Skip to main content

Learning Unknown Graphs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5809))

Abstract

Motivated by a problem of targeted advertising in social networks, we introduce and study a new model of online learning on labeled graphs where the graph is initially unknown, and the algorithm is free to choose the next vertex to predict. After observing that natural nonadaptive exploration/prediction strategies (like depth-first with majority vote) badly fail on simple binary labeled graphs, we introduce an adaptive strategy that performs well under the hypothesis that the vertices of the unknown graph (i.e., the members of the social network) can be partitioned into a few well-separated clusters within which labels are roughly constant (i.e., members in the same cluster tend to prefer the same products). Our algorithm is efficiently implementable and provably competitive against the best of these partitions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albers, S., Henzinger, M.: Exploring unknown environments. SIAM Journal on Computing 29(4), 1164–1188 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blum, A., Chawla, S.: Learning from labeled and unlabeled data using graph mincuts. In: Proc. 18th ICML. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  3. Blum, A., Lafferty, J., Rwebangira, M., Reddy, R.: Semi-supervised learning using randomized mincuts. In: Proc. 21st ICML. ACM Press, New York (2004)

    Google Scholar 

  4. Bryant, D., Berry, V.: A Structured family of clustering and tree construction methods. Advances in Applied Mathematics 27, 705–732 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balcan, N., Blum, A., Vempala, S.: A discriminative framework for clustering via similarity functions. In: Proc. 40th STOC. ACM Press, New York (2008)

    Google Scholar 

  6. Cesa-Bianchi, N., Gentile, C., Vitale, F.: Fast and optimal prediction of a labeled tree. In: Proc. 22nd COLT. Omnipress (2009)

    Google Scholar 

  7. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press, Cambridge (1990)

    MATH  Google Scholar 

  8. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. In: Proc. 31st FOCS, pp. 355–361. IEEE Press, Los Alamitos (1990)

    Google Scholar 

  9. Hanneke, S.: An analysis of graph cut size for transductive learning. In: Proc. 23rd ICML, pp. 393–399. ACM Press, New York (2006)

    Google Scholar 

  10. Hebster, M., Pontil, M.: Prediction on a graph with the Perceptron. In: NIPS, vol. 19, pp. 577–584. MIT Press, Cambridge (2007)

    Google Scholar 

  11. Herbster, M.: Exploiting cluster-structure to predict the labeling of a graph. In: Freund, Y., Györfi, L., Turán, G., Zeugmann, T. (eds.) ALT 2008. LNCS (LNAI), vol. 5254, pp. 54–69. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Herbster, M., Lever, G., Pontil, M.: Online prediction on large diameter graphs. In: NIPS, vol. 22. MIT Press, Cambridge (2009)

    Google Scholar 

  13. Herbster, M., Pontil, M., Rojas-Galeano, S.: Fast prediction on a tree. In: NIPS, vol. 22. MIT Press, Cambridge (2009)

    Google Scholar 

  14. Herbster, M., Lever, G.: Predicting the labelling of a graph via minimum p-seminorm interpolation. In: Proc. 22nd COLT. Omnipress (2009)

    Google Scholar 

  15. Joachims, T.: Transductive Learning via Spectral Graph Partitioning. In: Proc. 20th ICML, pp. 305–312. AAAI Press, Menlo Park (2003)

    Google Scholar 

  16. Kondor, I., Lafferty, J.: Diffusion kernels on graphs and other discrete input spaces. In: Proc. 19th ICML, pp. 315–322. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  17. Pelckmans, J., Shawe-Taylor, J., Suykens, J., De Moor, B.: Margin based transductive graph cuts using linear programming. In: Proc. 11th AISTAT. JMLR Proceedings Series, pp. 360–367 (2007)

    Google Scholar 

  18. Remy, J., Souza, A., Steger, A.: On an online spanning tree problem in randomly weighted graphs. Combinatorics, Probability and Computing 16, 127–144 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Smola, A., Kondor, I.: Kernels and regularization on graphs. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 144–158. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Yang, W.S., Dia, J.B.: Discovering cohesive subgroups from social networks for targeted advertising. Expert Systems with Applications 34, 2029–2038 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cesa-Bianchi, N., Gentile, C., Vitale, F. (2009). Learning Unknown Graphs. In: Gavaldà, R., Lugosi, G., Zeugmann, T., Zilles, S. (eds) Algorithmic Learning Theory. ALT 2009. Lecture Notes in Computer Science(), vol 5809. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04414-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04414-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04413-7

  • Online ISBN: 978-3-642-04414-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics