
Aachen
Department of Computer Science

Technical Report

Compositional Abstraction

for Stochastic Systems

Joost-Pieter Katoen, Daniel Klink, and Martin Neuhäußer

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2009-15

RWTH Aachen · Department of Computer Science · June 2009

1

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

2

Compositional Abstraction

for Stochastic Systems⋆

Joost-Pieter Katoen1,2, Daniel Klink1, and Martin R. Neuhäußer1,2

1 RWTH Aachen University, Germany and 2 University of Twente, The Netherlands

Abstract. We propose to exploit three-valued abstraction to stochastic systems
in a compositional way. This combines the strengths of an aggressive state-based
abstraction technique with compositional modeling. Applying this principle to
interactive Markov chains yields abstract models that combine interval Markov
chains and modal transition systems in a natural and orthogonal way. We prove
the correctness of our technique for parallel and symmetric composition and show
that it yields lower bounds for minimal and upper bounds for maximal timed
reachability probabilities.

1 Introduction

To overcome the absence of hierarchical, compositional facilities in performance
modeling, several efforts have been undertaken to integrate performance as-
pects, most notably probability distributions, into compositional modeling for-
malisms. Resulting formalisms are, among others, extensions of the Petri box cal-
culus [27], Statecharts [3], and process algebras [17, 13]. To bridge the gap towards
classical performance and dependability analysis, compositional formalisms for
continuous-time Markov chains (CTMCs) have received quite some attention.
Nowadays, these formalisms are also used intensively in, e.g., the area of systems
biology [4].

An elegant and prominent semantic model in this context are interactive
Markov chains [12, 14]. They extend CTMCs with nondeterminism, or viewed
differently, enrich labeled transition systems with exponential sojourn times in
a fully orthogonal and simple manner. They naturally support the specification
of phase-type distributions, i.e., sojourn times that are non-exponential, and
facilitate the compositional integration of random timing constraints in purely
functional models [14]. In addition, bisimulation quotienting can be done in a
compositional fashion reducing the peak memory consumption during minimiza-
tion. This has been applied to several examples yielding substantial state-space
reductions, and allowing the analysis of CTMCs that could not be analyzed
without compositional quotienting [14, 9, 10].

This paper goes an important step further by proposing a framework to per-
form more aggressive abstraction of interactive Markov chains (IMCs) in a com-
positional manner. We consider state-based abstraction that allows to represent
any (disjoint) group of concrete states by a single abstract state. This flexi-
ble abstraction mechanism generalizes bisimulation minimization (where “only”
bisimilar states are grouped) and yields an overapproximation of the IMC un-
der consideration. This abstraction is a natural mixture of abstraction of labeled

⋆ The research has been funded by the DFG Research Training Group 1298 (AlgoSyn), the
NWO project QUPES (612.000.420) and the EU FP7 project Quasimodo.

transition systems by modal transition systems [26, 25] and abstraction of prob-
abilities by intervals [8, 21]. Abstraction is shown to preserve simulation, that
is to say, abstract models simulate concrete ones. Here, simulation is a simple
combination of refinement of modal transition systems [25] and probabilistic sim-
ulation [20]. It is shown that abstraction yields lower bounds for minimal and
upper bounds for maximal timed reachability probabilities.

Compositional aggregation is facilitated by the fact that simulation is a pre-
congruence with respect to TCSP-like parallel composition and symmetric com-
position [15] on our abstract model. Accordingly, components can be abstracted
prior to composing them. As this abstraction is coarser than bisimulation, a sig-
nificantly larger state-space reduction may be achieved and peak memory con-
sumption is reduced. This becomes even more advantageous when components
that differ only marginally are abstracted by the same abstract model. In this
case, the symmetric composition of these abstract components may yield huge
reductions compared to the parallel composition of the slightly differing concrete
ones. A small example shows this effect, and shows that the obtained bounds for
timed reachability probabilities are rather exact.

Several abstraction techniques for (discrete) probabilistic models have been
developed so far. However, compositional ones that go beyond bisimulation are
rare. Notable exceptions are Segala’s work on simulation preorders for proba-
bilistic automata [28] and language-level abstraction for PRISM [23]. Note that
compositional abstractions have been proposed in other settings such as tradi-
tional model checking [29, 30] and for timed automata [2]. Compositional analysis
techniques for probabilistic systems have been investigated in [6, 31]. Alternative
abstraction techniques have, e.g., been studied in [7, 5, 24].

Outline. Section 2 gives some necessary background. In section 3 and 4, AIMCs
are introduced for which we investigate parallel and symmetric composition in
section 5. Section 6 shows how to consistently abstract components. In section 7
we focus on the computation of time-bounded reachability probabilities.

2 Preliminaries

Let X be a finite set. For Y, Y ′ ⊆ X and function f : X ×X → R let f(Y, Y ′) =
∑

y∈Y,y′∈Y ′ f(y, y′) (for singleton sets, brackets may be omitted). Function f(x, ·)
is given by x′ 7→ f(x, x′) for all x ∈ X; further, by f [y 7→ x] we denote the
function that agrees with f except at y ∈ X where it equals x. Function f is a
distribution on X iff f : X → [0, 1] and f(X) =

∑

x∈X f(x) = 1. The support of
a distribution f is supp(f) = {x ∈ X | f(x) > 0} and the set of all distributions
on X is denoted by distr (X). Let B2 = {⊥,⊤} be the two-valued truth domain.

Interactive Markov chains, a formalism for compositional modeling systems
embracing nondeterministic and stochastic behavior, have been thoroughly in-
vestigated in [12]. They can be seen as an extension of transition systems with
exponentially distributed delays and probabilism. We consider a restricted form,
where all delays are exponentially distributed with the same exit rate. These
uniform IMCs have been successfully adopted for the performability analysis of
Statemate models [11] by specifying random time constraints as CTMCs that
are composed with the functional behavior as in [14]. As CTMCs can simply be
transformed into weakly bisimilar uniform ones, uniform IMCs result.

4

Definition 1 (Uniform IMC). A uniform interactive Markov chain (IMC) is
a tuple (S,A,L,P, λ, s0) where

– S is a non-empty finite set of states with initial state s0 ∈ S,

– A = Ae ·∪Ai is a non-empty finite set of external and internal actions,

– L : S × A × S → B2 is a two-valued labeled transition relation,

– P : S × S → [0, 1] is a transition probability function
such that for all s ∈ S it holds P(s, S) = 1,

– λ ∈ R
+ is a uniform exit rate.

A Markovian transition leads from state s to state s′ (denoted s 99K s′) iff
P(s, s′) > 0; intuitively, if s 99K s′, the probability to take this transition equals
P(s, s′) whereas the residence time in state s is exponentially distributed with
rate λ. We require P(s, S) = 1 to exclude deadlock states; this can easily be
achieved by adding Markovian self-loops to states without Markovian transi-
tions. Similarly, an interactive transition leads from s to s′ via action a (denoted
s

a
−→ s′) iff L(s, a, s′) = ⊤. External actions a ∈ Ae allow synchronization with

the environment whereas internal actions τ ∈ Ai happen instantaneously and
autonomously. The maximal progress assumption [12] states that whenever inter-
nal transitions exist in the current state, the system nondeterministically moves
along one of these transitions ignoring all other Markovian and external transi-
tions. This ensures that internal actions cannot be delayed.

s0

s1

s′1

s2

s′2

s3

s4

s5

value

prem

vdone

pdone

va
lu
e

1
10

9
10 1

2

1
2

3
4

2
31

4

1

1

1

1

1
3

Fig. 1. An IMC.

Example 1. As a running example, we consider the
IMC model of a worker, depicted in Fig. 1, where
λ = 10. The work cycle starts in s0 where the quality
of a piece of raw material has to be determined.
One out of ten pieces is flawed and cannot be used
to craft a premium product. In that case (s1) the
worker will only be able to make a value product,
which may take several work steps.

If the raw material is flawless, the worker decides
for value or premium. For a premium product (s3), everything has to be done
smoothly in the first attempt, however, if the result is not perfect, with some
corrections, a value product will be made. If the worker decides for value (s′2),
chances that no corrections are necessary are better than for the case that the
raw material was flawed.

We call an IMC closed if all actions are internal. On the one hand, clos-
ing a system by turning external actions to internal ones prevents any further
interaction, on the other hand it allows for quantitative analysis [18].

3 Abstract Interactive Markov Chains

In this paper, we aim at abstracting an IMC by collapsing disjoint sets of con-
crete states into single abstract ones. In contrast to bisimulation quotienting
where bisimilar states are grouped, here groups of states can (in principle) be
chosen arbitrarily. In fact, we abstract an IMC along two lines: We use must-
and may-transitions as introduced for modal transition systems [26] to abstract

5

from differences in the states’ available nondeterministic choices. Further, in-
stead of only considering fixed transition probabilities, we follow the approach
taken in interval Markov chains [8, 21] and allow to specify intervals of transition
probabilities. The combination of these two ingredients yields:

Definition 2 (Abstract IMC). An abstract IMC is a tuple (S,A,L,Pl,Pu, λ,
s0) where S, A, λ and s0 are as before, and

– L : S × A × S → B3 is a three-valued labeled transition relation, and

– Pl,Pu : S × S → [0, 1] are transition probability bound functions such that
Pl(s, S) ≤ 1 ≤ Pu(s, S) for all s ∈ S.

Here B3 := {⊥, ?,⊤} is the complete lattice with the usual ordering ⊥ < ? <
⊤ and meet (⊓) and join (⊔) operations. The labeling L(s, a, s′) identifies the
transition “type”: ⊤ indicates must-transitions, ? may-transitions, and ⊥ the
absence of a transition. Note that any IMC is an AIMC without may-transitions
for which Pl = Pu = P. Further, any interval Markov chain is an AIMC without
must- and may-transitions. The requirement Pl(s, S) ≤ 1 ≤ Pu(s, S) ensures
that in every state s, a distribution µ over successor states can be chosen such that
Pl(s, s

′) ≤ µ(s′) ≤ Pu(s, s′) for all s′ ∈ S. This can be achieved by equipping such
states with a Markovian [1, 1] self-loop, without altering the model’s behavior:
if state s has an outgoing internal interactive transition, the maximal progress
assumption guarantees that it still takes priority; otherwise, the self-loop neither
alters its synchronization capabilities nor its sojourn time.

Example 2. Figure 2 (middle) depicts an example abstract model (AIMC) of
a worker, similar to the one in Fig. 2 (left). It abstracts from the difference
between the raw material quality represented by the states s1 and s′1 in Fig. 2
(left). Instead, the premium choice is modeled as a may-transition, i.e., it is
possible to decide for premium in state u1 but this possibility may be omitted.
In state u2, the probability that no further working step is necessary varies from
2
3 to 3

4 . We abbreviate point intervals of the form [p, p] and simply write p.

Closing. AIMCs are (like IMCs and transition systems) subject to interaction.
In order to carry out a quantitative analysis of such “open” models, one typically
considers a closed variant, i.e., a variant that is behaviorally the same, but can
no longer interact. This corresponds to the hiding operation in process algebras
where external actions are turned into internal (τ)-actions. We keep slightly more
information: the distributions in case of a Markovian transition, and the target
state id for interactive transitions. This facilitates a transformation of an AIMC
into a continuous-time MDP as described later on.

s0

s1

s′1

s2

s′2

s3

s4

s5

value

prem

vdone

pdone

va
lu
e

1

10

9

10 1

2

1

2

3

4

2

3
1

4

1

1

1

1

1

3

u0 u1

u2

u3

u4

u5

value

may
prem

pdone

vdone

1

[2
3
, 3

4
]

1

2

1

2

1

1

1

[1
4
, 1

3
] u0 u1

u2

u3

u4

u5

τu2

may
τu3τu0

τu0

1

[2
3
, 3

4
]

1

2

1

2

1

1

1

[1
4
, 1

3
]

Fig. 2. An open IMC (left), an open AIMC (middle) and its closed version (right).

6

Definition 3 (Closed AIMC). An AIMC M = (S,A,L,Pl,Pu, λ, s0) induces
the closed AIMC Mτ = (S,Aτ ,Lτ ,Pl,Pu, λ, s0) where Aτ =

⋃

s∈S AI
s ∪AM

s and

AI
s = {τs′ | ∃s′ ∈ S. ∃a ∈ A. L(s, a, s′) 6= ⊥} ,

AM
s = {τµ | ∃µ ∈ distr (S). ∀s′ ∈ S. Pl(s, s

′) ≤ µ(s′) ≤ Pu(s, s′)} ,

Lτ (s, τ, s
′) =

{⊔

a∈A L(s, a, s′) if τ = τs′

⊥ otherwise.

In general, the sets AM
s are uncountable as the range [Pl(s, s

′),Pu(s, s′)] is dense.
A key aspect in our approach is how to deal with these uncountable sets of
distributions. We will show in Section 4 that it suffices to consider only a finite
subset for the analysis.

Example 3. Fig. 2 (right) illustrates the closed induced AIMC of Fig. 2 (middle).

4 Nondeterminism

In a closed AIMC, we classify states according to the type of outgoing transitions:
the state space S is partitioned into the sets of Markovian states SM , hybrid states
SH and may states SMH . A state is Markovian iff only Markovian transitions
leave that state; a state is hybrid iff it has emanating Markovian and must-
transitions. Further, states in SMH only have outgoing Markovian and may-
transitions but no must-transitions. By assumption, any state has at least one
outgoing Markovian transition; hence, deadlock states do not exist.

According to this state classification, three sources of nondeterminism oc-
cur in AIMCs: If multiple must-transitions exist in a state s ∈ SH , that is,
if L(s, a, s′) = L(s, b, s′′) for some a, b ∈ AI

s and s′ 6= s′′, the decision which
transition to take is nondeterministic. Due to the maximal progress assumption,
nondeterminism only occurs between internal transitions.

May-transitions induce the second indefinite behavior: If L(s, a, s′) = ? for
some a ∈ AI

s and s, s′ ∈ S, the existence of the may-transition to s′ is nonde-
terministically resolved: In the positive case, the behavior is that of a hybrid
state (i.e. the may-transition is treated as a must-transition). Otherwise, the
may-transition will considered to be missing; if further must-transitions exist,
the state is treated as a hybrid state, otherwise, it becomes a Markovian state.

The third type of nondeterminism occurs in Markovian states s ∈ SM of an
AIMC: The abstraction yields transition probability intervals (formalized by Pl

and Pu) which induce a generally uncountable set of distributions that conform
to these intervals. Selecting one of these distributions is nondeterministic. Note
that in the special case of IMCs, the successor-state distribution is uniquely
determined as Pl = Pu. Hence, IMCs do not exhibit this type of nondeterminism.

To formalize this intuition, let A(s) be the set of enabled actions in state s.
Formally, define A(s) = AI

s if s ∈ SH , A(s) = AM
s if s ∈ SM and A(s) = AI

s ∪AM
s

if s ∈ SMH. Each action τ ∈ A(s) represents a distribution over the successors
of state s. We define (for arbitrary τ ∈ Aτ) the distribution T(τ) such that
T(τµ) = µ if τ = τµ is a Markovian transition and T(τs) = {s 7→ 1} if τ = τs is
an internal action; further, we extend this notion to sets of actions: for B ⊆ Aτ

let T(B) =
⋃

τ∈B T(τ). We use normalization as in [8] to restrict the intervals
such that only valid probability distributions arise.

7

0

s

u v

s

u

v

[0, 2

3
]

[0, 2

3
]

[0, 1

2
]

0

[0, 2
3] [0

,
2
3
]

[0
,

1 2
]

1
vu s

0

s

u v

Fig. 3. Finite representation of infinitely many distributions.

Normalization. An AIMC M is called delimited, if for any state, every pos-
sible selection of a transition probability can be extended to a distribution,
i.e., if for any s, s′ ∈ S and p ∈ [Pl(s, s

′),Pu(s, s′)], we have µ(s′) = p for
some µ ∈ TM(AM

s). An AIMC M can be normalized, yielding the delim-
ited AIMC η(M) where Tη(M)(A

M
s) = TM(AM

s) for all s ∈ S. Formally,

η(M) = (S,A,L, P̃l, P̃u, λ, s0) and η(Pl,Pu) = (P̃l, P̃u) where for all s, s′ ∈ S:

P̃l(s, s
′) = max{Pl(s, s

′), 1 − Pu(s, S \ {s′})} and

P̃u(s, s′) = min{Pu(s, s′), 1 − Pl(s, S \ {s′})}.

Example 4. The AIMC in Fig. 3 (left) is delimited. Selecting 2
3 for the tran-

sition from s to u yields a non-delimited AIMC with Pl(s, ·) = (0, 2
3 , 0) and

Pu(s, ·) = (1
2 , 2

3 , 2
3). Applying normalization results in new upper bounds (1

3 , 2
3 , 1

3)
and a delimited AIMC: for any probability p ∈ [0, 1

3] to take the self-loop, the
probability to take the transition to v can be chosen as 1

3 − p and vice versa.

Schedulers. In order to maximize (or minimize) the probability to reach a set
of goal states B within a given time bound t (denoted ♦≤tB), we use schedulers
which resolve the nondeterministic choices in the underlying AIMC. If the AIMC
is in a state s ∈ S, a scheduler selects an enabled action τ ∈ A(s) to continue
with. As shown in [1], schedulers that take the system’s (time abstract) history
into account yield better decisions than positional schedulers which only rely on
the current state. A scheduler is randomized, if it may not only choose a single
action but a distribution over all enabled actions in the current state.

Note that for Markovian states s ∈ SM , the set AM
s is generally uncountable

as it consists of all distributions µ that obey the transition probability intervals
of Markovian transitions emanating state s. Therefore, we reduce AM

s to finitely
many actions as follows: Consider the cube in Fig. 3. It represents all combi-
nations of values that can be chosen from the three probability intervals [0, 1

2],
[0, 2

3] and [0, 2
3] of the AIMC in Fig. 3 (left). The set distr (S) is represented by

the dotted triangle. Hence, all points in the intersection of the cube and the
triangle are valid distributions. For randomized schedulers, the six bold vertices
spanning the intersection (right) serve as a finite representation of AM

s : Every
distribution µ ∈ T(AM

s) can be constructed as a convex combination of the six
extreme distributions which span the intersection.

8

Definition 4 (Extreme distributions). Let M = (S,A,L,Pl,Pu, λ, s0) be a
delimited AIMC, s ∈ S and S′ ⊆ S. We define extr(Pl,Pu, S′, s) ⊆ distr(S)
such that µ ∈ extr(Pl,Pu, S′, s) iff either S′ = ∅ and µ = Pl(s, ·) = Pu(s, ·) or
one of the following conditions holds:

– ∃s′ ∈ S′ : µ(s′) = Pl(s, s
′) ∧ µ ∈ extr (η(Pl,Pu[(s, s′) 7→ µ(s′)]), S′ \ {s′}, s)

– ∃s′ ∈ S′ : µ(s′) = Pu(s, s′) ∧ µ ∈ extr (η(Pl[(s, s
′) 7→ µ(s′)]),Pu, S′ \ {s′}, s)

A distribution µ ∈ extr(Pl,Pu, S, s) is called extreme.

Lemma 1. Let M = (S,A,L,Pl,Pu, λ, s0) be an AIMC and s ∈ S. For any
µ ∈ distr (S) with Pl(s, s

′) ≤ µ(s′) ≤ Pu(s, s′) for all s′ ∈ S, there exists µ̄ ∈
distr (extr(Pl,Pu, S, s)) such that for all s′ ∈ S

µ(s′) =
∑

µ′∈extr(Pl,Pu,S,s) µ̄(µ′)µ′(s′).

For randomized schedulers, we thus may replace the uncountable sets AM
s in the

induced closed AIMC by finite sets AM,extr
s = {τµ | µ ∈ extr(Pl,Pu, S, s)}. We

use Aextr
s to denote the set AM,extr

s ∪ AI
s; further, let Aextr =

⋃

s∈S Aextr
s .

Paths. A timed path in a closed AIMC Mτ is an infinite alternating sequence
σ = s0τ0t0s1τ1t1 . . . of states, internal actions and the states’ residence times. A
path fragment in Mτ is a finite alternating sequence σ = s0τ0t0s1 . . . τn−1tn−1sn.
Time-abstract paths (path fragments) are alternating sequences of states and
actions only. The set of timed paths in Mτ is denoted PathsMτ whereas the set
of timed path fragments of length n is denoted Pathf n

Mτ
; further, let Pathf ⋆

Mτ
=

⋃∞
n=0 Pathf n

Mτ
be the set of all path fragments. In the following, we omit Mτ

whenever it is clear from the context; further, we denote the sets of time-abstract
paths and path fragments by adding subscript abs .

By σ[i] we denote the (i+1)-st state on the path, i.e. for σ = s0τ0t0s1τ1t1 . . .,
we set σ[i] = si. By σ@t we denote the state occupied at time t, i.e. σ@t =
si where i is the smallest index such that t <

∑i
j=0 tj. For finite path σ =

s0τ0t0 · · · τn−1tn−1sn, we define last(σ) = sn to denote the last state on σ.
We consider history-dependent randomized schedulers that choose from the

set of extreme distributions and from interactive transitions:

Definition 5 (Extreme scheduler). Let Mτ be a closed AIMC. An extreme
scheduler on Mτ is a function D : Pathf ⋆

abs
→ distr

(
Aextr

)
with supp(D(σ)) ⊆

Aextr

last(σ) for all σ ∈ Pathf ⋆
abs

.

Let D(Mτ) denote the set of extreme schedulers for Mτ . For D ∈ D(Mτ) and
history σ ∈ Pathf ⋆

abs
, let the distribution over all successor states be given by

∑

τ∈Aextr D(σ)(τ) · T(τ)(s) for all s ∈ S.
Probability measure. We are interested in the infimum and supremum of
probability measures on measurable sets of paths over all schedulers in D(Mτ).
In the same fashion as for IMCs [18, p.53], for AIMCs the probability measure
Prω

s,D w.r.t. initial state s in Mτ and D ∈ D(Mτ) can be inductively defined
via combined transitions and measurable schedulers.

9

5 Composing AIMCs

We consider parallel and symmetric composition of AIMCs and show that the
latter typically yields more compact models which are bisimilar to the parallel
composition of identical components. These operators are defined in a TCSP-like
manner, i.e., they are parameterized with a set of external actions that need to be
performed simultaneously by all involved components. To define this multi-way
synchronization principle, let for finite set X, the function I : X × X → {⊥,⊤}
be given by I(x, x′) = ⊤ iff x = x′. Similarly, let 1 : X × X → {0, 1} be defined
by 1(x, x′) = 1 iff x = x′. In the sequel of this paper, we assume that any AIMC
is delimited unless stated otherwise.

Definition 6 (Parallel composition). Let M = (S,A,L,Pl,Pu, λ, s0) and
M′ = (S′, A′,L′,P′

l,P
′
u, λ′, s′0) be AIMCs. The parallel composition of M and

M′ w.r.t. synchronization set Ā ⊆ Ae ∩ A′
e is defined by:

M||ĀM
′ = (S × S′, A ∪ A′,L′′,P′′

l ,P
′′
u, λ + λ′, (s0, s

′
0))

where for s, u ∈ S and s′, u′ ∈ S′:

– L′′((s, s′), a, (u, u′))

=

{

(L(s, a, u) ⊓ I(s′, u′)) ⊔ (L′(s′, a, u′) ⊓ I(s, u)) if a 6∈ Ā

L(s, a, u) ⊓ L′(s′, a, u′) if a ∈ Ā

– P′′
l ((s, s

′), (u, u′)) = λ
λ+λ′ · Pl(s, u) · 1(s′, u′) + λ′

λ+λ′ ·P′
l(s

′, u′) · 1(s, u)

– P′′
u((s, s′), (u, u′)) = λ

λ+λ′ ·Pu(s, u) · 1(s′, u′) + λ′

λ+λ′ ·P′
u(s′, u′) · 1(s, u)

Non-synchronizing actions are interleaved while actions in the set Ā need to
be performed simultaneously by the involved components. Due to the memory-
less property of exponential distributions, parallelly composed components delay
completely independently. This is similar as in Markovian process algebras and
for parallel composition of IMCs [12, 14]. The proportion with which one of the
components delays, i.e., λ

λ+λ′ and λ′

λ+λ′ respectively, results from the race between
exponential distributions. This justifies the definition of P′′

l and P′′
u.

Composing several instances of the same AIMC by parallel composition may
lead to excessive state spaces. To alleviate this problem, we adopt the approach
of [15] and also consider symmetric composition. To formally define this notion,
we use the concept of multisets (or bags). A multiset M over a finite set S is a
function S → N. M(s) is the cardinality of s in M . We use common notations
as s ∈ M iff M(x) > 0 and e.g., M = {|a, a, b|} for M over {a, b} with M(a) = 2
and M(b) = 1. For multisets M,M ′ over S, M ⊎M ′ = M ′′ is a multiset for which
M ′′(s) = M(s) + M ′(s) for all s ∈ S. The same applies to M \ M ′ = M ′′ where
M ′′(s) = max(0,M(s)−M ′(s)). A multiset relation R : S×S → N is a mapping
w.r.t. multisets M,M ′ over S, iff R(s, S) = M(s) and R(S, u) = M ′(u). The set
of all mappings w.r.t. multisets M,M ′ is denoted ΓM,M ′ .

Definition 7 (Symmetric composition). For AIMC M = (S,A,L,Pl,Pu, λ,
s0) and Ā ⊆ Ae, the symmetric composition of n ∈ N

+ copies of M is given by:

|||nĀM = (S′′, A,L′′,P′′
l ,P

′′
u, nλ, {|

n times
︷ ︸︸ ︷
s0, . . . , s0 |})

where S′′ = {M : S → N |
∑

s∈S M(s) = n} and for all s′′, u′′ ∈ S′′:

10

(u1, u1, u2)

(u1, u2, u2) (u2, u1, u2)

(u1, u3, u2) (u3, u1, u2)

(u1, u1, u4)

value
value

prem
prem

1

3
·[2

3
, 3

4
]

2

3
+ 1

3
·[1

4
, 1

3
] {|u1, u1, u2|}

{|u1, u2, u2|}

{|u1, u2, u3|}

{|u1, u1, u4|}

value

prem

1

3
·[2

3
, 3

4
]

2

3
+ 1

3
·[1

4
, 1

3
]

Fig. 5. Fragment of the parallel composition M||∅M||∅M (left) and the symmetric composition

|||3∅M (right) for open AIMC M from Fig. 2 (middle).

– L′′(s′′, a, u′′) =

{⊔

s∈s′′,u∈u′′:u′′=(s′′\{|s|})⊎{|u|} L(s, a, u) if a 6∈ Ā
⊔

R∈Γs′′,u′′

d
s,u∈S:R(s,u)>0 L(s, a, u) if a ∈ Ā

– P′′
l (s

′′, u′′) =







s′′(s)
n

·Pl(s, u) if s′′ 6= u′′ and u′′ = (s′′ \ {|s|}) ⊎ {|u|}
∑

s∈S
s′′(s)

n
· Pl(s, s) if s′′ = u′′

0 otherwise

The definition of P′′
u is obtained from P′′

l by replacing all instances of Pl by Pu.

While in parallel compositions states are tuples, in symmetric compositions
they are represented by multisets. Transitions, however, are defined in the very
same fashion as for parallel composition. Non-synchronized actions of n com-
ponents are interleaved and in the synchronized case, all components have to
simultaneously take the same synchronizing action. For transition probabilities,
as all instances of the same component have the same exit rate λ, each component
wins the race with probability 1

n
.

The application of both composition operators on AIMCs results in another
AIMC. Note that this also implies uniformity of the resulting model, cf. [11].

Lemma 2. Let M and M′ be AIMCs, Ā the synchronization set and n ∈ N
+,

then M||ĀM
′ and |||nĀM are AIMCs.

s

u

v

a

a

a

m
ay

a

1

1

1

Fig. 4.

Example 5. Consider AIMC M in Fig. 4. For state {|s, s, u|}
in |||3{a}M, the states reachable with a synchronized must a-
transition are {|s, s, v|}, {|s, v, v|}, {|v, v, v|} and the states reach-
able with a synchronized may-transition are {|s, s, s|}, {|s, s, v|},
{|s, v, v|}. Note that there are several ways for the system to
move to states {|s, s, v|} and {|s, v, v|}. In both cases, there ex-
ists a must-transition and thus a must a-transition leads from
{|s, s, u|} to {|s, s, v|} and {|s, v, v|} respectively.

states IMC AIMC

1 worker 8 6

3, par. comp. 512 216

3, sym. comp. 120 56

Example 6. Modeling three independent (ab-
stract) workers as given in Fig. 2 can be done by
both parallel and symmetric composition with
an empty synchronization set. As shown in the
table on the right, differences in the sizes of the
resulting models are significant. Fig. 5 depicts
the outgoing transitions of states (u1, u1, u2) and {|u1, u1, u2|} that result from
parallel and symmetric composition of three abstract workers.

11

As suggested by Ex. 6, symmetric composition is a more space-efficient way
to compose a component several times with itself. While for parallel composi-
tion of n identical components the size of the state space is in O(|S|n), with

symmetric composition, it is in O
((

n−1+|S|
n

))

. The following result shows that

symmetric composition yields models that are bisimilar to parallel composition
of a component with itself. This generalizes a similar result for IMCs, cf. [15].

Definition 8 (Bisimulation). Let M = (S,A,L,Pl,Pu, λ, s0) be an AIMC.
An equivalence R ⊆ S × S is a bisimulation on M, iff for any sRs′ it holds:

1. for all a ∈ A and u ∈ S with L(s, a, u) 6= ⊥, there exists u′ ∈ S with

L(s, a, u) = L(s′, a, u′) and uRu′

2. if for all a ∈ Ai and all u ∈ S it holds L(s, a, u) 6= ⊤, then for all C ∈ S/R:

Pl(s,C) = Pl(s
′, C) and Pu(s,C) = Pu(s′, C)

We write s ≈ s′ if sRs′ for some bisimulation R on M and we write M ≈ M′ for
IMCs M and M′ with initial states s0 and s′0, iff s0 ≈ s′0 holds for the disjoint
union1 of M and M′.

The first condition on may- and must-transitions is standard. The second
condition asserts that for state s without outgoing internal must-transitions —
which would have priority over Markovian transitions according to the maxi-
mal progress assumption— the probability to directly move to an equivalence
class (under R) coincides with that of s′. The condition on probabilities is stan-
dard, whereas the exception of outgoing internal must-transition originates from
IMCs [12, 14]. The main results of this section now follow:

Theorem 1 (Symmetric composition). Let M be an AIMC, Ā a synchro-
nization set and n ∈ N

+, then:

|||nĀM ≈

n times
︷ ︸︸ ︷

M||Ā . . . ||ĀM

Lemma 3. Strong bisimulation ≈ is a congruence w.r.t. ||Ā and |||Ā.

6 Abstraction

This section describes the process of abstracting (A)IMCs by partitioning the
state space, i.e., by grouping sets of concrete states to abstract ones. For state
space S and partitioning S′ of S, let α : S → S′ map states to their correspond-
ing abstract one, i.e., α(s) denotes the abstract state of s, and α−1(s′) is the
set of concrete states that map to s′. Abstraction yields an AIMC that covers
at least all possible behaviors of the concrete model, but perhaps more. The
relationship between the abstraction and its concrete model is formalized by a
strong simulation. We will define this notion and show that it is a precongru-
ence with respect to parallel and symmetric composition. This result enables a
compositional abstraction of AIMCs.

1 Note that the union is only defined for two uniform AIMCs with the same exit rate as for
different exit rates, the result is not uniform.

12

Definition 9 (Abstraction). For an AIMC M = (S,A,L,Pl,Pu, λ, s0) and
partitioning S′ of S, the abstraction function α : S → S′ induces the AIMC
(S′, A,L′,P′

l,P
′
u, λ, α(s0)), denoted by α(M), where:

– L′(s′, a, u′) =







⊤ if
⊔

u∈α−1(u′) L(s, a, u) = ⊤ for all s ∈ α−1(s′)

⊥ if
⊔

u∈α−1(u′) L(s, a, u) = ⊥ for all s ∈ α−1(s′)

? otherwise

– P′
l(s

′, u′) = mins∈α−1(s′)

∑

u∈α−1(u′) Pl(s, u)

– P′
u(s′, u′) = min(1,maxs∈α−1(s′)

∑

u∈α−1(u′) Pu(s, u))

Lemma 4. For any AIMC M, α(M) is an AIMC.

Example 7. Let M be the IMC in Fig. 2 (left) and N be the AIMC in Fig. 2
(middle). Then, N = α(M) with α(si) = ui for i ∈ {0, . . . , 5} and α(s′i) = ui for
i ∈ {1, 2}. Consider a worker M′ that is a variant of the one in Fig. 2 (left), say,
whose judgement on the quality of raw material is different, i.e. whose P(s0, s1)
and P(s0, s

′
1) differ. For such a worker, we also get N = α(M′). Symmetric com-

position of two different workers M and M′ is not possible. However, replacing
both M and M′ by abstract worker N enables symmetric composition and yields
a compact representation of an abstraction of M||ĀM

′.

The formal relationship between an AIMC and its abstraction is defined in
terms of a strong simulation. In fact, the notion defined below combines the
concepts of refinement for modal transition systems [25] (items 1a and 1b) with
that of probabilistic simulation [19, 20] (item 2).

Definition 10 (Strong simulation). For AIMC M = (S,A,L,Pl,Pu, λ, s0),
R ⊆ S × S is a simulation relation, iff for all sRs′ the following holds:

1a. for all a ∈ A and u ∈ S with L(s, a, u) 6= ⊥ there exists u′ ∈ S with
L(s′, a, u′) 6= ⊥ and uRu′,

1b. for all a ∈ A and u′ ∈ S with L(s′, a, u′) = ⊤ there exists u ∈ S with
L(s, a, u) = ⊤ and uRu′, and

2. if for all a ∈ Ai and all u ∈ S it holds L(s, a, u) 6= ⊤, then for all µ ∈ T(s)
there exists µ′ ∈ T(s′) and ∆ : S × S → [0, 1] such that for all u, u′ ∈ S:

(a) ∆(u, u′) > 0 =⇒ uRu′ (b) ∆(u, S) = µ(u) (c) ∆(S, u′) = µ′(u′)

We write s � s′ if sRs′ for some simulation R and M � M′ for AIMCs M and
M′ with initial states s0 and s′0, if s0 � s′0 in the disjoint union of M and M′.

Let us briefly explain this definition. Item 1a requires that any may- or must-
transition of s must be reflected in s′. Item 1b requires that any must-transition
of s′ must match some must-transition of s, i.e., all required behavior of s′ stems
from s. Note that this allows a must-transition of s to be mimicked by a may-
transition of s′. Finally, condition 2 requires the existence of a weight function
∆ [19, 20] that basically distributes µ of s to µ′ of s′ such that only related
states obtain a positive weight (2(a)), and the total probability mass of u that is
assigned by ∆ coincides with µ(u) and symmetrically for u′ (cf. 2(b), 2(c)). Note
that every bisimulation equivalence R is also a simulation relation.

Theorem 2. For any AIMC M and abstraction function α, M � α(M).

13

Example 8. Consider AIMCs M and N given in Example 7. As N is an abstrac-
tion of M, it follows M � N .

To be able to compose abstractions while preserving this formal relation, the
following result is of interest. It allows to abstract parallel and symmetric compo-
sitions of AIMCs in a component-wise manner, to avoid the need for generating
the entire state space prior to abstraction.

Theorem 3. Strong simulation � is a precongruence w.r.t. ||Ā and |||Ā.

7 Timed Reachability

In this section, we show how to analyse closed AIMCs by reducing them to uni-
form IMCs. As presented in [18], those can be reduced to uniform continuous-time
Markov decision processes (CTMDP) for which an efficient algorithm is imple-
mented in MRMC, a state of the art model checker. We analyse two reachability
objectives for the running example and show how abstraction and symmetric
composition reduce the maximal size of the state space during the construction
of the model.

To obtain the induced IMC for an AIMC, we separate the nondeterministic
choice for values from the intervals in Markovian states from the actual Marko-
vian behavior, i.e. the delay and the subsequent probabilistic transitions. This is
achieved by adding one intermediate state for each extreme distribution.

Definition 11 (Induced IMC). For closed AIMC M = (S,A,L,Pl,Pu, λ, s0),
let θ(M) = (S ·∪Sextr , Aextr ,L′,P′, λ, s0) where

– Sextr = {sµ | ∃s ∈ S : µ ∈ extr (Pl,Pu, S, s)}

– L′(s, a, s′) =







L(s, a, s′) if s ∈ SH ∪ SMH , a = τs′

⊤ if s ∈ SM ∪ SMH , a = τµ, s′ = sµ

and µ ∈ extr(Pl,Pu, S, s)

⊥ otherwise

– P′(s, s′) =

{

µ(s′) if s = sµ ∈ Sextr

1(s, s′) otherwise

Lemma 5. For a closed AIMC M it holds that θ(M) is a closed uniform IMC.

Example 9. Let M be the symmetric composition of two independent abstract
workers as depicted in Fig. 2 (middle). We focus on state {|s0, s2|} in M, cf. Fig. 6
(left). In the corresponding induced IMC θ(M), there are new states sµ and
sµ′ with outgoing Markovian transitions according to the extreme distributions
µ and µ′ of {|s0, s2|} with µ({|s1, s2|}) = 1

2 , µ({|s0, s2|}) = 1
6 , µ({|s0, s4|}) = 2

6
and µ′({|s1, s2|}) = 1

2 , µ′({|s0, s2|}) = 1
8 , µ′({|s0, s4|}) = 3

8 . Additionally, labeled
transitions with internal actions τµ (τµ′ resp.) leading from {|s0, s2|} to the new
intermediate states are introduced.

For closed AIMC M = (S,A,L,Pl,Pu, λ, s0), we define the set of paths starting
in initial state s0 and visiting a state in B ⊆ S within t ∈ R≥0 time units by
PathsM(♦≤tB) = {σ ∈ PathsM | σ[0] = s0,∃t′ ∈ [0, t] : σ@t′ ∈ B}.

14

{|s0, s2|} {|s0, s4|}{|s1, s2|}

1

2
·[2

3
, 3

4
]1

2

1

2
·[1

4
, 1

3
]

{|s0, s2|} {|s0, s4|}{|s1, s2|}

sµ

sµ′

τµ

τµ′

1

6

2

6

1

2

1

8
3

8

1

2

Fig. 6. Fragment of the parallel composition M||{}M for the AIMC M from Fig. 2 (left) and
the induced IMC detail (right).

Lemma 6. Let M = (S,A,L,Pl,Pu, λ, s0) be a closed AIMC and θ(M) its
induced IMC. For all B ⊆ S, t ∈ R≥0 and D ∈ D(M) there exists D′ ∈ D(θ(M))
with Prω

s0,D(PathsM(♦≤tB)) = Prω
s0,D′(PathsM(♦≤tB)).

For interactive transitions, a corresponding scheduler in the induced IMC chooses
exactly as the AIMC scheduler. The choice of a distribution in the AIMC is
mimicked by a randomized choice of τµ actions (cf. Fig. 6). From this, we obtain:

Theorem 4. For a closed AIMC M = (S,A,L,Pl,Pu, λ, s0), B ⊆ S, t ∈ R≥0:

supD∈D(M)Prω
s0,D

(PathsM(♦≤tB)) = supD∈D(θ(M))Prω
s0,D

(Pathsθ(M)(♦≤tB))

infD∈D(M)Prω
s0,D

(PathsM(♦≤tB)) = infD∈D(θ(M))Prω
s0,D

(Pathsθ(M)(♦≤tB))

The analysis of time-bounded reachability probabilities for uniform IMCs is in-
vestigated in [18] and the core algorithm [1] is implemented in MRMC. Basically,
a uniform IMC is reduced to a uniform CTMDP by transformations to so-called
Markov alternating and strictly alternating IMCs. This transformation preserves
(weak) bisimulation. The following example relies on this results:

Example 10. Assume the number of machines that are available for crafting value
and premium products is limited to two. First, we investigate the probabilities
for b out of w workers M1 to Mw to be waiting for machines within t time
units. Let P = ({m0,m1,m2}, A,L,1,1, ε,m0) where in mi there are i machines
in use and let A = {value,prem, vdone, pdone}, L(mi, a,mi+1) = ⊤ if a ∈
{value,prem} for i ∈ {0, 1} and L(mi+1, a,mi) = ⊤ if a ∈ {vdone,pdone} for
i ∈ {0, 1}, otherwise L(m,a,m′) = ⊥. Let Mi be pairwise distinct variants of
workers as described in Ex. 7. Then, (M1||∅ . . . ||∅Mw)||AP yields an IMC where
the measure of interest can be derived by computing probabilities for reaching
states (s̄,m2) with at least b components of s̄ being s1 or s′1. In contrast, when
M1 = . . . = Mw = M we can instead compute the probabilities in

(
|||w∅ M

)
||AP

for reaching states (M,m2) with M(s1) + M(s′1) ≥ b. The maximal sizes of the
state spaces obtained during the construction of the models are given in Table 1
(left). Let AIMC N = α(M1) = . . . = α(Mw) as described in Ex. 7. Then,
even for pairwise distinct workers, symmetric composition can be used to obtain

max. size w=3, b=1 w=4, b=1 w=4, b=2 w=1 w=2 w=3 w=4

IMC, par. 512 4096 4096 352 2816 22528 180224

IMC, sym. 120 330 330 352 1584 5280 14520

AIMC, par. 216 1296 1296 264 1584 9504 57024

AIMC, sym. 56 126 126 264 924 2464 5544

Table 1. Maximal size of the state spaces during construction.

15

the abstract system (|||w∅ N)||AP. While the abstract model of one worker has 6
instead of 8 states, the relative savings during composition are much larger (cf.
Table 1). But still, the minimal and maximal probabilities (Fig. 7, left) obtained
for w instances of the abstract worker N (dashed curves) are almost the same as
for w copies of the concrete worker M as shown in Fig. 2 (left) (solid curves).

Fig. 7. Minimal and maximal probabilities for b out of w workers having no access to one of 2
machines in t time units (left). Maximal probabilities for w workers and 2 machines to produce
10 value and 3 premium in t time units (right). Curves for concrete workers are solid and dashed
for abstract ones.

Secondly, we compute the maximal probabilities for producing 10 value and 3
premium products with w workers within t time units. Note, that minimal proba-
bilities are 0 for all time bounds t, as workers may stall premium production. We
define counting AIMC Q = ({nv,p | v ∈ {0, . . . , 10}, p ∈ {0, . . . , 3}}, A,L,1,1, ε,
n0,0) with A = {vdone,pdone}, L(nv,p, vdone, nv+1,p) = ⊤ for v ∈ {0, . . . , 9},
p ∈ {0, . . . , 3} and L(nv,p,pdone, nv,p+1) = ⊤ for v ∈ {0, . . . , 10}, p ∈ {0, . . . , 2},
otherwise L(n, a, n′) = ⊥. Let concrete and abstract workers M and N be given
as in Fig. 2. Then, in

(
|||w∅ M

)
||AQ and

(
|||w∅ N

)
||AQ, we compute probabilities

to reach any state (M,n10,3). As shown in Fig. 7 (right), the maximal proba-
bilities for w ∈ {1, . . . , 4} abstract workers (dashed curves) are rather close to
values derived for concrete workers (solid curves). The maximal sizes of the state
spaces during construction are given in Table 1 (right).

8 Conclusion

This paper proposed a novel compositional abstraction technique for continuous-
time stochastic systems. This technique allows for aggressive abstractions of sin-
gle components, enabling the analysis of systems that are too large to be han-
dled when treated as monolithic models. The feasibility of our approach has
been demonstrated by the analysis of a production system. Future work includes
the application of this technique to realistic applications, counterexample-guided
abstraction refinement [16, 22], and the treatment of non-uniform IMCs.

References

1. Baier, C., Hermanns, H., Katoen, J.-P., Haverkort, B. R.: Efficient computation of time-
bounded reachability probabilities in uniform continuous-time Markov decision processes.
Theor. Comput. Sci. 345 (2005) 2–26

16

2. Berendsen, J., Vaandrager, F. W.: Compositional abstraction in real-time model checking.
In: FORMATS. LNCS, Vol. 5215. (2008) 233–249

3. Bode, E., Herbstritt, M., Hermanns, H., Johr, S., Peikenkamp, T., Pulungan, R., Wimmer,
R., Becker, B.: Compositional performability evaluation for statemate. In: QEST. IEEE
Computer Society (2006) 167–178

4. Cardelli, L.: On process rate semantics. Theor. Comput. Sci. 391 (2008) 190–215
5. Chadha, R., Viswanathan, M., Viswanathan, R.: Least upper bounds for probability mea-

sures and their applications to abstractions. In: CONCUR. LNCS, Vol. 5201. (2008)
264–278

6. de Alfaro, L., Henzinger, T. A., Jhala, R.: Compositional methods for probabilistic systems.
In: CONCUR. LNCS, Vol. 2154. (2001) 351–365

7. de Alfaro, L., Roy, P.: Magnifying-lens abstraction for Markov decision processes. In: CAV.
LNCS, Vol. 4590. (2007) 325–338

8. Fecher, H., Leucker, M., Wolf, V.: Don’t know in probabilistic systems. In: Model Checking

Software. LNCS, Vol. 3925. (2006) 71–88
9. Garavel, H., Hermanns, H.: On combining functional verification and performance evalua-

tion using CADP. In: FME. LNCS, Vol. 2391. (2002) 410–429
10. Gilmore, S., Hillston, J., Ribaudo, M.: An efficient algorithm for aggregating PEPA models.

IEEE Trans. Software Eng. 27 (2001) 449–464
11. Hermanns, H., Johr, S.: Uniformity by construction in the analysis of nondeterministic

stochastic systems. Dependable Systems and Networks (2007) 718–728
12. Hermanns, H.: Interactive Markov Chains and the Quest for Quantified Quality. LNCS,

Vol. 2428, Berlin (2002)
13. Hermanns, H., Herzog, U., Katoen, J.-P.: Process algebra for performance evaluation.

Theor. Comput. Sci. 274 (2002) 43–87
14. Hermanns, H., Katoen, J.-P.: Automated compositional Markov chain generation for a

plain-old telephone system. Sci. Comput. Program. 36 (2000) 97–127
15. Hermanns, H., Ribaudo, M.: Exploiting symmetries in stochastic process algebras. In:

European Simulation Multiconference. SCS Europe (1998) 763–770
16. Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: CAV. LNCS, Vol. 5123.

(2008) 162–175
17. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University

Press (1996)
18. Johr, S.: Model Checking Compositional Markov Systems. PhD thesis, Universität des

Saarlandes, Saarbrücken, Germany (2007)
19. Jones, C., Plotkin, G.: A probabilistic powerdomain of evaluations. In: LICS. IEEE

Computer Society (1989) 186–195
20. Jonsson, B., Larsen, K. G.: Specification and refinement of probabilistic processes. In:

LICS. IEEE Computer Society (1991) 266–277
21. Katoen, J.-P., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction for continuous-

time Markov chains. In: CAV. LNCS, Vol. 4590. (2007) 316–329
22. Kattenbelt, M., Kwiatkowska, M., Norman, G., Parker, D.: Abstraction refinement for

probabilistic software. In: VMCAI. LNCS, Vol. 5403. (2009)
23. Kattenbelt, M., Kwiatkowska, M. Z., Norman, G., Parker, D.: Game-based probabilistic

predicate abstraction in PRISM. ENTCS 220 (2008) 5–21
24. Kwiatkowska, M., Norman, G., Parker, D.: Game-based abstraction for Markov decision

processes. In: QEST. IEEE Computer Society (2006) 157–166
25. Larsen, K. G., Thomsen, B.: A modal process logic. In: LICS. IEEE Computer Society

(1988) 203–210
26. Larsen, K. G.: Modal specifications. In: Automatic Verification Methods for Finite State

Systems. LNCS, Vol. 407. (1989) 232–246
27. MaciÃ , H., Valero, V., de Frutos-Escrig, D.: sPBC: A Markovian extension of finite Petri

box calculus. Petri Nets and Performance Models (2001) 207–216
28. Segala, R., Lynch, N. A.: Probabilistic simulations for probabilistic processes. Nord. J.

Comput. 2 (1995) 250–273
29. Shoham, S., Grumberg, O.: Compositional verification and 3-valued abstractions join forces.

In: SAS. LNCS, Vol. 4634. (2007) 69–86
30. Shoham, S., Grumberg, O.: 3-valued abstraction: More precision at less cost. Inf. Comput.

206 (2008) 1313–1333
31. Tofts, C. M. N.: Compositional performance analysis. In: TACAS. LNCS, Vol. 1217. (1997)

290–305

17

Appendix

We provide proofs for Theorem 1 and 3. The proof of Theorem 2 follows the lines
of the one for Theorem 1 in [21].

Theorem 1 (Symmetric composition). Let M be an AIMC, Ā a synchro-
nization set and n ∈ N

+, then:

|||nĀM ≈

n times
︷ ︸︸ ︷

M||Ā . . . ||ĀM

Proof. Let M = (S,A,L,Pl,Pu, λ, s0) be an AIMC, Ā ⊆ Ae and n ∈ N
+. Let

|||nĀM = M′ = (S′, A′,L′,P′
l,P

′
u, λ′, s′0)

and

M||Ā . . . ||ĀM
︸ ︷︷ ︸

n times

= M̃′ = (S̃′, Ã′, L̃′, P̃′
l, P̃

′
u, λ̃′, s̃′0).

As λ′ = nλ and λ̃′ = λ + . . . + λ = nλ, the disjoint union M∪ = M′ ∪ M̃′ is an
AIMC with a set of initial states. Lifting AIMCs to support sets of initial states
is trivial and will not be discussed in the following.

We define Rn ⊆ (S′ ∪ S̃′) × (S′ ∪ S̃′) on M∪ as the coarsest reflexive and
symmetric relation with

s′Rns̃′ if s′ = {s1, . . . , sn} and s̃′ = (s1, . . . , sn) for s1, . . . , sn ∈ S.

Then, as we show in the following, (a) Rn is a bisimulation relation and (b) the
initial states are Rn related, i.e. s′0Rns̃′0.

a)

We prove that Rn is a strong bisimulation relation: Therefore, assume s′Rns̃′ for
s′ = {s1, . . . , sn} and s̃′ = (s1, . . . , sn) with s1, . . . , sn ∈ S.

1. If L∪(s′, a, u′) = x with x ∈ {⊤, ?}, then we consider two cases:
– Assume a 6∈ Ā: As L∪(s′, a, u′) = x, (∗) there exist s ∈ s′, u ∈ u′ such that

L(s, a, u) = x and there are no ŝ ∈ s′, û ∈ u′ such that L(ŝ, a, û) > x. By
the definition of symmetric composition, there exists k ∈ {1, . . . , n} such
that

s′ = {s1, . . . , sk−1, s, sk+1, . . . , sn} and

u′ = {s1, . . . , sk−1, u, sk+1, . . . , sn} .

As s′Rns̃′, there exists a permutation π ∈ Perm({1, . . . , n}) such that

s̃′ =
(
sπ(1), . . . , sπ(j−1), sπ(j), sπ(j+1), . . . , sπ(n)

)
.

Then π(j) = k for some j and sπ(j) = sk = s. Applying π to u′ yields

ũ′ =
(
sπ(1), . . . , sπ(j−1), u, sπ(j+1), . . . , sπ(n)

)
.

From (∗) we obtain L∪(s̃′, a, ũ′) = x. Further, from the definition of rela-
tion Rn, we conclude s̃′Rnũ′.

18

– Assume a ∈ Ā: We first consider x = ⊤. For u′ with

L′(s′, a, u′) =
⊔

R̄∈Γs′,u′

l
s,u∈S∪:R̄(s,u)>0

L(s, a, u) = ⊤

it holds

∃R̄ ∈ Γs′,u′ : ∀s, u ∈ S∪ : (R̄(s, u) > 0 =⇒ L(s, a, u) = ⊤).

As s′Rns̃′ we have s′ = {s1, . . . , sn} and s̃′ = (s1, . . . , sn) for some
s1, . . . , sn ∈ S. We will define ũ′ inductively based on some R̄ ∈ Γs′,u′

with ∀s, u ∈ S∪ : (R̄(s, u) > 0 =⇒ L(s, a, u) = ⊤): let R̄n = R̄ and for
i ∈ {1, . . . , n}, let

R̄i−1 = R̄i[(si, ui) 7→ R̄i(si, ui) − 1] for some ui : R̄i(si, ui) > 0.

Then for all i ∈ {1, . . . , n} : L(si, a, ui) = ⊤ as R̄(si, ui) > 0. For ũ′ =
(u1, . . . , un), this implies L̃′(s̃′, a, ũ′) =

dn
i=1 L(si, a, ui) = ⊤. Moreover,

as by the definition of Γs′,u′ it holds R̄(S′, u) = u′(u) for all u ∈ S, it
follows that u′ = {u1, . . . , un}, i.e. u′Rnũ′.
For x 6= ⊥, it can be argued analogously that for u′ with L′(s′, a, u′) 6= ⊥
there exists ũ′ with u′Rnũ′ and L̃′(s̃′, a, ũ′) 6= ⊥. Together with the result
from x = ⊤ it follows that for x ∈ {?,⊤} and u′ with L′(s′, a, u′) = x
there exists ũ′ with u′Rnũ′ and L̃′(s̃′, a, ũ′) = x = L′(s′, a, u′).

2. For Markovian transitions we show for s′ = {s1, . . . , sn} and s̃′ = (s1, . . . , sn)
with s1, . . . , sn ∈ S that for all C ∈ S∪/Rn:

P∪
l (s′, C) = P∪

l (s̃′, C) and P∪
u (s′, C) = P∪

u (s̃′, C).

Note that the condition “L∪(s′, a, u′) 6= ⊤ for all a ∈ Ai and u′ ∈ S′” from
the definition of bisimulation is not required for this proof. If C = ∅, then
P∪

l (s′, C) = P∪
l (s̃′, C) = 0; hence, in the following we assume C 6= ∅.

First, we lift the definition of parallel composition to the n-ary case for the
lower bound probability matrix:

P̃′
l((s1, . . . , sn), (u1, . . . , un))

=
∑n

i=1
1
n
· Pl(si, ui) ·

∏

j 6=i 1(sj , uj)

=







1
n
· Pl(si, ui) if ∃i. si 6= ui ∧ ∀j 6= i. sj = uj

∑n
i=1

1
n
·Pl(si, ui) if ∀j. sj = uj

0 otherwise.

Next, we observe for S∪/Rn that:
(a) every nonempty C ∈ S∪/Rn contains exactly one s′ ∈ S′

(b) {s1, . . . , sn} ∈ C ∈ S∪/Rn

⇐⇒ for all π ∈ Perm({1, . . . , n}) : (sπ(1), . . . , sπ(n)) ∈ C

From (a) it follows directly that for s′ ∈ S′ and nonempty C ∈ S∪/Rn:

P∪
l (s′, C) = P′

l(s
′, C ∩ S′) = P′

l(s
′, u′) with {u′} = C ∩ S′

19

Let s̃′ = (s1, . . . , sn), s′ = {s1, . . . , sn}, s = si and u′ 6= s′\{s}⊎{u} for all u ∈
S. Then P∪

l (s′, [u′]Rn
) = P∪

l (s̃′, [u′]Rn
) = 0. Otherwise, i.e. u′ = s′ \{s}⊎{u}

for some u ∈ S, we set C = [u′]Rn
and obtain

P∪
l (s̃′, C) = P̃′

l(s̃
′, C ∩ S̃′)

=
∑

ũ′∈C∩S̃′ P̃′
l(s̃

′, ũ′)

=

{∑

ũ′∈C∩S̃′:ũ′=(s1,...,sk−1,u,sk+1,sn)
1
n
· Pl(s, u) if s 6= u

∑n
i=1

1
n
·Pl(si, ui) if s = u

(∗)
=

{
s′(s)

n
·Pl(s, u) if s′ 6= u′

∑n
i=1

1
n
·Pl(si, ui) if s′ = u′

= P′
l(s

′, u′) = P∪
l (s′, C)

where at (∗) we use the fact that there are s′(s) positions k in s̃′ where s can
be replaced by u such that ũ′ = (s1, . . . , sk−1, u, sk+1, . . . , sn).
For the upper bound probability matrix, the proof can be done analogously.
Altogether, for all n ∈ N

+, we showed that Rn as defined earlier is a bisimu-
lation relation.

b)

Now, we show that the initial states are strongly bisimilar. By definition:

s′0 = {|s0, . . . , s0|} and s̃′0 = (s0, . . . , s0)

For all s1, . . . , sn ∈ S0, it holds {s1, . . . , sn}Rn(s1, . . . , sn) and thus, obviously,

{|s0, . . . , s0|}Rn(s0, . . . , s0).

We conclude by observing that from (a) and (b) it follows |||nĀM ≈ M||Ā . . . ||ĀM
︸ ︷︷ ︸

n times

.

⊓⊔

20

Theorem 3. Strong simulation � is a precongruence w.r.t. ||Ā and |||Ā.

Proof. Reflexivity of � follows trivially from the definition. Let M = (S,A,L,Pl,
Pu, λ, s0), N = (S′, A′,L′,P′

l,P
′
u, λ′, s′0) and P = (S′′, A′′,L′′,P′′

l ,P
′′
u, λ′′, s′′0).

To argue about simulation of states in different models we have to analyse the
disjoint union. For simplicity, in this proof we refrain from explicitly composing
the disjoint unions, however, we stress the necessity for all AIMCs involved in a
union to have the same exit rates. This will be ensured in the following, as for
M � N (and N � P) it follows that λ = λ′ (and λ′ = λ′′ respectively).

Transitivity: Let R : S × S′ and R′ : S′ × S′′ be simulation relations with
s0Rs′0 and s′0R

′s′′0 respectively. We define R′′ : S × S′′ with

R′′ = {(s, s′′) | ∃s′ ∈ S : (s, s′) ∈ R, (s′, s′′) ∈ R′}

and prove that it is a simulation relation (note that R′′ ⊇ R∪R′ due to reflexivity
of R and R′).

We show that conditions (1a), (1b) and (2) of Def. 10 are fulfilled: for all
s ∈ S, s′′ ∈ S′′ for which there exists s′ ∈ S′ with sRs′ and s′R′s′′ it holds

1a. By the definition of simulation it holds that

∀a ∈ A ∀u ∈ S : L(s, a, u) 6= ⊥ =⇒ ∃u′ ∈ S : L′(s′, a, u′) 6= ⊥ ∧ uRu′

and

∀a ∈ A ∀u′ ∈ S : L′(s′, a, u′) 6= ⊥ =⇒ ∃u′′ ∈ S : L′′(s′′, a, u′′) 6= ⊥ ∧ u′R′u′′.

Thus, it follows directly:

∀a ∈ A ∀u ∈ S : L′′(s′′, a, u′′) 6= ⊥ =⇒ ∃u′′ ∈ S : L(s, a, u) 6= ⊥ ∧ uR′′u′′.

1b. As for (1a), by the definition of simulation it holds that

∀a ∈ A ∀u′′ ∈ S : L′′(s′′, a, u′′) = ⊤ =⇒ ∃u′ ∈ S : L′(s′, a, u′) = ⊤ ∧ u′R′u′′

and

∀a ∈ A ∀u′ ∈ S : L′(s′, a, u′) = ⊤ =⇒ ∃u ∈ S : L(s, a, u) = ⊤ ∧ uRu′.

Thus, it follows directly:

∀a ∈ A ∀u′′ ∈ S : L′′(s′′, a, u′′) = ⊤ =⇒ ∃u ∈ S : L(s, a, u) = ⊤ ∧ uR′′u′′.

21

s

s′

u

u′

∆

s′′ u′′

∆′

∆′′

µ(u)

µ′(u′)

µ′′(u′′)

R

R′

R′

R′

R′′

R′′

Fig. 8. Transitivity

2. We show that if for all u ∈ S and all a ∈ Ai it holds L(s, a, u) 6= ⊤, then for
all µ ∈ T(s) there exists µ′′ ∈ T(s′′) and ∆′′ : S × S′′ → [0, 1] such that for
all u ∈ S and u′′ ∈ S′′: (cf. Fig. 8)
(a) ∆′′(u, u′′) > 0 =⇒ uR′′u′′

(b) ∆′′(u, S′′) = µ(u)
(c) ∆′′(S, u′′) = µ′′(u′′)

First, note that if for all u ∈ S it holds L(s, a, u) 6= ⊤ for all a ∈ Ai, then for
all µ ∈ T(s) there exists µ′ ∈ T(s′) and ∆ : S × S′ → [0, 1] such that for all
u ∈ S and u′ ∈ S′:
(a) ∆(u, u′) > 0 =⇒ uRu′

(b) ∆(u, S′) = µ(u)
(c) ∆(S, u′) = µ′(u′)

Second, we observe that for any s ∈ S and u ∈ S with L(s, a, u) 6= ⊤ for
some a ∈ Ai, all s′ ∈ S with sRs′ may not have a successor u′ ∈ S with
L(s′, a, u′) = ⊤. Otherwise, if there was some u′ ∈ S with L(s′, a, u′) = ⊤,
due to condition (1b) in Def. 10 there would exist u ∈ S with L(s, a, u) = ⊤
and uRu′, leading to a contradiction.
Hence, for all s′ ∈ S′ with sRs′, u′ ∈ S′ and a ∈ Ai it holds L(s′, a, u′) 6= ⊤
and, as R′ is a simulation relation, for all µ′ ∈ T(s′) there exists µ′′ ∈ T(s′′)
and ∆′ : S′ × S′′ → [0, 1] such that for all u′ ∈ S′ and u′′ ∈ S′′:
(a) ∆′(u′, u′′) > 0 =⇒ u′R′u′′

(b) ∆′(u′, S′′) = µ′(u′)
(c) ∆′(S′, u′′) = µ′′(u′′)

We define ∆′′ : S × S′′ → [0, 1] such that

∆′′(u, u′′) =
∑

u′∈S′:µ′(u′)>0
∆(u,u′)·∆′(u′,u′′)

µ′(u′)

for ∆, ∆′ and µ′ satisfying the above constraints. For condition (2a), we
observe that if ∆′′(u, u′′) > 0 there exists u′ such that ∆(u, u′) > 0 and
∆′(u′, u′′). Thus, uRu′ and u′R′u′′ implying uR′′u′′.

22

Further, we show conditions (2b) and (2c) by proving that for all µ ∈ T(s)
there exists µ′′ ∈ T(s′′), such that ∆′′(u, S′′) = µ(u) and ∆′′(S, u′′) = µ′′(u′′)
for all u ∈ S and u′′ ∈ S′′:

∆′′(u, S′′) =
∑

u′∈S′,u′′∈S′′:µ′(u′)>0
∆(u,u′)·∆′(u′,u′′)

µ′(u′)

=
∑

u′∈S′:∆′(u′,S′′)>0
∆(u,u′)·∆′(u′,S′′)

∆′(u′,S′′)

=
∑

u′∈S′:∆′(u′,S′′)>0 ∆(u, u′)
(∗)
=

∑

u′∈S′:∆(S,u′)>0 ∆(u, u′)

= ∆(u, S′)

= µ(u)

Equation (∗) follows from ∆′(u′, S′′) = µ′(u′) = ∆(S, u′) for all u′ ∈ S′.

∆′′(S, u′′) =
∑

u∈S,u′∈S′:µ′(u′)>0
∆(u,u′)·∆′(u′,u′′)

µ′(u′)

=
∑

u′∈S′:∆(S,u′)>0
∆(S,u′)·∆′(u′,u′′)

∆(S,u′)

=
∑

u′∈S′:∆(S,u′)>0 ∆′(u′, u′′)
(∗)
=

∑

u′∈S′:∆′(u′,S′′)>0 ∆′(u′, u′′)

= ∆′(S′, u′′)

= µ′′(u′′)

This concludes the proof of transitivity.

Now we show that parallel composition does not destroy strong simulation
relations. Let M||ĀP = (S ×S′′, A∪A′′, L̃, P̃l, P̃u, λ+λ′′, (s0, s

′′
0)) and N||ĀP =

(S′×S′′, A′ ∪A′′, L̃′, P̃′
l, P̃

′
u, λ′ +λ′′, (s′0, s

′′
0)). Recall that from M � N it follows

λ = λ′ and therefore the union of M||ĀP and N||ĀP that will implicitly be used
is valid.

We show that M � N implies M||ĀP � N||ĀP for synchronization set Ā,
i.e. that for initial state (s0, s

′′
0) there exists (s′0, s

′′
0) with (s0, s

′′
0) � (s′0, s

′′
0). Let

R̃ : (S × S′′) × (S′ × S′′) such that (s, s′′)R̃(s′, s′′′) iff s � s′ and s′′ � s′′′.
From M � N we know that s0 � s′0 and due to reflexivity, s′′0 � s′′0 . Thus,
(s0, s

′′
0)R̃(s′0, s

′′
0).

In the following, we show that for all (s, s′′) ∈ S × S′′ and (s′, s′′′) ∈ S′ × S′′

with sRs′ and s′′R′s′′′ for simulation relations R and R′, conditions (1a), (1b)
and (2) in Def. 10 are fulfilled, i.e. that R̃ is a simulation relation.

1a. This can be shown in a similar fashion as (1b).

23

1b. For a ∈ Ā we compute:

∀(u′, u′′′) ∃(u, u′′) : L̃′((s′, s′′′), a, (u′, u′′′)) = ⊤

=⇒ L̃((s, s′′), a, (u, u′′)) = ⊤ ∧ (u, u′′)R̃(u′, u′′′)

⇐⇒

∀(u′, u′′′) ∃(u, u′′) : L′(s′, a, u′) ⊓ L′′(s′′′, a, u′′′) = ⊤

=⇒ L(s, a, u) ⊓ L′′(s′′, a, u′′) = ⊤ ∧ (u, u′′)R̃(u′, u′′′)

⇐⇒

∀(u′, u′′′) ∃(u, u′′) : L′(s′, a, u′) = ⊤ ∧ L′′(s′′′, a, u′′′) = ⊤

=⇒ L(s, a, u) = ⊤ ∧ L′′(s′′, a, u′′) = ⊤ ∧ (u, u′′)R̃(u′, u′′′)

This follows directly from sRs′ and s′′R′s′′′ as

∀u′ ∃u : L′(s′, a, u′) = ⊤ =⇒ L(s, a, u) = ⊤ ∧ uRu′ and

∀u′′′ ∃u′′ : L′′(s′′′, a, u′′′) = ⊤ =⇒ L′′(s′′, a, u′′) = ⊤ ∧ u′′Ru′′′
.

For a 6∈ Ā we compute:

∀(u′, u′′′) ∃(u, u′′) : L̃′((s′, s′′′), a, (u′, u′′′)) = ⊤

=⇒ L̃((s, s′′), a, (u, u′′)) = ⊤ ∧ (u, u′′)R̃(u′, u′′′)

⇐⇒

∀(u′, u′′′) ∃(u, u′′) :

(L′(s′, a, u′) ⊓ I(s′′′, u′′′)) ⊔ (L′′(s′′′, a, u′′′) ⊓ I(s′, u′)) = ⊤

=⇒ (L(s, a, u) ⊓ I(s′′, u′′)) ⊔ (L′′(s′′, a, u′′) ⊓ I(s, u)) = ⊤

∧ (u, u′′)R̃(u′, u′′′)

We investigate the two cases where on the left side of the implication either
(L′(s′, a, u′) ⊓ I(s′′′, u′′′)) = ⊤ or (L′′(s′′′, a, u′′′) ⊓ I(s′, u′)) = ⊤.
If (L′(s′, a, u′)⊓I(s′′′, u′′′)) resolves to ⊤, so does L(s, a, u) for some u ∈ S. We
choose u′′ = s′′, such that I(s′′, u′′) = ⊤. For the right side of the implication
to be fulfilled, it remains to show that (u, u′′)R̃(u′, u′′′). From the satisfaction
of I(s′′′, u′′′) it follows u′′′ = s′′′ and together with u′′ = s′′, from s′′R′s′′′ we
directly get u′′R′u′′′. Further, sRs′ implies

∀u′ ∃u : L′(s′, a, u′) = ⊤ =⇒ L(s, a, u) = ⊤∧ uRu′.

Thus, there exist u ∈ S and u′′ ∈ S′′ fulfilling the right side of the implication.
For the case where (L(s′′′, a, u′′′)⊓I(s′, u′)) resolves to ⊤, the proof goes along
the same lines.

24

s

s′

u

u′

∆

µ(u)

µ′(u′)

R R

s′′

s′′′

u′′

u′′′

∆′′

µ′′(u′′)

µ′′′(u′′′)

R′ R′

(s, s′′)

(s′, s′′′)

(u, s′′)

(u′, s′′′)

(s, u′′)

(s′, u′′′)

∆̃

µ̃((u, s′′))

. . .

. . .

µ̃′((s′, u′′′))

R̃

R̃

R̃

Fig. 9. Compatibility with parallel composition

2. First, note that from sRs′ it follows: if for all u ∈ S it holds L(s, a, u) 6= ⊤ for
all a ∈ Ai, then for all µ ∈ T(s) there exists µ′ ∈ T(s′) and ∆ : S×S′ → [0, 1]
such that for all u ∈ S and u′ ∈ S′:
(a) ∆(u, u′) > 0 =⇒ uRu′

(b) ∆(u, S′) = µ(u)
(c) ∆(S, u′) = µ′(u′)

Second, from s′′R′s′′′ it follows: if for all u′′ ∈ S′′ it holds L(s′′, a, u′′) 6= ⊤
for all a ∈ Ai, then for all µ′′ ∈ T(s′′) there exists µ′′′ ∈ T(s′′′) and ∆′′ :
S′′ × S′′ → [0, 1] such that for all u′′ ∈ S′′ and u′′′ ∈ S′′:
(a) ∆′′(u′′, u′′′) > 0 =⇒ u′′R′u′′′

(b) ∆′′(u′′, S′′) = µ′′(u′′)
(c) ∆′′(S′′, u′′′) = µ′′′(u′′′)

We show that, if for all (u, u′′) ∈ S × S′′ it holds L̃((s, s′′), a, (u, u′′)) 6= ⊤
for all a ∈ Ai ∪ A′

i, then for all µ̃ ∈ T((s, s′′)) there exists µ̃′ ∈ T((s′, s′′′))
and ∆̃ : (S × S′′) × (S′ × S′′) → [0, 1] such that for all (u, u′′) ∈ S × S′′ and
(u′, u′′′) ∈ S′ × S′′: (cf. Fig. 9)
(a) ∆̃((u, u′′), (u′, u′′′)) > 0 =⇒ (u, u′′)R̃(u′, u′′′)
(b) ∆̃((u, u′′), S′ × S′′) = µ̃((u, u′′))
(c) ∆̃(S × S′′, (u′, u′′′)) = µ̃′((u′, u′′′))

Given (s, s′′) ∈ S × S′′ and (s′, s′′′) ∈ S′ × S′′, we define ∆̃ : (S × S′′)× (S′ ×
S′′) → [0, 1] such that:

∆̃((u, u′′), (u′, u′′′)) = λ
λ+λ′′ · ∆(u, u′) · 1(s′′, u′′) · 1(s′′′, u′′′)

+ λ′′

λ+λ′′ · ∆′′(u′′, u′′′) · 1(s, u) · 1(s′, u′)

Condition (a) follows from this definition as

∆̃((u, u′′), (u′, u′′′)) > 0 =⇒ (∆(u, u′) > 0 ∧ s′′ = u′′ ∧ s′′′ = u′′′)

∨ (∆′′(u′′, u′′′) > 0 ∧ s = u ∧ s′ = u′)

=⇒ (uRu′ ∧ s′′ = u′′ ∧ s′′′ = u′′′)

∨ (u′′R′u′′′ ∧ u = u′ ∧ s = u ∧ s′ = u′)

=⇒ (u, u′′)R̃(u′, u′′′)

where in the last implication we use the fact that sRs′ and s′′R′s′′′.

25

Regarding condition (b), for any µ̃ ∈ T((s, s′′)) we compute:

µ̃((u, u′′)) = λ
λ+λ′′ · µ(u) · 1(s′′, u′′) + λ′′

λ+λ′′ · µ′′(u′′) · 1(s, u)

=
∑

u′∈S′
λ

λ+λ′′ · ∆(u, u′) · 1(s′′, u′′)

+
∑

u′′′∈S′′
λ′′

λ+λ′′ · ∆′′(u′′, u′′′) · 1(s, u)

=
∑

u′′′∈S′′

(
∑

u′∈S′
λ

λ+λ′′ · ∆(u, u′) · 1(s′′, u′′) · 1(s′′′, u′′′)

+
∑

u′∈S′
λ′′

λ+λ′′ · ∆′′(u′′, u′′′) · 1(s, u) · 1(s′, u′)
)

=
∑

u′∈S′,u′′′∈S′′
λ

λ+λ′′ · ∆(u, u′) · 1(s′′, u′′) · 1(s′′′, u′′′)

+ λ′′

λ+λ′′ · ∆′′(u′′, u′′′) · 1(s, u) · 1(s′, u′)

=
∑

u′∈S′,u′′′∈S′′ ∆̃((u, u′′), (u′, u′′′))

= ∆̃((u, u′′), S′ × S′′)

Analogously, for condition (c) we compute for any µ̃′ ∈ T((s′, s′′′)):

µ̃′((u′, u′′′)) = λ
λ+λ′′ · µ′(u′) · 1(s′′′, u′′′) + λ′′

λ+λ′′ · µ′′′(u′′′) · 1(s′, u′)

=
∑

u∈S
λ

λ+λ′′ · ∆(u, u′) · 1(s′′′, u′′′)

+
∑

u′′∈S′′
λ′′

λ+λ′′ · ∆′′(u′′, u′′′) · 1(s′, u′)

=
∑

u′′∈S′′

(
∑

u∈S
λ

λ+λ′′ · ∆(u, u′) · 1(s′′, u′′) · 1(s′′′, u′′′)

+
∑

u∈S
λ′′

λ+λ′′ · ∆′′(u′′, u′′′) · 1(s, u) · 1(s′, u′)
)

=
∑

u∈S,u′′∈S′′
λ

λ+λ′′ · ∆(u, u′) · 1(s′′, u′′) · 1(s′′′, u′′′)

+ λ′′

λ+λ′′ · ∆′′(u′′, u′′′) · 1(s, u) · 1(s′, u′)

=
∑

u∈S,u′′∈S′′ ∆̃((u, u′′), (u′, u′′′))

= ∆̃(S × S′′, (u′, u′′′))

Thus, conditions (a) to (c) hold.

We conclude by observing that � is reflexive, transitive and compatible with
parallel composition.

For parallel composition, note that parallel and symmetric composition yield
bisimilar AIMCs. Hence, � is also a precongruence for symmetric composition.

⊓⊔

26

Aachener Informatik-Berichte

This list contains all technical reports published during the past five years.

A complete list of reports dating back to 1987 is available from http://aib.

informatik.rwth-aachen.de/. To obtain copies consult the above URL or send

your request to: Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056

Aachen, Email: biblio@informatik.rwth-aachen.de

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003

2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic

2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting

2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming

2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming

2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming

2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination

2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information

2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity

2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004

2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer

School Applied IT Security”

2005-03 Jürgen Giesl, Rene Thiemann, Peter Schneider-Kamp: Proving and Dis-

proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for

the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing

Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-

tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-

ploring a Root-Cause Methodology to Prevent Distributed Denial-of-

Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With

Applications To Max-Cut

27

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General

Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts

2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture

2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-

tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting

Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization

2005-15 Uwe Naumann: The Complexity of Derivative Computation

2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)

2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)

2005-18 Thomas von der Maßen, Klaus Möller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,

Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-

Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented

LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-

dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-

bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-

gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit

BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-

ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-

ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:

Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering

with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005

2006-02 Michael Weber: Parallel Algorithms for Verification of Large Systems

2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated

by the Differentiation-Enabled NAGWare Fortran Compiler

2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulation

28

2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,

Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint

Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-

and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set in-

terpretations

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-

Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic

Model Checking

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,

Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid

MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:

Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:

Replaying Play in and Play out: Synthesis of Design Models from Sce-

narios by Learning

2006-13 Wong Karianto, Christof Löding: Unranked Tree Automata with Sibling

Equalities and Disequalities

2006-14 Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,

Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli

Kolagari, Thomas von der Maßen, Andreas Wolfram: Report of the GI

Work Group “Requirements Management Tools for Product Line Engi-

neering”

2006-15 Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical

sensors from mice for new input devices

2006-16 Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for

Pointing Devices with Low Expressiveness

2006-17 Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improv-

ing Interfaces for Searching and Navigating Continuous Audio Timelines

2007-01 ∗ Fachgruppe Informatik: Jahresbericht 2006

2007-02 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

Rene Thiemann, and Harald Zankl: SAT Solving for Termination Anal-

ysis with Polynomial Interpretations

2007-03 Jürgen Giesl, Rene Thiemann, Stephan Swiderski, and Peter Schneider-

Kamp: Proving Termination by Bounded Increase

2007-04 Jan Buchholz, Eric Lee, Jonathan Klein, and Jan Borchers: coJIVE: A

System to Support Collaborative Jazz Improvisation

2007-05 Uwe Naumann: On Optimal DAG Reversal

2007-06 Joost-Pieter Katoen, Thomas Noll, and Stefan Rieger: Verifying Con-

current List-Manipulating Programs by LTL Model Checking

29

2007-07 Alexander Nyßen, Horst Lichter: MeDUSA - MethoD for UML2-based

Design of Embedded Software Applications

2007-08 Falk Salewski and Stefan Kowalewski: Achieving Highly Reliable Em-

bedded Software: An empirical evaluation of different approaches

2007-09 Tina Kraußer, Heiko Mantel, and Henning Sudbrock: A Probabilistic

Justification of the Combining Calculus under the Uniform Scheduler

Assumption

2007-10 Martin Neuhäußer, Joost-Pieter Katoen: Bisimulation and Logical

Preservation for Continuous-Time Markov Decision Processes

2007-11 Klaus Wehrle (editor): 6. Fachgespräch Sensornetzwerke

2007-12 Uwe Naumann: An L-Attributed Grammar for Adjoint Code

2007-13 Uwe Naumann, Michael Maier, Jan Riehme, and Bruce Christianson:

Second-Order Adjoints by Source Code Manipulation of Numerical Pro-

grams

2007-14 Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout,

Patrick Heimbach, Chris Hill, and Carl Wunsch: OpenAD/F: A Modular,

Open-Source Tool for Automatic Differentiation of Fortran Codes

2007-15 Volker Stolz: Temporal assertions for sequential and concurrent programs

2007-16 Sadeq Ali Makram, Mesut Günec, Martin Wenig, Alexander Zimmer-

mann: Adaptive Channel Assignment to Support QoS and Load Balanc-

ing for Wireless Mesh Networks

2007-17 Rene Thiemann: The DP Framework for Proving Termination of Term

Rewriting

2007-18 Uwe Naumann: Call Tree Reversal is NP-Complete

2007-19 Jan Riehme, Andrea Walther, Jörg Stiller, Uwe Naumann: Adjoints for

Time-Dependent Optimal Control

2007-20 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf:

Three-Valued Abstraction for Probabilistic Systems

2007-21 Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre: Compo-

sitional Modeling and Minimization of Time-Inhomogeneous Markov

Chains

2007-22 Heiner Ackermann, Paul W. Goldberg, Vahab S. Mirrokni, Heiko Röglin,

and Berthold Vöcking: Uncoordinated Two-Sided Markets

2008-01 ∗ Fachgruppe Informatik: Jahresbericht 2007

2008-02 Henrik Bohnenkamp, Marielle Stoelinga: Quantitative Testing

2008-03 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

Rene Thiemann, Harald Zankl: Maximal Termination

2008-04 Uwe Naumann, Jan Riehme: Sensitivity Analysis in Sisyphe with the

AD-Enabled NAGWare Fortran Compiler

2008-05 Frank G. Radmacher: An Automata Theoretic Approach to the Theory

of Rational Tree Relations

30

2008-06 Uwe Naumann, Laurent Hascoet, Chris Hill, Paul Hovland, Jan Riehme,

Jean Utke: A Framework for Proving Correctness of Adjoint Message

Passing Programs

2008-07 Alexander Nyßen, Horst Lichter: The MeDUSA Reference Manual, Sec-

ond Edition

2008-08 George B. Mertzios, Stavros D. Nikolopoulos: The λ-cluster Problem on

Parameterized Interval Graphs

2008-09 George B. Mertzios, Walter Unger: An optimal algorithm for the k-fixed-

endpoint path cover on proper interval graphs

2008-10 George B. Mertzios, Walter Unger: Preemptive Scheduling of Equal-

Length Jobs in Polynomial Time

2008-11 George B. Mertzios: Fast Convergence of Routing Games with Splittable

Flows

2008-12 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, Verena Wolf: Ab-

straction for stochastic systems by Erlang’s method of stages

2008-13 Beatriz Alarcon, Fabian Emmes, Carsten Fuhs, Jürgen Giesl, Raul

Gutierrez, Salvador Lucas, Peter Schneider-Kamp, Rene Thiemann: Im-

proving Context-Sensitive Dependency Pairs

2008-14 Bastian Schlich: Model Checking of Software for Microcontrollers

2008-15 Joachim Kneis, Alexander Langer, Peter Rossmanith: A New Algorithm

for Finding Trees with Many Leaves

2008-16 Hendrik vom Lehn, Elias Weingärtner and Klaus Wehrle: Comparing

recent network simulators: A performance evaluation study

2008-17 Peter Schneider-Kamp: Static Termination Analysis for Prolog using

Term Rewriting and SAT Solving

2008-18 Falk Salewski: Empirical Evaluations of Safety-Critical Embedded Sys-

tems

2009-03 Alexander Nyßen: Model-Based Construction of Embedded

Real-Time Software - A Methodology for Small Devices

2009-04 Daniel Klünder: Entwurf eingebetteter Software mit abstrakten Zus-

tandsmaschinen und Business Object Notation

2009-05 George B. Mertzios, Ignasi Sau, Shmuel Zaks: A New Intersection Model

and Improved Algorithms for Tolerance Graphs

2009-06 George B. Mertzios, Ignasi Sau, Shmuel Zaks: The Recognition of Tol-

erance and Bounded Tolerance Graphs is NP-complete

2009-07 Joachim Kneis, Alexander Langer, Peter Rossmanith: Derandomizing

Non-uniform Color-Coding I

2009-08 Joachim Kneis, Alexander Langer: Satellites and Mirrors for Solving In-

dependent Set on Sparse Graphs

2009-09 Michael Nett: Implementation of an Automated Proof for an Algorithm

Solving the Maximum Independent Set Problem

31

2009-10 Felix Reidl, Fernando Sanchez Villaamil: Automatic Verification of the

Correctness of the Upper Bound of a Maximum Independent Set Algo-

rithm

2009-11 Kyriaki Ioannidou, George B. Mertzios, Stavros D. Nikolopoulos: The

Longest Path Problem is Polynomial on Interval Graphs

2009-12 Martin Neuhäußer, Lijun Zhang: Time-Bounded Reachability in

Continuous-Time Markov Decision Processes

2009-13 Martin Zimmermann: Time-optimal Winning Strategies for Poset Games

2009-14 Ralf Huuck, Gerwin Klein, Bastian Schlich (eds.): Doctoral Symposium

on Systems Software Verification (DS SSV’09)

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

32

