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Abstract. Basic communication and coordination mechanisms of hu-
man social interaction are assumed to be mediated by perception-action
links. These links ground the observation and understanding of others in
one’s own action generation system, as evidenced by immediate motor
resonances to perceived behavior. We present a model to endow virtual
embodied agents with similar properties of embodied perception. With
a focus of hand-arm gesture, the model comprises hierarchical levels of
motor representation (commands, programs, schemas) that are employed
and start to resonate probabilistically to visual stimuli of a demonstrated
movement. The model is described and evaluation results are provided.

1 Introduction & Background

In social interactions, we are continuously confronted with a variety of nonverbal
behaviors, like hand-arm or facial gestures. The same holds true for intelligent
virtual agents that are increasingly employed in interfaces where they are to
engage in similar face-to-face interactions. Consequently, they are ultimately re-
quired to perceive and produce nonverbal behavior in a fast, robust, and “socially
resonant” manner, i.e. based on an understanding of and entrainment with what
the other intends, means, and how she behaves. In humans, this capability is
supposed to be rooted in an embodied basis of communication and intersubjec-
tivity. Many studies (e.g. [2,15,3]) have demonstrated that the motor and action
(premotor) system become activated during the observation of bodily behav-
ior. The resulting motor resonance is assumed to be due to perception-action
links and to emerge at various levels of the hierarchical human perceptuomotor
system, from kinematic features to motor commands to goals [11]. These reso-
nances allow for imitating or mimicking the observed behavior, either overtly or
covertly, and thus form a basis for understanding other embodied agents [22]. In
addition they foster coordinating with others, e.g., in mimicry or alignment, in
order to establish social resonance and rapport (see Fig. 1 for illustration).

As evidenced by brain imaging studies [18,16], an animated interlocutor with
sufficiently natural appearance and motion can – to a certain extent – evoke
in humans similar motor resonances. However, behavior perception and under-
standing on the part of the artificial interlocutor is usually treated as pattern



Fig. 1. Interacting agents engaging in embodied perception and behavior matching.

classification focused on trajectory recognition rather than intention recognition.
Many approaches employ probabilistic methods with convenient properties like
graceful degradation, processing of uncertainty, or learning schemes. Calinon
and Billard [6] apply Hidden Markov Models to recognize gestures after apply-
ing PCA and ICA in order to decorrelate, denoise and reduce the dimensionality
of data. Further work [5] applies Gaussian mixture models to provide a more
accurate modeling of uncertainty. However, the classification of movements is
based on spatio-temporal feature correlations and does not aim at the abstrac-
tion into the intention or meaning of a gesture. Some recent approaches [21,20])
apply Bayesian inference to derive the goal of a movement, defined as a spatial
configuration. Hierarchical probabilistic models were proposed [1] for temporally
grouping motor primitives into sequences. However, co-speech gestures are meant
to transfer information to the addressee and different, spatio-temporally uncorre-
lated movements can be employed for this inter-changeably. Thus more abstract
levels are eventually necessary for capturing a gesture’s intention. None of the
techniques applied so far has attempted to tightly link perception and action in
motor resonances, which should enable fast and incremental embodied gesture
perception, across different levels of abstraction. In the effort to endow IVAs with
increasing capabilities of social interactivity, we present a probabilistic approach
to model the automatic emergence of motor resonances when embodied agents
come to observe another agent’s hand-arm gestures. In the following Section 2
we introduce the overall computational model, and we present an probabilistic
approach to simulating motor resonance in Section 3. In Section 4 we present
results of applying this model to real-world gesture data.

2 A Model for Embodied Gesture Perception

In previous work, we proposed an approach to learning motor acts of hand-
arm gestures by imitation, built atop a model for procedural gesture animation
[12,14]. It has been developed in a scenario with two virtual humans of identi-
cal embodiment, one demonstrator and one learner and imitator. In the present
work, we extend this model in two ways to allow for resonance-based gesture per-



ception. First, as motivated above, we add more abstract and less contextualized
motor levels in order to work hierarchically from reception toward understanding.
Second, we add a probabilistic method for how these hierarchical structures can
be utilized for behavior perception by starting concurrently and incrementally
to resonate when observing a gesture. Finally, the framework is connected to
a marker-free 3D camera to enable embodied human-agent interaction (Sect.4).
Overall, the model consists of four modules (see Fig. 2): preprocessing, motor
knowledge, forward models, and inverse models. We will describe them here
briefly; details can be found in [12,14].
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Fig. 2. Overall model for resonance-based embodied gesture perception.

2.1 Preprocessing

The preprocessing module receives visual stimuli about the movement of relevant
body parts of a demonstrator (positions and orientations of the wrist, fingers of
both hands) and buffer them in chronological order in a working memory. A
segmenter then decomposes the received movement of each body part into sub-
movements, based on its kinematic features (velocity profile, direction changes).
For example, the movements of a wrist in space are decomposed into spatio-
temporal segments, called guiding strokes [13]. The movements of the fingers are
decomposed into key postures of the hand. A guiding stroke represents a spa-
tial movement segment in 3D space and, suitably parametrized, describes the
movement trajectory and the performance speed. Since the focus in this paper



is on intransitive actions, all parameters attributed to the segments refer to the
morphological features of the movement, and they are not defined relative to an
object. Such parametrized segments are atomic movement components (called
submovements) of each body part and a sequence of them represents a gesture.

2.2 Motor knowledge

A directed graph is used to store the motor knowledge about gestural movements
as a sequence of its submovements. Edges of the graph stand for movement seg-
ments; nodes represent the intermediate states of the corresponding body part.
That is, edges for the wrists’ spatio-temporal movements are assigned the proper
guiding strokes and each node represents a spatial position. In the case of hand
and finger configuration, each node represents a keyframe (hand posture) and
the edges indicate the transition (parametrized with a velocity profile) to reach
the next hand posture. In that way, a movement becomes a sequence of edges,
i.e. a path in the graph (see [4] for similar modeling approach). A novel gesture
can be added as new path in the graphs and, if necessary, it may add new edges
and nodes to the graph. When performing a gesture, the agent should follow the
corresponding path in the graph and perform its edges sequentially. Therefore,
each edge in the graph, independent from the related body part, represents a
motor command (MC), and a path in the graph stands for a motor program
(MP). Neurobiological studies showed that the human brain uses a similar prin-
ciple of decomposing complex movements into simpler elements, called motor
primitives, and generates them (in performing phase) in parallel and sequence
[9,10]. Modeling internal motor representations of each body part separately is
also consistent with the somatotopic organization found in motor cortex.

Due to the fact that MCs for each body part have their own features and
parameterization, they are stored separately in specialized knowledge submod-
ules, called motor command graph (MCG) and motor program graph (MPG),
respectively. The MPG is a more compact representation of the MCG and clus-
ters each motor sequence as a single node. In this way, the agent has an exact
representation of the individual gestures in its own repertoire. However, in gen-
eral, gestures are not limited to a specific performance but have some variable
features. These are the parameters of the performance which, when varied, do
not change the meaning and intention of the gesture but the way of performing
it. Consequently, understanding a gesture can not only involve an exact motor
simulation (direct matching), but also infernal of communicative meaning. For
example, seeing a demonstrator waving should be recognized by an imitator as
the act of waving, independent of the absolute spatial position of the wrist joint,
the swinging frequency or to some degree the speed of the movement. Although
different persons have different styles of waving, all those performances can be
classified by an observer to the same meaning. And, when reciprocating, the
observer likewise performs an individual way of doing it. Thus, embodied agents
must be able to cluster numerous forms of a gestural movement into one schema,
which ignores the variable features of the gesture, e.g. spatial position, number
of repetitions, etc. Therefore, we define motor schemas (MS) as a generalized



representation that groups different allowed performances (motor programs) of
a gesture, possibly performed through many body parts, into a single cluster.
Analogously, a motor schema graph (MSG) consist of motor schemas as nodes.
Such a generalization process is an important capability and can foster the un-
derstanding and imitation of behavior in two ways. First, it forwards the problem
of inferring the goal of a gesture from the motor level to a more abstract, yet
less complex level, namely schema interpretation. Second, an imitator can retain
his own personal form of performing a gesture, while being able to relate other
performances of the same gesture to the same schema.

2.3 Forward and inverse models

An agent may follow two routes to imitate an observed gesture. On the one
hand, it can recognize a movement as familiar, i.e. approximately similar to an
act in the own repertoire. In this case, the agent can perform an active imita-
tion, activating the motor system during the perception process. One the other
hand, when the model is not in the observer’s repertoire, the agent perceives the
new movement and analyze it afterwards, drawing upon the motor knowledge
it has acquired before. In result, new motor knowledge about the novel move-
ment is created, inserted into the internal motor representation, and can then
be executed for imitation. This process is called passive imitation [7].

In our model, active and passive imitation are modeled with forward and
inverse models, respectively. Forward models are predictors derived from the
agent’s motor knowledge in order to predict the continuation of a familiar ges-
ture at each motor level. By comparing this prediction with the actual percepts
at each time step, these models are to find the motor command, program or
schema that most likely correspond to the observed behavior. If there is no
sufficiently similar representation, the analyses switch from the forward mod-
els to inverse models, which receive their input from the segmenter and turn it
into parametrized submovements. These submovements are used to augment the
MCG, MPG or MSG, if necessary, with new nodes and edges. Performing the
newly acquired act, then, accomplishes the modeling of true imitation.

3 Probabilistic Motor Resonances

The basic mechanism of perceiving a gesture (either for imitation or understand-
ing) is to compare the predictions of the forward models, derived for possible
candidate motor structures, with the observed movement of the other. This basic
mechanism is employed at all three levels (by different kinds of forward models)
and results in motor resonances that represent the agent’s confidence about the
correspondence between what it sees the other doing and what it “knows” from
itself. Given the visual stimuli about moving relevant body parts of the other as
the only evidence, we define this confidence in recognizing a certain motor can-
didate as the mean over time of its a posteriori probability given the evidences
at each time step (cf. eq. 1). This can also be considered as a kind of expectation



value of the respective motor candidate. We apply the prior feedback approach
(see [17]) to accumulate the expectation up to each time step. This also enables
the use of Bayesian networks to model how the motor levels interact in order
to allow resonances to percolate bottom-up and top-down in between them, to
find (possibly a variant of) a known gesture fast, effectively and robustly. Fur-
thermore, in this way, the probabilities of motor candidates of different lengths
are comparable. In the following we focus on the perception of hand position or
trajectory; finger movements can be modeled analogously.

3.1 Level 1: Resonating motor commands

At this level, the spatial positions of a wrist at each time step t are our evidences
and the motor commands in the MCG are the hypotheses. Since our approach
should work incrementally and in real time, the more evidences we have the
higher the recognition confidence should be. The probability of a hypothesis
equals the resonance or expectation of the corresponding motor command c on
basis of all perceived evidences (o = {ot1 ,ot2 , ...}) up to the current time step,
T . Employing the Bayesian law, we have:

PT (c ∈ Hc) = PT (c|o) :=
1
T

T∑
t=t1

P (c|ot) =
1
T

T∑
t=t1

αcPT−1(c)P (ot|c) (1)

The term PT−1(c) is the a priori of the hypothesis c and indicates the previous
knowledge about the probability of motor command c, which is equal to the
expectation of c at the previous time step, T−1. In the case of T = t1, the a priori
will by default be the uniform distribution across all alternative motor commands
outgoing from the same parent node. The likelihood term P (ot|c) refers to the
probability of passing the coordinate ot = {xt, yt, zt} with motor command c
and, now, represents a probabilistic prediction of the forward model. In other
words, it represents the probability of where the hand would be if the agent now
performed the motor command c. We model this as a four dimensional Gaussian
probability density function of {x, y, z, t} (PDF, in short), which is formed for
each possible next motor command, i.e., each possible continuing submovement
of the wrist in space (see Fig. 3). Each likelihood reaches its maximum value
if the observed performance exactly matches the own motor execution in both
spatial and velocity features.

Let Hc be the set of currently active (“resonating”) motor command hy-
potheses. The criterion to add a motor command into this set is as follows. As
soon as the first evidence, ot1 , is perceived, its probability to represent a node
of the MCG is computed with the aid of Gaussian densities centered at the 3D
position of each node. Comparing with a predefined threshold yields the most
likely candidate nodes for the starting point of a gesture (or not). All outgoing
motor commands from these nodes are added to Hc. At the next time steps, the
probability of each of these hypothesis is computed from the next evidence (eq.
(1)). If the probability of a hypothesis is smaller than a predefined threshold, it
will be omitted from Hc. Note that the resonance of each motor command varies



Fig. 3. Visualization of the likelihood of motor command hypotheses, models as (4D)
Gaussian density functions that change over time in accord with the motor command
and its corresponding velocity.

with the duration of its execution: the longer the performance takes, the more
evidences are used to update the expectation of that motor command. That is
to say, the confidence of the imitator in the computed probability of each motor
command increases.

3.2 Level 2: Resonating motor programs

The probability (or resonance) of a motor program p, which is represented as
a path in the MCG and as a node in the MPG, depends on the probabilities
of its components (motor commands) and thus, indirectly, on the evidences ot.
We compute this probability, similar to motor commands, as an expectation of
p considering all evidences until the current time step, T .

PT (p ∈ Hp) = PT (p|C,o) :=
1
T

T∑
t=t1

P (p|C,ot) =

1
T

T∑
t=t1

αpPT−1(p)
∑

c∈Hc

P (ot|c)Pt(c|p)

(2)

The a priori term is equal to the expectation at the previous time step. The term
Pt(c|p) indicates the probability of performing the command c at time t, if the
demonstrator were to perform the program p. This probability is time-dependent
and is modeled using a PDF as a function of t and the motor commands c. The
mean of the Gaussian moves through the motor commands of a motor program,
as fast as the velocity of each motor command. Thus, this term along with
P (ot|c) together yield high resonance to the observation ot of the right position
at the right time step with respect to p.

The set of motor programs considered as hypotheses Hp is defined to contain
all programs with at least on active motor command in Hc. Motor programs
with too small expectations will be removed from the set. At each point in time,
the computed expectation for each motor program refers to the confidence of the
agent in recognizing that gesture for which, in contrast to the MCG, not only a
submovement but the morphological properties of the whole gesture performance
are considered. Note, however, that these probabilities are incrementally com-
puted and adjusted from the evidence at hand, also during the perception while



only parts of the gesture have been observed yet. That is, the agent does not need
to specify the start and end point of gestures, but can even recognize gestures
that are started at a later point of a trajectory, e.g., in the case of performing
several gestures successively without moving the hand to rest position.

3.3 Level 3: Resonating motor schemata

The top level of motor knowledge consists of motor schemas, represented in
MSG, which group different motor programs for different body parts into a sin-
gle node. The expectancy (resonance) of each motor schema depends on the
expectation values of active motor programs in all body part modules, and in-
directly on the related motor commands and evidences about each body part.
Figure 4 illustrates these causal influences between the graph nodes in a hierar-
chical Bayesian network.
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Fig. 4. Bayesian network of the relations between different levels of the motor hierarchy.

The expectation of each schema s is computed as follows:

PT (s ∈ Hs) = PT (s|C,P,olw,orw,olf ,orf ) :=
1
T

T∑
t=t1

P (s|C,P,olw,orw,olf ,orf )

=
1
T

T∑
t=t1

αsPT−1(s)
∏

i∈{rw,lw,rh,lh}

∑
pi∈Hp,i

P (pi|s)
∑

ci∈Hs,i

P (oi,t|ci)Pt(ci|pi)

(3)

The likelihood P (pi|s) is uniformly distributed among the pi ∈ s, and 0
otherwise. Because of the OR relation among the associated motor programs
(pi ∈ Hp,i), the probability of a motor schema s is the sum of the probabilities
of its possible performances. However, we may also consider schemes that are
more tolerant to velocity, position or direction deviations than discrete paths in
the MCG. For one thing, such allowed deviations should be set by the motor
schema that has a view to the goal of the gesture and can differentiate between
acceptable and unacceptable deviations context-sensitively. In addition, in this
way we avoid rapid extension of the MCG and MCP, which are brought about



by the inverse model analysis when expectations run too low.

But how to define what’s a waving gesture and what’s not? Or, in other
words, how to define the invariants and variants in a motor schema? We allow
four different possible variations in performing gestures, which we can map onto
the model’s structure in order to define parameters for the related motor schema:
(i) velocity variability, (ii) position variability, (iii) repetition of a submovement,
and (iv) left and right hand performance.

Velocity variability: Many hand-arm gestures can, within certain limits, be
performed with different speed without altering the intention being the gesture,
e.g., showing the victory sign or pointing somewhere. In order to recognize such
variants as instances of the same gesture, the motor commands should deliver
same expectations in all cases. One argument of the Gaussian likelihood P (o|c)
for each motor command is time. Hence, its variance σt defines the tolerance
of the motor command c to variations in performance speed. By increasing the
value of this parameter of the likelihood model through the motor schema, we
decrease the tolerance of the corresponding schema regarding the performance
velocity during the perception process.

Position variability: The spatial position of a gesture often does not decisively
affect its meaning. In order to avoid creating too many motor commands and
programs for different performances of the same gesture, special prototype nodes
in the MCG and MPG are created as the invariant structures of a motor schema,
while leaving the variant features open. Each evidence position o is normalized
to the corresponding position in this prototype as given by the distance between
the start positions: ∆o = otemplate−operceived. That is, when starting to perceive
a gesture, all prototype nodes as well as the matching normal nodes in the MCG
are considered as start point candidates.

Repetition of a submovement: Some gestures comprise repetitive parts, like
waving or beat gestures, and the number of repetitions is often subject to con-
siderable variation. Such repetitions correspond to cycles in the MCG that start
and end at nodes which represent branching points for such a schema (one more
cycle or continue otherwise). This can be handled straightforward, by splitting
the PDFs that model the likelihoods P (ot|c) and Pt(c|p) into distributions that
covers both expectations. The expectation of the corresponding motor schema
then equals performing one of the alternatives, i.e., the sum of the expectations.

Left and right hand performance: A gesture should be recognizable as the
same schema, regardless of the hand it is performed with. Since a motor schema
comprises motor programs for both hands, it can specify how their probabilities
affect the expectation of the schema. In the normal case (3), all body parts are
assumed to have their own task during performance. Nevertheless, the way of
combining different body parts is not always an AND relation (

∏
i∈{rw,lw,rh,lh})

but sometimes an OR relation, like in this case. Therefore, each motor schema
specifies the way of combining the body parts depending on the gesture.

In order to be able to cover all aforementioned variations, each motor schema
has following parameters: (1) the means and variances of the Gaussian PDFs of



all comprised motor commands; (2) a flag to specify if the schema is a tem-
plate for position variable gestures; (3) a set of all cycles in the graph; (4) flags
indicating the causal relation (AND or OR) between body parts.

3.4 Horizontal and vertical integration

The described probabilistic model simulates the bottom-up emergence of motor
resonances, where the expectations at each level induce expectations at higher
levels. The other way around, higher levels should also affect and guide the per-
ception process at lower levels. For instance, after recognizing a motor schema
the agent should expect to perceive the remaining movements over the next time
steps. That is, the expectation of a motor command should increase the expec-
tation of subsequent motor commands from the same gesture. In our framework,
this capability can be mediated via the higher levels: The computed expectation
of a motor program determines the a priori knowledge in computing the expec-
tation of next motor commands. To this end, we update the a priori of the future
motor commands, c ∈ p, using the Bayesian rule P (c|p) = αP (p|c)P (c), where
P (c) indicates the previous a priori of c. Likewise, a “resonating” motor schema
affects the expectation of its comprised motor programs. Overall, every time new
evidence arrives, we not only percolate expectations about active hypotheses up,
but also adjust the prior probabilities of current or future hypotheses top-down
in a context-dependent way. To this end, the a priori probabilities are calculated
both from default priors and expectations during the last time step, as well as
new a priori knowledge coming from higher levels. This vertical interaction of
motor levels occurs continuously; see Sect. 4 for a simulation of this.

Horizontal integration refers to how forward model-based perception and in-
verse model-based learning interact. Switching from the former to the latter
is controlled by continuously comparing the current likelihoods with predefined
rejection thresholds. That is, as long as the MCG can predict the observed move-
ment, and as long as the MPG can predict the resonating motor commands, the
agent remains in perception mode. Beyond the scope of this paper, we briefly
mention that the other mode, i.e. acquiring motor structures that then can res-
onate to observed behavior, is a crucial problem for embodied agents. Our model
comprises the inverse models (Fig. 2, right-hand side) to analyze a demonstrated
behavior for new motor commands and programs, which are then inserted into
the graphs and can be tested and refined in subsequent imitation games [12,13].
The learning of motor schemas likewise can only succeed in social contexts, where
repeated demonstration-imitation interactions with informative feedback guide
the learner in finding the schema boundaries. While these acquisition processes
are subject of ongoing work, we note that the model presented here directly en-
ables behavior generation (internally or overtly) and, thus, imitation. This can
be mediated by each of the three levels. For example, when starting from the
highest level, the agent chooses a motor schema and then selects those com-
prised programs or commands with the highest priors, which encode how often
the agent has observed the corresponding performance for that motor schema. In
other words, the imitator tends to act in the way observed (and imitated) most



often. The schema-specific parameters for the motor commands indicate the ve-
locity and position changes for movements. The agent takes the mean values of
these parameters and simply executes the correspondingly set motor commands.

Horizontal integration also refers to how behavior perception and generation
in an embodied agent come to interact because they both employ identical mo-
tor structures. One direct consequence is that the behavioral tendencies of the
agent are affected by its perceptions. In our model, the a priori for each motor
representation in MCG, MPG or MSG is defined by default, depending on the
number of alternative hypotheses. However, during observing and perceiving a
gesture as described above, the a priori probabilities that match the observa-
tion are increased as an effect of the top-down propagations. We do not reset
these priors directly after perception to their default values, but let them decline
following a sigmoidal descent towards the default values. As a result, when pro-
ducing gestures the agent tends to favor those schemas, programs, and motor
commands that have been perceived last (cf. [8]).

The other way around, our model also allows to simulate so-called ”percep-
tual resonance” ([19]), which refers to the opposite effect of action on perception.
Since we use the same a priori probabilities for both generation and percep-
tion processes, we can model this phenomenon by simply increasing the a priori
probabilities of generated motor commands, programs and schemas temporarily.
This will bias the agent’s gesture perception toward the self-generated behavior,
which has been suggested to be another mechanism for coordination in social
interaction.

4 Results

We have implemented the proposed model for resonance-based gesture percep-
tion and evaluated it with real-world gesture data. In a setup with a 3D time-of-
flight camera (SwissRangerTMSR30001) and the marker-free tracking software
iisu2, the agent observes the hand movement of a user during several perfor-
mances of three different gestures: waving, pointing upwards, and drawing a
circle. These gestures are familiar to the agent and we report how the present
motor structures resonate, i.e., how the confidences of the alternative hypothe-
ses evolve during perceiving a gesture. All gestures have been started at the
same position increasing the agent’s uncertainty as to which gesture is per-
formed. Figure 5 (top-left) shows the agent’s MCG, which corresponds to the
spatial arrangement of the corresponding motor commands. This MCG is gen-
erated during learning by the corresponding inverse model after segmentation.
The overlaid dashed-line shows the trajectory of a demonstrated waving gesture.
The other subfigures show how the expectancies, i.e., resonances, of different mo-
tor commands (top-right), motor programs (bottom-left), and motor schemas
(bottom-right) evolve.

1 http://www.mesa-imaging.ch
2 http://www.softkinetic.net
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ities of the hypotheses currently entertained on the three motor levels (com-
mands/programs/schemas).

The motor commands in the MCG imply hypotheses about how familiar ges-
tures would proceed. While perceiving the demonstrated gesture, new hypotheses
are generated, old hypotheses are extended, and unlikely ones are omitted. At
each time step, one hypothesis corresponds to the most expected movement seg-
ment. Depending on the number of hypotheses, the maximum expectation value
changes over time and the winner threshold is adopted respectively. Figure 5
(top-right) shows a subset of the active motor commands hypotheses. The first
winning hypothesis indicates that the observed movement starts similar to a
pointing gesture, c7. Therefore, the agent thinks that the user is going to point
upwards (p4). However, after one second the user starts to turn his hand to
the right and, thus, the resonance of the motor commands c1 and c5 increases.
Consequently, the other gestures (p1 and p3) attain higher expectancies but the
agent still cannot be sure whether the user is going to draw a circle or wave to
him. After about two seconds, the agent perceives a swinging movement, which
is significantly similar to the waving gestures known to the agent. In result, the
agent associate the whole movement to waving schema and, e.g., could start to
perform a simultaneous imitation.



5 Conclusion

In this paper we have described a probabilistic model for simulating motor res-
onances and, thus, perception-action links in the processing of non-verbal be-
havior. Based on a hierarchy of graph-based representations of motor knowl-
edge, our model enables an embodied agent to immediately start to “resonate”
to familiar aspects of gestural behavior, from kinematic features of movement
segments (modeled through motor commands) to complete movements (motor
programs) to more general prototype representations (motor schemas) that cover
possible variants in a gesture’s performance. The hierarchical motor structures
of the agent are employed to realize two proposed key components of embod-
ied gesture perception, horizontal and vertical processing. The former refers to
prediction-evaluation schemes to figure out on each level which command, pro-
gram, or schema matches best an observed behavior; the latter refers to the
bottom-up and top-down flow of activation, which affords concurrent and incre-
mental abstraction and recognition of the perceived stimulus. The probabilistic
model proposed here implements these fundamental processes in an integrated
way. In this view, resonance of a particular motor unit is broken down to the
expectancy of its effects (if it were executed) given the evidence at hand (what
has been observed so far), given current activations of the connected motor
structures. Resonance thereby results from a Bayesian inference, in which we
take not only the conditional probabilities to change depending on what arrives
bottom-up, but also adjust the priors continuously in accordance to predictions
and biases that flow top-down. Evaluations with simulated and real-word data
(gesture trajectories) showed this approach’s potential for fast and incremental
perception–two properties indispensable for smooth social interaction. Building
upon the perceptual and motor representations employed in the agent architec-
ture thus paves the way for engaging in social behavior in a more human-like
way, including automatic coordination effects like motor mimicry, imitation, or
alignment.
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