Skip to main content

Distributed Discovery of Large Near-Cliques

  • Conference paper
Book cover Distributed Computing (DISC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5805))

Included in the following conference series:

Abstract

Given an undirected graph and 0 ≤ ε ≤ 1, a set of nodes is called ε-near clique if all but an ε fraction of the pairs of nodes in the set have a link between them. In this paper we present a fast synchronous network algorithm that uses small messages and finds a near-clique. Specifically, we present a constant-time algorithm that finds, with constant probability of success, a linear size ε-near clique if there exists an ε 3-near clique of linear size in the graph. The algorithm uses messages of O(logn) bits. The failure probability can be reduced to \(n^{-{\it \Omega}(1)}\) in O(logn) time factor, and the algorithm also works if the graph contains a clique of size \({\it \Omega}(n/\log^{\alpha}\log n)\) for some α ∈ (0,1). Our approach is based on a new idea of adapting property testing algorithms to the distributed setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abello, J., Resende, M.G.C., Sudarsky, S.: Massive quasi-clique detection. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 598–612. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for the maximal independent set problem. J. Algorithms 7, 567–583 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Awerbuch, B.: Complexity of network synchronization. J. ACM 32(4), 804–823 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Basagni, S., Mastrogiovanni, M., Panconesi, a., Petrioli, C.: Localized protocols for ad hoc clustering and backbone formation: a performance comparison. IEEE Trans. Parallel and Dist. Systems. 17(4), 292–306 (2006)

    Article  Google Scholar 

  5. Brakerski, Z., Patt-Shamir, B.: Distributed discovery of large near-cliques. CoRR, abs/0905.4147 (2009)

    Google Scholar 

  6. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems 30(1-7), 107–117 (1998)

    Article  Google Scholar 

  7. Broder, A.Z., Glassman, S.C., Manasse, M.S., Zweig, G.: Syntactic clustering of the web. In: Selected papers from the sixth international conference on World Wide Web, Essex, UK, pp. 1157–1166. Elsevier Science Publishers Ltd., Amsterdam (1997)

    Google Scholar 

  8. Feige, U., Langberg, M.: Approximation algorithms for maximization problems arising in graph partitioning. J. Algorithms 41(2), 174–211 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Feige, U., Peleg, D., Kortsarz, G.: The dense k-subgraph problem. Algorithmica 29(3), 410–421 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fischer, E., Newman, I.: Testing versus estimation of graph properties. In: Proc. 37th Ann. ACM Symp. on Theory of Computing, pp. 138–146. ACM Press, New York (2005)

    Google Scholar 

  11. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. J. ACM 45(4), 653–750 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goldreich, O., Trevisan, L.: Three theorems regarding testing graph properties. Random Struct. Algorithms 23(1), 23–57 (2003); Preliminary version in FOCS 2001

    Article  MathSciNet  MATH  Google Scholar 

  13. Gupta, R., Walrand, J.: Approximating maximal cliques in ad-hoc network. In: Proc. IEEE Int. Symp. on Personal, Indoor and Mobile Radio Communications, Barcelona, September 2004, pp. 365–369 (2004)

    Google Scholar 

  14. Håstad, J.: Clique is hard to approximate within n 1 − ε. Acta Mathematica 182(1), 105–142 (1999)

    Article  MathSciNet  Google Scholar 

  15. Kumar, R., Novak, J., Raghavan, P., Tomkins, A.: On the bursty evolution of blogspace. World Wide Web 8(2), 159–178 (2005)

    Article  Google Scholar 

  16. Lempel, R., Moran, S.: SALSA: the stochastic approach for link-structure analysis. ACM Trans. Inf. Syst. 19(2), 131–160 (2001)

    Article  Google Scholar 

  17. Luby, M.: A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput. 15(4), 1036–1053 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nguyen, H.N., Onak, K.: Constant-time approximation algorithms via local improvements. In: FOCS, pp. 327–336. IEEE Computer Society Press, Los Alamitos (2008)

    Google Scholar 

  19. Parnas, M., Ron, D.: Approximating the minimum vertex cover in sublinear time and a connection to distributed algorithms. Theoretical Comput. Sci. 381(1-3), 183–196 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Parnas, M., Ron, D., Rubinfeld, R.: Tolerant property testing and distance approximation. J. Comp. and Syst. Sci. 72(6), 1012–1042 (2006); Preliminary version in STOC 2005

    Article  MathSciNet  MATH  Google Scholar 

  21. Peleg, D.: Distributed computing: a locality-sensitive approach. Society for Industrial and Applied Mathematics, Philadelphia (2000)

    Google Scholar 

  22. Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applications to program testing. SIAM J. Comput. 25(2), 252–271 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Saks, M.E., Seshadhri, C.: Parallel monotonicity reconstruction. In: Teng, S.-H. (ed.) SODA, pp. 962–971. SIAM, Philadelphia (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brakerski, Z., Patt-Shamir, B. (2009). Distributed Discovery of Large Near-Cliques. In: Keidar, I. (eds) Distributed Computing. DISC 2009. Lecture Notes in Computer Science, vol 5805. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04355-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04355-0_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04354-3

  • Online ISBN: 978-3-642-04355-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics