Skip to main content

The Spatial Pheromone Signal for Ant Colony Optimisation

  • Conference paper
Book cover Intelligent Data Engineering and Automated Learning - IDEAL 2009 (IDEAL 2009)

Abstract

The effect of the passive insecticide on the ant colony Monomorius pharaonis is localised with minor losses – only one ant. The information on the insecticide location is transferred through the colony in all directions with great speed. After deserting the basic trail, a rapid consolidation of the new ant colony is probably established by the spatial pheromone signal. A simulation model for the time calculation and the number of ants necessary for the formation of the shortest way between the nest and the fictive food source was formed. The basic ant performances have a prevailing part in the shortest trail formation and those are: the range of the radius pheromone signal and the intensity of the pheromone trail evaporation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Darwin, C.: Origin of certain insticts. Nature 7, 417–418 (1873)

    Article  Google Scholar 

  2. Markle, T., Rost, M., Alt, W.: Egocentric path integration and their application to desert arthropods. Journal of Theoretical Biology 240(3), 385–399 (2006)

    Article  MathSciNet  Google Scholar 

  3. Stepankova, K., Pastalkova, E., Kalova, E., Kalina, M., Bures, J.: A battery of test quantitative examination of idiothetic and allothetic place navigation modes in humans. Behavioural Brain Research 147(1-2), 95–105 (2003)

    Article  Google Scholar 

  4. Ma (Sam), Z., Krings, A.W.: Insect sensory system inspired computing and communications. Ad Hoc Networks 7(4), 742–755 (2009)

    Article  Google Scholar 

  5. Jackson, D.E., Chaline, N.: Moduluation of pheromone trail strength with food quality in Pharaon’s ant, Monomorius pharaonis. Animal behaviour 74(3), 463–470 (2007)

    Article  Google Scholar 

  6. Sumpter, D.J.T., Beekman, M.: From nonlinearity to optimality: Pheromone trail foraging by ants. Animal Behaviour 66(2), 273–280 (2003)

    Article  Google Scholar 

  7. Niven, J.E.: Invertebrate Memory: Wide-Eyed Ants Retrieve Visual Snapshots. Current Biology 17(3), R85–R87 (2007)

    Google Scholar 

  8. Planque, R., Dechaume-Moncharmont, F.X., Franks, N.R., Kovacs, T., Marshall, J.A.R.: Why do house-hunting ants recruit in doth directions. Naturwissenschaften 94(11), 911–918 (2007)

    Article  Google Scholar 

  9. Franks, N.R., Britton, N.F., Sendova-Franks, A.B., Denny, A.J., Soans, E.L., Brown, A.P., Cole, R.E., Havardi, R.J., Griffiths, C.J., Ellis, S.R.: Centrifugal waste disposal and the optimization of ant nest craters. Animal Behaviour 67(5), 965–973 (2004)

    Article  Google Scholar 

  10. Teodorović, D.: Swarm intelligence systems for transportation engineering: Principles and applications. Transportation Research Part C: Emerging Technologies 16(6), 651–667 (2008)

    Article  Google Scholar 

  11. Wu, Z., Zhao, N., Ren, G., Quan, T.: Population declining ant colony optimization algorithm and its applications. Expert Systems with Applications 36(3), 6276–6281 (2009)

    Article  Google Scholar 

  12. Gutjahr, W.J., Sebastiani, G.: Runtime Analysis of Ant Colony Optimisation with Best-So-Far Reinforcement. Methodology and Computing in Applied Probability 10(3), 409–433 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pop, C.P., Pintea, C.M., Sitar, C.P.: An Ant-Based Heuristic for the Railway Traveling Salesman Problem. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 702–711. Springer, Heidelberg (2007)

    Google Scholar 

  14. Smith III, J.F., Nguyen, T.V.H.: Autonomous and cooperative robotic behavior based on fuzzy logic and genetic programming. Integrated Computer-Aided Engineering 14(2), 141–159 (2007)

    Google Scholar 

  15. Jackson, D., Holcombe, M., Ratnieks, F.: Coupled computational simulation and empirical research into the foraging system of Pharaoh’s ant (Monomorium pharaonis). Biosystems 76(1-3), 101–112 (2004)

    Article  Google Scholar 

  16. Vittori, K., Talbot, G., Gautrais, J., Fourcassié, V., Araújo, A.F.R., Theraulaz, G.: Path efficiency of ant foraging trails in an artificial network. Journal of Theoretical Biology 239(4), 507–515 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tanackov, I., Simić, D., Mihaljev-Martinov, J., Stojić, G., Sremac, S. (2009). The Spatial Pheromone Signal for Ant Colony Optimisation. In: Corchado, E., Yin, H. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2009. IDEAL 2009. Lecture Notes in Computer Science, vol 5788. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04394-9_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04394-9_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04393-2

  • Online ISBN: 978-3-642-04394-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics