
Predicting User-Cell Association in Cellular
Networks from Tracked Data
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Abstract. We consider the problem of predicting user location in the
form of user-cell association in a cellular wireless network. This is moti-
vated by resource optimization, for example switching base transceiver
stations on or off to save on network energy consumption. We use GSM
traces obtained from an operator, and compare several prediction meth-
ods. First, we find that, on our trace data, user cell sector association
can be correctly predicted in ca. 80% of the cases. Second, we propose
a new method, called “MARPL”, which uses Market Basket Analysis to
separate patterns where prediction by partial match (PPM) works well
from those where repetition of the last known location (LAST) is best.
Third, we propose that for network resource optimization, predicting the
aggregate location of a user ensemble may be of more interest than sepa-
rate predictions for all users; this motivates us to develop soft prediction
methods, where the prediction is a spatial probability distribution rather
than the most likely location. Last, we compare soft predictions meth-
ods to a classical time and space analysis (ISTAR). In terms of relative
mean square error, MARPL with soft prediction and ISTAR perform
better than all other methods, with a slight advantage to MARPL (but
the numerical complexity of MARPL is much less than ISTAR).

1 Introduction

Prediction of future user location is useful to a number of applications, includ-
ing home automation, road traffic management, wearable computers and con-
text aware applications [1–4]. We are interested in applying location prediction
to wireless cellular networks (GSM networks). We seek to estimate the future
number of users in different parts of the network, with granularity of a Base
Transceiver Station (BTS).
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This may have many applications, such as economizing the rental cost of
virtual networks, crowd management, provision of real-time network services, or
reduction of energy consumption. For example, it is shown in [5, 6] that turning
off some of the BTSs when there are few users to serve, and associating these
users to neighbouring cells, leads to significant energy savings while maintaining
quality of service. Indeed, telephony network operators identify scaling of energy
needs with traffic through sleep mechanisms as one of the research challenges of
interest for them [7].

As a first step, we would like to evaluate whether it is possible to make some
predictions of user association with BTSs, and which prediction methods can
be of help. The time scale is 2min, motivated by typical deployment times for
near real time network management. Our approach is based on mining the User-
Cell association records obtained by active tracking [8]. We evaluate several
prediction methods, such as Prediction by Partial Match (PPM), which was
successfully used in [1] for location prediction of single users and LAST, which
takes as prediction the last visited location. The results motivate us to propose a
new method, called “MARPL”, which uses Market Basket Analysis to separate
patterns where PPM works well from those where LAST is best.

Next, we argue that, in our context, one should make a distinction between
hard and soft prediction. The former predicts the most likely location, whereas
the latter gives a spatial distribution. We show how one can transform the hard
prediction methods of interest into soft prediction methods. We find that soft
predictions are more accurate on our data when tracking an ensemble of users.
As a benchmark, we also compare to a classical time and space analysis (ISTAR).
The main contributions of the paper are:

– description of a hard prediction method that builds on PPM and Market
Basket Analysis to improve prediction;

– transformation of a hard prediction method into a soft prediction method,
better suited to the prediction of total number of users at a location;

– comparison, using operator data, of PPM, MARPL, LAST and ISTAR;
– conclusion that user cell sector association can be correctly predicted in ca.

80% of the cases. In term of relative mean square error of user ensemble
location estimation, soft methods are better than hard ones, and MARPL
with soft prediction and ISTAR perform better than PPM or LAST, with
a slight advantage to MARPL (with the added benefit of lower numerical
complexity).

The rest of the paper is organized as follows. Section 2 describes the state of
the art. Section 3 describes our experimental data. In Section 4 we describe the
prediction methods we use. Section 5 presents experimental results and Section 6
concludes the paper.

2 Related Work

Location is an important feature for many applications, and wireless networks
can better serve their clients by anticipating client mobility.



González et al. in [9] study the trajectories of 100000 mobile phone users over
a six-month period. They conclude that the individual travel patterns collapse
into a single spatial probability distribution, indicating that it is possible to
obtain the likelihood of finding a user in a given location. This further implies
that it is possible to quantify the general phenomena driven by human mobility.

Some authors investigate how to obtain datasets which could reliably repre-
sent the user’s mobility patterns. Sohn et al. in [10] showed how coarse-grained
GSM data from mobile phones (e.g. readings like signal strength, cell IDs and
channel numbers of nearby base station towers) could be used to recognize high-
level properties of user mobility. Ashbrook and Starner showed how locations
of significance could be automatically learned from GPS data at multiple scales
[3]. They describe a system that clusters these data and incorporates them into
a predictive Markov model of user’s movements. The potential applications of
such models would include both single and multi user scenarios. Zang and Bolot
in [11] mine more than 300 million call records from a large cellular network
operator to characterize user mobility and create mobility profiles. They use
passive network monitoring namely in the form of Per Call Measurement Data
(PCMD) analysis. PCMD records contain data about voice, SMS and data calls
performed in the network together with the initial and final cell that served the
call. The authors focus mainly on cells where users make call, while we focus
purely on user mobility (our data set does not even contain information about
calls). Contrary to all these approaches, we use a data set obtained by active
tracking of selected users’ cell associations, without any further “external” loca-
tion indicators (such as GPS).

Another group of papers investigates methods for predicting user’s location.
Song et al. in [12] present extensive evaluation of location predictors, using a
two-year trace of over 6000 users of a Wi-Fi campus network. Even the simplest
classical predictors could obtain median prediction accuracy of about 72% over
all users with sufficiently long location histories, although accuracy varied widely
from user to user. The simple Markov predictors performed comparably or better
than the more complicated LZ predictors, with smaller data structures.

There exists a close relation between prediction of discrete sequences and
lossless compression algorithms. Begleiter et al. in [13] studied the performance
of a number of prominent algorithms for prediction of discrete sequences over
a finite alphabet, using variable order Markov models. The results show that
Prediction-by-Partial-Match (PPM) algorithm performed the best. In this paper,
we use their implementation of the so-called PPM–C method.

In [1], Burbey and Martin applied the PPM algorithm to data including
both temporal and location information. Tests on data traces from IEEE 802.11
wireless network showed that a first-order PPM model had 90% success rate in
predicting the user’s location, while the third order model was correct 92% of
the time. However the studies [12, 13, 1] were performed on data with different
attributes, and an order-of-magnitude lower number of distinct locations, or
general states, than in our study.



In this work, we discuss using probabilistic (soft) and aggregate predictions
for tracking an ensemble of users. When forecasting the aggregate of variables
measured over time and in different regions, it is plausible to assume that the
individual components will be spatially correlated. Giacomini and Granger in-
vestigate forecasting of a Space-Time Autoregressive model aggregate [14]. Min
et al. further exploit spatio-temporal correlations to road traffic prediction [4].
Their approach inspired us to formulate the Integrated Space-Time Auto Regres-
sive prediction model (ISTAR) (see Section 4.3).

Amongst other papers, Hightower and Borriello used a probabilistic approx-
imation algorithm implementing a Bayes filter, known as particle filter, to esti-
mate location [15]. Like us, they also use spatial probability distributions, but
they focus rather on indoor localization with an order of magnitude higher preci-
sion. Thus, their work is not directly applicable to our dataset. Bauer and Deru
notice that relevance of some piece of information is connected to the places a
user is likely to visit [16]. They used a variety of machine-learning techniques
to derive motion profiles of WLAN users. Their primary goal was not location
prediction; instead, they use these profiles to recommend the information which
might become useful to the observed user in the foreseeable future.

We end this section with a brief overview of traffic prediction models for
wireless networks. Shu et al. used seasonal autoregressive integrated moving
average (ARIMA) model to capture the behavior of a GSM network traffic stream
[17]. Tikunov and Nishimura use a technique known as Holt-Winter’s exponential
smoothing [18], while Hu and Wu use chaos theory [19].

3 Experimental Data

Mobile cellular networks contain various user data that can be used for location
estimation. In the spatial domain, typically the granularity is the user-cell as-
sociation. Finer precision may be gained using triangulation from multiple base
stations, but this requires additional sophistication (such as location services
platforms), either on the user terminal or on the network side.

Call Detail Records (CDRs) are stored by the telephony network operators.
They contain traffic data, including cell association, but only of active users.
Mobile terminals themselves may also report their GPS coordinates or currently
visible cells (e.g. Google Latitude [20]) over the network, but this requires user
cooperation. Cell association of passive, non-communicating users, is beyond
the reach of majority of methods, as those users are reporting their location
only sporadically using a procedure called location update. A location update is
done when a user crosses boundaries of the so called “location areas” (those are
geographically large, consisting of hundreds of cells) or after a significant time
(order of hours for the network studied in this work). Thus passive users must
be tracked actively — the user-cell association observations have to be polled or
user-reported.

Data used in this work were obtained by active tracking of a group of mobile
phone users (unlike in [9]), using the platform from [8]. The platform allows to



periodically poll and store cell association of a set of users in a real-time manner
and without user cooperation. The users were selected from a list of users who
did a location update in the studied network recently, the focus group being
foreign roamers. The polling interval was set to 2 minutes, and the association
was recorded for all selected users, including passive. The trace contains 72 hours
of tracking in December 2008, with 2731 distinct real users moving around in
an existing country-wide GSM network. The total number of cells visited by the
users was 7332 (not all cells of the network were visited).

For each user, we obtain a sequence of his/her associations, each being ei-
ther a Cell identification, or one of the special states: Offline, for users having
switched their mobile phones off; Rival, for users having left the network to a
rival national mobile operator; and Abroad, for users having left the network to
a foreign operator. The state space thus contains 7335 states.

The trace of user-cell associations represents a sequence of regular location
observations [12], the spatial dimension of user mobility. Although previous
work has experimented with incorporating both time and space into a single
sequence [1], due to the high number of distinct states and amount of data avail-
able we chose to deal just with the spatial dimension. Thus, we have removed
the Offline state from the data, as it seems to depend rather on time of day
heavily. We split the user traces around the Offline state.

When analyzing user mobility, we observe that the probability of staying at
the same location (i.e. being associated with the same cell) is very high and
only slowly decreasing over time (see Fig. 1, left), in harmony with [9]. The
fashion of selecting users for the tracking implies their higher mobility at the
beginning of tracking, as majority of the users are put into the tracking when
they are moving, the typical case being a roamer entering country (and the
studied network) traveling to a particular destination (see Fig. 1, right).

4 Predicting Location

Assume we have a finite set of users I = {1, 2, ..., I} and a finite set of cells (base
stations, access points, etc.) J = {1, 2, ..., J} of a cellular network. Assume we
can observe the cell association ai(t) ∈ J for any user i ∈ I and any time t ∈ N.
Let Ai = {ai(t)}, t ∈ N be a sequence of observations of cell association for a
user i ∈ I over discrete equidistant time slots. Let Yj(t) be the number of users
associated with cell j ∈ J in a time slot t ∈ N.

4.1 Hard vs. Soft Decisions

Assume Hi is a sequence of previous associations of a user i. We define the hard
decision location prediction problem as the task of finding a single location j ∈ J
with the highest Prob(j|Hi), where the user i will most likely be at the next
time slot. We define the soft decision location prediction problem as the task of
constructing a vector U i = [ui

j ], ui
j = Prob(j|Hi) of probabilities for a user i ∈ I

to be at any possible location j ∈ J.



Fig. 1. Left: Probability of a user being associated with the same cell, for different
time intervals, mean values over whole tracking. Right: 2-minutes mobility of users
as function of time interval from the start of the tracking. Due to specific focus on
roamers, mobility is higher at the start of the tracking.

While the predictors that provide a hard decision on the next location of the
user are useful in many applications, the “winner takes all” strategy does not
have to be optimal for all applications. One of them is the application we study
in this paper, where aggregation is used to obtain network-wide statistics about
numbers of users associated with individual cells (see Figure 2).

We formalize the task as follows: Knowing ai(s), i ∈ I, s ∈ {1, 2, ..., t−1} and
Yj(s), j ∈ J, s ∈ {1, 2, ..., t− 1} we want to predict Yj(t). For practical reasons,
as we do not want to store much historical data, we want to base the prediction
just on the last r values, i. e. on the values related to s ∈ {t−r, t−r+1, ..., t−1}.

4.2 Individual Hard Decision Methods

LAST predictor. The simplest possible predictor, which always uses the last
known value as the prediction, will be used as a reference for proposed methods.

PPM predictor. The well-known Prediction-by-Partial-Match (PPM) algo-
rithm that uses variable order Markov models. We use implementation of the
so-called PPM–C method provided by [13].

MARPL predictor. We propose a method called MARPL (MARket basket
analysis + Ppm + Last), which combines PPM and LAST predictors, after
splitting the problem into subproblems according to the last few associations of
the user, and choosing the best strategy for every subproblem independently.



Fig. 2. Example of a cellular network with BTS sites hosting multiple cells with dif-
ferent transceiver directions. A road is recognizable from the higher numbers of users.

The splitting is loosely inspired by the Market Basket Analysis method [21]
and its way of discovering hidden rules in the data, with the difference that the
original method was intended for unordered sets of elements instead of ordered
sequences. We construct set of all possible rules of order r, each rule being of
the form H1H2...Hr → P , where Hs ∈ {A,B,C...} represents the history of the
last r associations of a user and P ∈ {A,B,C...} represents the predicted asso-
ciation. The A,B,C, ... symbols are wildcards as we are interested in generally
applicable rules. For example rule AABB → B represents the situations where,
after observing a cell A twice and then another cell B twice, the next cell is B.

We define applicability and reliability of a rule as follows (L(rule) denotes
the left side of a rule, R(rule) the right side of a rule):

Applicability(rule) = # possible usages
# all predictions = Prob (L(rule)) , (1)

Reliability(rule) = # successful usages
# possible usages = Prob (R(rule)|L(rule)) . (2)

We split the problem as follows:

1. Use the LAST predictor on subproblems, where the rule corresponding to
the LAST predictor has strictly higher reliability than the PPM predictor
success rate (54,5%, see Section 5). See Table 1.

2. Otherwise use the PPM predictor with a fallback to the LAST predictor
on cases where the PPM is “not sure”. The level of certainty of the PPM
prediction can be obtained as the likelihood Prob(Predicted symbol|Hi); we
accept the PPM prediction only if its likelihood is above certain threshold.

Table 1 summarizes results of the analysis for our data and r = 4, which proved
best in the experiments. The thresholds were set according to the reliability of
the LAST predictor on the subproblem (see Table 1). The lower the percentage



of good predictions that LAST predictor would make, the lower the threshold
and, consequently, the lower the number of fallbacks to the LAST predictor.

The reason we chose to use directly the LAST predictor on some subproblems
(instead of using high threshold) is performance. The subproblems where we
use LAST predictor together make 77% of the cases, so the MARPL achieves
remarkable speedup of the prediction process, compared to the PPM predictor.

Finally, selection of the training data needs care. The staying pattern (rule
AAAA→ A) is dominant in the dataset, but useless for the PPM predictor, as
it will never be used on this kind of data. We considered three training phase
strategies — using all available data, using selected overlapping subsequences of
length r+ 1, and using selected non-overlapping subsequences of variable length.
The overlapping sequences strategy omitted the sequences that contained just
one symbol, the non-overlapping sequences strategy continued to grow the cur-
rent subsequence until the staying pattern was recognized, and then started a
new sequence, omitting the repeating symbols. The selected non-overlapping
subsequences proved best in the experiments and will be used further.

Table 1. Market Basket Analysis for sequences of associations Ai for rules of order 4.
Each row represents all rules with the same left side. The rules can be classified into two
user behaviour patterns — stay and move. Staying (represented by the AAAA → A
rule) prevails greatly, the rest of the rules relate to moving users. The star marks
the subproblems where the threshold chosen according to the reliability of the LAST
predictor did not perform well, and was changed to more appropriate value.

Rules
Applicability Reliability (%) LAST

Algorithm
Threshold (%,

(%) A B C D E reliability rounded up)

A, A, A, A →? 66.8 96 4 - - - 96 LAST -
A, B, C, D →? 8.7 0 1 2 18 79 18 PPM 18
A, A, A, B →? 4.0 29 45 26 - - 45 PPM 46
A, B, B, B →? 4.0 12 70 18 - - 70 LAST -
A, A, B, B →? 3.0 17 60 23 - - 60 LAST -
A, B, C, C →? 2.7 3 4 40 53 - 40 PPM 40
A, A, B, C →? 2.6 4 6 31 59 - 31 PPM 41*
A, B, B, C →? 2.3 4 8 30 58 - 30 PPM 31
A, A, B, A →? 1.6 67 21 12 - - 67 LAST -
A, B, A, A →? 1.6 72 16 12 - - 72 LAST -
A, B, B, A →? 0.9 55 31 14 - - 55 PPM 45*
A, B, A, B →? 0.7 41 48 10 - - 48 PPM 49
A, B, C, B →? 0.5 8 43 16 32 - 43 PPM 43
A, B, A, C →? 0.4 16 8 37 39 - 37 PPM 37
A, B, C, A →? 0.3 46 12 17 25 - 46 PPM 46



4.3 Aggregated Soft Decision Methods

In this section we transform MARPL and PPM predictors to provide soft de-
cisions. Then we propose another approach, that does not take into account
individual users and predicts the number of users directly.

MARPL soft predictor. The MARPL predictor provided just the single most
likely next location. Instead of it a vector U i = [ui

j ], ui
j = Prob(j|Hi), j ∈

{1, 2, ..., J} of probabilities for a user i to be at all the possible locations j ∈
{1, 2, ..., J} is now needed. We construct the vector as follows.
• For the subproblems where PPM is used, ui

j = Prob(j|Hi) where Hi is the
association history of user i.
• For the subproblems where LAST is used, ui

j = 1 if j is the prediction
obtained by LAST, ui

j = 0 otherwise.
• By aggregating the vectors U i for all the users i = {1, 2, ..., I} we obtain

the prediction Ŷj(t) =
∑

i={1,2,...,I} u
i
j .

PPM soft predictor. Created from the PPM predictor by the same procedure
as MARPL soft predictor (the second branch is never used).

Integrated Space-Time Auto Regressive model (ISTAR). The proposed
method is a time series analysis method inspired by [4] on road traffic prediction.
Assume we have an adjacency matrix Ai,j such that Ai,j = 1 if a user can move
from location i to location j within one time step (at the highest possible speed).
Otherwise Ai,j = 0. The matrix A is static, derived by comparing the distances
between all pairs of BTS with a fixed distance threshold D. Recall that Yj(t) is
the number of users at location j at time t. We apply differencing, as is common
in time series analysis, and define Xj(t) = Yj(t)− Yj(t− 1). The model is:

Xj(t) =
∑

i:Ai,j=1

αi,jXi(t− 1) + βjXj(t− 1) + ε(t) (3)

where ε(t) is Gaussian white noise. The parameters to be estimated are the
matrix α (J×J), the vector β (J×1) and the noise variance (J is the number of
locations). At time t, the prediction for Xj(t+1) is X̂j(t) =

∑
i:Ai,j=1 αi,jXi(t)+

βjXj(t). The parameters α and β are estimated by minimizing

σ̂2
t :=

1
tJ

∑
j

t∑
s=2

wt−s
(
Xj(s)− X̂j(s− 1)

)2

(4)

where w is a “forgetting” factor, close to 1 and less than 1. Finally, the one-step-
ahead prediction for Yj(t+ 1) is Ŷj(t) = X̂j(t) + Yj(t).

4.4 Algorithm Complexity

The complexity of predicting the next state of the whole network is considered.



PPM & MARPL. Given the implementation we use, the complexity of PPM
prediction for I users and histories of r associations is O(I ·J · r2). For MARPL,
the complexity of predicting is O(r) for the decision between the PPM and
LAST plus O(1) for the 77% of cases where the LAST predictor is used, or PPM
prediction complexity for the rest of the cases. For both, the time complexity of
learning one sequence of length n is O(n) and the space required for the worst
case is O(r · n), where r is the order of the model [13].

ISTAR. Theoretically, the complexity of predicting the next value for all J
locations is O(J2). The complexity of estimating the α and β parameters is
determined by the complexity of computing Equation 4 (O(t · J2) where t is
number of time slots) and complexity of minimization. As minimization algo-
rithm we use Matlab function lsqnonlin with default Trust-Region-Reflective
algorithm (whose complexity is O(iterations ·parameters)) on O(J2) parameters
corresponding to the fraction of ones in adjacency matrix A. Thus the overall pa-
rameter estimation worst case complexity is O(t ·J4 · iterations) and O(J2) space
is required. Practically, on large networks the matrix A will become sparse and
the J2 factor can be replaced with Ja, a ∈ [1, 2), leading to O(t ·J2a · iterations)
complexity.

For our data (I = 2731, J = 7335, r = 4, t = 60, n = ca. 170000) the
complexity (in terms of both space and time) of soft PPM and soft MARPL is
one order of magnitude lower than that of ISTAR.

5 Experimental Results

5.1 Individual Hard Decision Methods

Data. To use the PPM predictor the data need to be divided to training and test
groups. The original data of 2731 users were pseudo-randomly split to 20 groups
and experiments were repeated 20 times, each time with one group as test data
and the rest of groups used as training data. Each test group contained 96681
subsequences of length 4 with correct next association for evaluation purposes.

Comparing MARPL, PPM and LAST predictors. Figure 3 compares the
hard predictors by means of both percentage of correct predictions and distri-
bution of distances between the real and predicted cell. Note that 0m distance
between the real and predicted cell occurs in two cases — when correct sector
on correct base station is predicted (denoted as OK BTS+sector), and when
another sector on correct base station is predicted (denoted as OK BTS ). The
difference stems from the cellular network architecture, where a base station of-
ten holds more transceivers, serving different sectors and cells, most commonly
three.

The MARPL predictor performs best, achieving 79.3% success rate when
the exact prediction of BTS and sector is required, and 84.4% success rate when



Fig. 3. Comparison of hard predictors, cumulative distribution function of distances
between the real and predicted cell. Inset are pie charts showing overall success rate wrt.
exact next cell-ID prediction. For both PPM and MARPL only the results of the best
performing model are shown for brevity (order 2 for PPM, order 4 for MARPL). PPM
is markedly the worst of the predictors, LAST and MARPL provide similar results,
with slight advantage of MAPRL. However both PPM and MARPL can be improved
by introducing soft decisions, while LAST has no soft decision variant.

the prediction of BTS suffices. From the perspective of predicting user location
to switch off under-utilized hardware, the above results are encouraging, as the
lower distance errors prevail markedly. We can conclude that the MARPL is
able to predict correctly 94% associations with error up to 2500 metres, which
is acceptable given the typical cell overlays in cellular networks.

Surprisingly the PPM predictor performs worse than the LAST predictor.
The reason is that the LAST predictor builds on the low mobility of users (see
Figure 1), while PPM has to deal with problems related to the character of
our data — the high number of distinct cells to associate with, the consequent
training data shortage and finally the PPM predictor behavior when “not sure”.
Here PPM predicts the most frequent symbol of the training data (universal
Rival state for our data), while having in mind the Figure 1, the best strategy is
to predict the last known value. The MARPL predictor overcomes these problems
by using PPM on the subset of data coming from moving users, and LAST on
the data from staying users.

5.2 Aggregated Soft Decision Methods

Data. The splitting to training and test data was the same as in previous
section. From the test data, just the users with associations history long enough
to predict 60 consecutive time slots were selected, which makes 1296 users and
total of 77760 predictions in all 60 time slots.



Fig. 4. Comparison of aggregated soft and hard predictors over 60 consecutive time
slots, MSE. Top graphs show values for a single group of test data (96 users), bottom
graphs for all test groups (1296 users). The left graphs show variants of the MARPL
predictor, the right graphs of the PPM predictor. The reason why the MSEs are gen-
erally low, especially for single group of test data, is that we have only 96 (or 1296)
users moving around 7332 cells, which implies large number of empty cells (where all
predictors succeed), pushing the MSE down. Perhaps also surprising is that all predic-
tors improve over time, even though the LAST predictor obviously does not learn from
past data. This is due to the diminishing mobility of users over time (see Fig. 1).

Comparing soft and hard predictors. Fig. 4 compares the aggregated pre-
dictions from soft and hard versions of MARPL and PPM predictors by means
of mean squared error (MSE) between the vectors [Ŷj(T )], j ∈ J obtained using
the predictors, and the real vector [Yj(T )], j ∈ J. MARPL consistently achieves
lower MSE than the PPM predictor, and soft predictors consistently achieve
lower MSE than the hard predictors, both for single group of test users and for
all groups. The mean MSE for MARPL soft predictor is 0.070, which is just
66.4 % of the mean MSE of LAST (0.106) and 69.8 % of the mean MSE of PPM
soft (0.101).



Fig. 5. The ISTAR model performance given by means of MSE for different combina-
tions of parameters. The model improves with higher D and works best for w = 0.95.

On our dataset, the growing size of population does not affect the results.
While the absolute MSE grows with the number of users in the population, the
MSE relative to the number of users remains approximately the same, making
the order of the methods stable for all population sizes we considered.

Optimal parameters of the ISTAR model. The parameters of the model are
the “forgetting” factor w and distance thresholdD, which determines the number
of ones in adjacency matrix and thus the computation complexity. Figure 5
concludes that ISTAR improves with higher D and works best for w = 0.95.

Comparing aggregated location predictors and ISTAR model. Finally
we compare the aggregated results of the location predictors and of ISTAR
with optimal parameters. Due to the computational requirements of ISTAR (see
Section 4.4), the comparison was feasible on only a subset of 59 cells in one geo-
graphical district. The results of location predictors were obtained by restricting
the results from the experiment over the entire dataset to the selected cells.
This raises the question if it is fair to compare models trained on larger data
to ISTAR, but why ignore MARPL’s and PPM’s capability to train on larger
datasets. Regarding test data, the neighborhood errors at the region’s borders
may influence ISTAR, but not enough users associated to the selected cells for
60 consecutive time slots were available to fairly scale down the location predic-
tors tests. The results (see Table 2) conclude that the MARPL soft predictor
performs best out of the studied methods.

6 Conclusions

We show that predicting user location within a cellular network in the next
time interval, with the granularity of the associated BTS, is a feasible task with
acceptable performance. On our experimental data, best results are achieved
using a novel prediction method, MARPL, which combines Prediction by partial
match (PPM) and LAST location predictor, using Market Basket Analysis. This



Table 2. The overall MSE achieved by the studied methods (ordered from best to
worst). We specify the type of results for each method, for real number predictors (soft
predictors and ISTAR) rounding is considered.

Method MARPL ISTAR MARPL ISTAR MARPL PPM LAST PPM PPM
Decisions Soft - Soft - Hard Soft Hard Soft Hard

Result R R R → N R → N N R N R → N N

MSE 0.0715 0.0750 0.0864 0.0890 0.0949 0.1228 0.1263 0.1537 0.2144

is an initial result on a limited (size) and specific (roaming clients) data set —
general applicability to arbitrary cellular network mobility data will need to be
verified in the future.

Further, we argue that the soft, probabilistic prediction methods are more
useful in predicting the aggregate location of a user ensemble, as shown using
mean square error comparison. Predicting location as a probabilistic vector, or
aggregate location of an ensemble of users, makes sense due to a number of po-
tential applications focusing on network resource optimization. We show that the
soft methods in general outperform the hard ones, with MARPL requiring fewer
resources. In our future work, we intend to focus on practical applications of the
predictions for tasks such as economizing cellular network energy consumption.
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