Skip to main content

Calibration and Internal No-Regret with Random Signals

  • Conference paper
Algorithmic Learning Theory (ALT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5809))

Included in the following conference series:

Abstract

A calibrated strategy can be obtained by performing a strategy that has no internal regret in some auxiliary game. Such a strategy can be constructed explicitly with the use of Blackwell’s approachability theorem, in an other auxiliary game. We establish the converse: a strategy that approaches a convex B-set can be derived from the construction of a calibrated strategy.

We develop these tools in the framework of a game with partial monitoring, where players do not observe the actions of their opponents but receive random signals, to define a notion of internal regret and construct strategies that have no such regret.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubin, J.-P., Frankowska, H.: Set-valued Analysis. Birkhäuser Boston Inc., Basel (1990)

    MATH  Google Scholar 

  2. Azuma, K.: Weighted sums of certain dependent random variables. Tôhoku Math. J. 19(2), 357–367 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blackwell, D.: An analog of the minimax theorem for vector payoffs. Pacific J. Math. 6, 1–8 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blackwell, D.: Controlled random walks. In: Proceedings of the International Congress of Mathematicians, 1954, Amsterdam, vol. III, pp. 336–338 (1956)

    Google Scholar 

  5. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  6. Foster, D.P., Vohra, R.V.: Asymptotic calibration. Biometrika 85, 379–390 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Foster, D.P., Vohra, R.V.: Regret in the on-line decision problem. Games Econom. Behav. 29, 7–35 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fudenberg, D., Levine, D.K.: Conditional universal consistency. Games Econom. Behav. 29, 104–130 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hannan, J.: Approximation to Bayes risk in repeated play. In: Contributions to the theory of Games. Annals of Mathematics Studies, vol. 3(39), pp. 97–139. Princeton University Press, Princeton (1957)

    Google Scholar 

  10. Hart, S., Mas-Colell, A.: A simple adaptive procedure leading to correlated equilibrium. Econometrica 68, 1127–1150 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58, 13–30 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lehrer, E.: A wide range no-regret theorem. Games Econom. Behav. 42, 101–115 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lehrer, E., Solan, E.: Learning to play partially-specified equilibrium (manuscript, 2007)

    Google Scholar 

  14. Lugosi, G., Mannor, S., Stoltz, G.: Strategies for prediction under imperfect monitoring. Math. Oper. Res. 33, 513–528 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rustichini, A.: Minimizing regret: the general case. Games Econom. Behav. 29, 224–243 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sandroni, A., Smorodinsky, R., Vohra, R.V.: Calibration with many checking rules. Math. Oper. Res. 28, 141–153 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sorin, S.: Lectures on Dynamics in Games. Unpublished Lecture Notes (2008)

    Google Scholar 

  18. Vovk, V.: Non-asymptotic calibration and resolution. Theoret. Comput. Sci. 387, 77–89 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Perchet, V. (2009). Calibration and Internal No-Regret with Random Signals. In: Gavaldà, R., Lugosi, G., Zeugmann, T., Zilles, S. (eds) Algorithmic Learning Theory. ALT 2009. Lecture Notes in Computer Science(), vol 5809. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04414-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04414-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04413-7

  • Online ISBN: 978-3-642-04414-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics