service basis, it does no longer require the
definition, movement, and standardisation of service descriptions, and it does not raise
latencies or load distribution issues. Overall, the requirement of functional adaptivity
is accommodated across individual services, where and when needed; as mentioned in
Section 2, the infrastructure becomes more autonomic because its individual services
do. Indeed, the strategy goes beyond the purposes of functional adaptivity; the possibil-
ity of multi-faceted behaviours enables services to adapt functionally (to requests) but
also non-functionally (e.g. to processor’s failures, by dispatching to the next processor
in the ranking).
As to the matchmaking logic, \ !

the design space is virtually un- |:| I:l
bound. In previous work, we

have presented a matchmaker a4y
(_ service

that chooses processors based [matchmaker) i Gatekee or)

on the specificity with which
they can process a given re- = |

> oA BIVEIL Te= e delegates
quest [14]. In particular, we have ' i dispatches

considered the common case in ; | uses .
. nc i e (sesson).

which processors specialise the

input domains of the service i
interface, and are themselves |
organised in inheritance hierar- 4
chies. We summarise this ap- : L
proach to matchmaking hereand ~ + " ?9'?‘???
refer to [14] for the technical de-

tails. The matchmaker compares ~ Fig. 3. Matchmaking for hierarchies of processors of in-
the runtime types that annotate ~creased specificity

the graph structure of request in-

puts and those that annotate the graph structures of prototypical examples of the inputs
expected by the available processors. A processor matches a request if the analysis con-
cludes that, at each node, the runtime type of the input is a subtype of the runtime type
of the prototype (cf. Figure 3). The analysis is quantified in terms of the distance be-
tween matching types along the subtype hierarchy, though the combination of distances
is susceptible of various interpretations and so can yield different metrics; in [14], we
show a number of metrics, all of which can be injected into the matchmaking logic as
configuration of the matchmaker.

5 Service Plugins

Services that are designed to handle multiple processors can be seamlessly extended
by injecting new processors in their runtime. This challenges another conventional

Functional Adaptivity for Digital Library Services in e-Infrastructures 59

expectation, that the functionality of the services ought to remain constant after their
deployment; not only can services exhibit multiple behaviours, their behaviours can
also grow over time. This amplifies the capabilities of both the service — which can
serve in multiple application scenarios — and the infrastructure — which maximises
resources exploitation.

To achieve this in an optimal manner, we need to look beyond the design boundary of
the single service, and consider the role of the infrastructure in supporting the develop-
ment, publication, discovery, and deployment of plugins of service-specific processors.
In this Section, we overview the high-level steps of a strategy whereby service plugins
become a new kind of resource that the infrastructure makes available for the definition
of Virtual Research Environments (VREs).

B e ees e-Infrastructure |
1 VRE Manager :

Th. e—.—._._sSpecity _ [
% e

‘ / .
; VRE Designer
| instruct
| e (Gae)..
; ! 1 i | :
: Epublish : # ~~~~~~~ o (Service)
Software Repository o ® :
{(portal)!] : 2 isiete + wie & Siere o st wne & s .
/ “ { S, . — - [— b :
=) E’r.‘ 5 (} RN e B (it :
<P -
: uploa J

developers

Fig. 4. Plugins publication, discovery and deployment

With reference to Figure 4, the lifecycle of a plugin begins with development and
packaging phases. Development is supported by programming abstractions included in
gCore and is framed by service-specific libraries (e.g. define service-specific plugin
and processor interfaces). Packaging is dictated by infrastructural requirements; plugin
code and dependencies are collected in a software archive that includes all the metadata
needed by the Core Services to manage later phases of the plugin’s lifetime. Like for
services, in particular, the software archive includes a profile that identifies the plugin
and its target service, and that describes its logical and physical dependencies.

The plugin enters the infrastructure when it is uploaded to the Software Repository,
a distinguished Core Service that hosts all the software resources available in the in-
frastructure. The Software Repository verifies the completeness and correctness of the
software archive and then publishes the plugin profile with the Information Services, so
as to inform the rest of the infrastructure of the availability of the new resource.

The deployment of the plugin may then occurs asynchronously, in the context of
the definition or update of a VRE. The process originates in the actions of a distin-
guished user, the VRE Designer, that interacts with a portal to select the content and
functionality required for the VRE. gCube translates the human choice into declarative
VRE specifications and feds them to dedicated Core Services for the synthesis of a de-
ployment plan. The plan includes the identification of the software, data, and hardware

60 F. Simeoni et al.

resources that, collectively, guarantee the delivery of the expected functionality at the
expected quality of service [2]. In this context, the plugin is additional functionality to
directly present to the VRE Designer or to rely upon when translating the choice of a
higher-level functionality into a deployment plan (e.g. the functionality can be imple-
mented by deploying the service augmented with the plugin).

The actuation of the deployment plan is responsibility of another Core Service, the
VRE Manager. The VRE Manager may inform services that already operate in the scope
of existing VREs that their functionality ought to be made available in a new scope.
Equally, it may instruct the deployment of new software archives on selected nodes. The
instructions are carried out by the Deployer service, a Core Service that is distributed
with gCore to deploy and undeploy software locally to any node of the infrastructure.
The Deployer obtains the archives from the Software Repository and subjects them to a
number of tests to ascertain their compatibility with the local environment (i.e. depen-
dency and version management). Upon successful completion of the tests, the Deployer
unpackages the archives and deploys their content in the running container.

When a software archive contains a plugin, however, the Deployer performs an ad-
ditional task and informs the target service of the arrival of additional functionality. In
response, the service performs further tests to ensure that the plugin has the expected
structure and then stores its profile along with other service configuration, so as to re-
establish the existence of the plugin after a restart of the node. If this process of activa-
tion is successful, the processors inside the plugin are registered with the matchmaker
and become immediately available for the resolution of future requests. The service
profile itself is modified to reflect the additional capabilities for the benefit of clients.

Crucially to the viability of the strategy, the behaviour of the service in the exchange
protocol with the Deployer is largely pre-defined in gCore. The developer needs to act
only upon plugin activation, so as to register the processor the plugin with its match-
maker of choice. Further, the type-based matchmaker summarised in Section 4.2 is also
pre-defined in gCore, though service-specific matchmakers defined anew or by cus-
tomisation of pre-defined ones can be easily injected within the protocol for plugin
activation.

6 Conclusions

e-Infrastructures that provide application services for a range of user communities can-
not ignore the diversity and specificity of their functional requirements. Yet, the ability
to functionally adapt to those requirements, as dynamically and cost-effectively as pos-
sible, has received little attention so far.

We have encountered the problem in gCube, a system that enables Virtual Research
Environments over infrastructural resources with the functionality and transparencies of
conventional Digital Library Management Systems. In this context, adaptivity requires
the coexistence of multiple implementations of key DL functionality, the possibility to
add new implementations on-demand to a production infrastructure, and enough intel-
ligence to automate the selection of implementations on a per-request basis.

In this paper, we have argued that such requirements can be conveniently met by
embedding multiple implementations within individual services, i.e. by making them

Functional Adaptivity for Digital Library Services in e-Infrastructures 61

polymorphic in their run-time behaviour. In particular, we have shown how mechanisms
and tools already available in gCube can be employed to, respectively, reduce the cost
of developing such services and enable their extensibility at runtime.

Acknowledgments. This work is partially funded by the European Commission in the
context of the D4Science project, under the 1st call of FP7 IST priority, and by a grant
from Science Foundation Ireland (SFI).

References

10.

11.

12.

. Appleton, O., Jones, B., Kranzmuller, D., Laure, E.: The EGEE-II project: Evolution towards

a permanent european grid inititative. In: Grandinetti, L. (ed.) High Performance Computing
(HPC) and Grids in Action. Advances in Parallel Computing, vol. 16, pp. 424-435. 10S
Press, Amsterdam (2008)

. Assante, M., Candela, L., Castelli, D., Frosini, L., Lelii, L., Manghi, P., Manzi, A., Pagano,

P., Simi, M.: An extensible virtual digital libraries generator. In: Christensen-Dalsgaard, B.,
Castelli, D., Ammitzbgll Jurik, B., Lippincott, J. (eds.) ECDL 2008. LNCS, vol. 5173, pp.
122-134. Springer, Heidelberg (2008)

. Callan, J.: Distributed Information Retrieval. In: Advances in Information Retrieval, pp. 127—

150. Kluwer Academic Publishers, Dordrecht (2000)

. Candela, L., Akal, F., Avancini, H., Castelli, D., Fusco, L., Guidetti, V., Langguth, C., Manzi,

A., Pagano, P., Schuldt, H., Simi, M., Springmann, M., Voicu, L.: Diligent: integrating digital
library and grid technologies for a new earth observation research infrastructure. Int. J. Digit.
Libr. 7(1), 59-80 (2007)

. Candela, L., Castelli, D., Ferro, N., loannidis, Y., Koutrika, G., Meghini, C., Pagano, P.,

Ross, S., Soergel, D., Agosti, M., Dobreva, M., Katifori, V., Schuldt, H.: The DELOS Digital
Library Reference Model - Foundations for Digital Libraries. In: DELOS: a Network of
Excellence on Digital Libraries (February 2008) ISSN 1818-8044 ISBN 2-912335-37-X

. Candela, L., Castelli, D., Langguth, C., Pagano, P., Schuldt, H., Simi, M., Voicu, L.: On-

Demand Service Deployment and Process Support in e-Science DLs: the DILIGENT Expe-
rience. In: ECDL Workshop DLSci06: Digital Library Goes e-Science, pp. 37-51 (2006)

. Castelli, D., Pagano, P.: OpenDLib: A digital library service system. In: Agosti, M., Thanos,

C. (eds.) ECDL 2002. LNCS, vol. 2458, pp. 292-308. Springer, Heidelberg (2002)

. Foster, 1., Kesselman, C.: The Grid 2: Blueprint for a new computing infrastructure, 2nd edn.

Morgan Kaufmann Publishers, San Francisco (2004)

. Pagano, P., Simeoni, F., Simi, M., Candela, L.: Taming development complexity in service-

oriented e-infrastructures: the gcore application framework and distribution for gcube. Zero-
In e-Infrastructure News Magazine 1 (to appear, 2009)

Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.P.: Semantic matching of web services
capabilities. In: Horrocks, 1., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 333-347.
Springer, Heidelberg (2002)

Simeoni, F., Azzopardi, L., Crestani, F.: An application framework for distributed informa-
tion retrieval. In: Sugimoto, S., Hunter, J., Rauber, A., Morishima, A. (eds.) ICADL 2006.
LNCS, vol. 4312, pp. 192-201. Springer, Heidelberg (2006)

Simeoni, F., Bierig, R., Crestani, F.: The DILIGENT Framework for Distributed Information
Retrieval. In: Kraaij, W., de Vries, A.P., Clarke, C.L.A., Fuhr, N., Kando, N. (eds.) SIGIR,
pp. 781-782. ACM Press, New York (2007)

62

13.

14.

15.

F. Simeoni et al.

Simeoni, F., Candela, L., Kakaletris, G., Sibeko, M., Pagano, P., Papanikos, G., Polydoras,
P, Toannidis, Y.E., Aarvaag, D., Crestani, F.: A Grid-based Infrastructure for Distributed
Retrieval. In: Kovécs, L., Fuhr, N., Meghini, C. (eds.) ECDL 2007. LNCS, vol. 4675, pp.
161-173. Springer, Heidelberg (2007)

Simeoni, F., Lievens, D.: Matchmaking for Covariant Hierarchies. In: ACP4IS 2009: Pro-
ceedings of the 8th workshop on Aspects, components, and patterns for infrastructure soft-
ware, pp. 13-18. ACM Press, New York (2009)

Sycara, K.P.: Dynamic Discovery, Invocation and Composition of Semantic Web Services.
In: Vouros, G.A., Panayiotopoulos, T. (eds.) SETN 2004. LNCS (LNAI), vol. 3025, pp. 3-12.
Springer, Heidelberg (2004)

	ECDL2009_Proceedings 72
	ECDL2009_Proceedings 73
	ECDL2009_Proceedings 74
	ECDL2009_Proceedings 75
	ECDL2009_Proceedings 76
	ECDL2009_Proceedings 77
	ECDL2009_Proceedings 78
	ECDL2009_Proceedings 79
	ECDL2009_Proceedings 80
	ECDL2009_Proceedings 81
	ECDL2009_Proceedings 82
	ECDL2009_Proceedings 83

