Skip to main content

Compact Routing in Power-Law Graphs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5805))

Abstract

We adapt the compact routing scheme by Thorup and Zwick to optimize it for power-law graphs. We analyze our adapted routing scheme based on the theory of unweighted random power-law graphs with fixed expected degree sequence by Aiello, Chung, and Lu. Our result is the first theoretical bound coupled to the parameter of the power-law graph model for a compact routing scheme. In particular, we prove that, for stretch 3, instead of routing tables with \(\tilde{O}(n^{1/2})\) bits as in the general scheme by Thorup and Zwick, expected sizes of O(n γlogn) bits are sufficient, and that all the routing tables can be constructed at once in expected time O(n 1 + γlogn), with \(\gamma=\frac{\tau-2}{2\tau-3}+\varepsilon\), where τ ∈ (2,3) is the power-law exponent and ε> 0. Both bounds also hold with probability at least 1 − 1/n (independent of ε). The routing scheme is a labeled scheme, requiring a stretch-5 handshaking step and using addresses and message headers with O(lognloglogn) bits, with probability at least 1 − o(1). We further demonstrate the effectiveness of our scheme by simulations on real-world graphs as well as synthetic power-law graphs. With the same techniques as for the compact routing scheme, we also adapt the approximate distance oracle by Thorup and Zwick for stretch 3 and obtain a new upper bound of expected \(\tilde{O}(n^{1+\gamma})\) for space and preprocessing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, I., Gavoille, C., Goldberg, A.V., Malkhi, D.: Routing in networks with low doubling dimension. In: Proceedings of the 26th International Conference on Distributed Computing Systems (2006)

    Google Scholar 

  2. Abraham, I., Gavoille, C., Malkhi, D.: Compact routing for graphs excluding a fixed minor. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 442–456. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Abraham, I., Gavoille, C., Malkhi, D.: On space-stretch trade-offs: lower bounds. In: SPAA, pp. 207–216 (2006)

    Google Scholar 

  4. Abraham, I., Gavoille, C., Malkhi, D.: On space-stretch trade-offs: upper bounds. In: SPAA, pp. 217–224 (2006)

    Google Scholar 

  5. Abraham, I., Gavoille, C., Malkhi, D., Nisan, N., Thorup, M.: Compact name-independent routing with minimum stretch. ACM Transactions on Algorithms 4(3) (2008)

    Google Scholar 

  6. Aiello, W., Chung, F.R.K., Lu, L.: A random graph model for massive graphs. In: STOC, pp. 171–180 (2000)

    Google Scholar 

  7. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brady, A., Cowen, L.: Compact routing on power law graphs with additive stretch. In: Proc. of the 9th Workshop on Algorithm Eng. and Exper., pp. 119–128 (2006)

    Google Scholar 

  9. Chen, W., Sommer, C., Teng, S.-H., Wang, Y.: A compact routing scheme and approximate distance oracle for power-law graphs. Technical Report MSR-TR-2009-84, Microsoft Research (July 2009)

    Google Scholar 

  10. Chung, F., Lu, L.: The average distances in random graphs with given expected degrees. Internet Mathematics 99, 15879–15882 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Chung, F., Lu, L.: Complex Graphs and Networks. American Mathematical Society (2006)

    Google Scholar 

  12. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. arXiv:0706.1062 (2007)

    Google Scholar 

  13. Cooperative Association for Internet Data Analysis. CAIDA’s router-level topology measurements (2003), http://www.caida.org/tools/measurement/skitter/router_topology/file:itdk0304_rlinks_undirected.gz

  14. Cowen, L.: Compact routing with minimum stretch. J. Algorithms 38(1), 170–183 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Enachescu, M., Wang, M., Goel, A.: Reducing maximum stretch in compact routing. In: INFOCOM, pp. 336–340 (2008)

    Google Scholar 

  16. Erdős, P., Rényi, A.: On the evolution of random graphs. Magyar Tudományos Akadémia Matematikai Kutató Intézetének Közleményei 5, 17–61 (1960)

    MathSciNet  MATH  Google Scholar 

  17. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the Internet topology. In: SIGCOMM: Proceedings of the conference on applications, technologies, architectures, and protocols for computer communication, pp. 251–262 (1999)

    Google Scholar 

  18. Fraigniaud, P., Gavoille, C.: Routing in trees. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 757–772. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  19. Gavoille, C., Hanusse, N.: Compact routing tables for graphs of bounded genus. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 351–360. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  20. Gavoille, C., Perennes, S.: Memory requirements for routing in distributed networks (extended abstract). In: PODC, pp. 125–133 (1996)

    Google Scholar 

  21. Konjevod, G., Richa, A.W., Xia, D.: Optimal-stretch name-independent compact routing in doubling metrics. In: PODC, pp. 198–207 (2006)

    Google Scholar 

  22. Konjevod, G., Richa, A.W., Xia, D., Yu, H.: Compact routing with slack in low doubling dimension. In: PODC, pp. 71–80 (2007)

    Google Scholar 

  23. Korman, A.: Improved compact routing schemes for dynamic trees. In: PODC, pp. 185–194 (2008)

    Google Scholar 

  24. Krioukov, D.V., Fall, K.R., Yang, X.: Compact routing on internet-like graphs. In: INFOCOM (2004)

    Google Scholar 

  25. Lu, H.-I.: Improved compact routing tables for planar networks via orderly spanning trees. In: Proc. of the 8th Int. Computing and Combinatorics Conference, pp. 57–66 (2002)

    Google Scholar 

  26. Medina, A., Lakhina, A., Matta, I., Byers, J.W.: Brite: An approach to universal topology generation. In: 9th International Workshop on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, p. 346 (2001)

    Google Scholar 

  27. Mitzenmacher, M.: A brief history of generative models for power law and lognormal distributions. Internet Mathematics 1(2) (2003)

    Google Scholar 

  28. Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables. J. ACM 36(3), 510–530 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. Thorup, M., Zwick, U.: Compact routing schemes. In: SPAA, pp. 1–10 (2001)

    Google Scholar 

  30. Waxman, B.M.: Routing of multipoint connections. IEEE Journal on Selected Areas in Communications 6(9), 1617–1622 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, W., Sommer, C., Teng, SH., Wang, Y. (2009). Compact Routing in Power-Law Graphs. In: Keidar, I. (eds) Distributed Computing. DISC 2009. Lecture Notes in Computer Science, vol 5805. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04355-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04355-0_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04354-3

  • Online ISBN: 978-3-642-04355-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics