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Abstract

We analyze the expected cost of a greedy active learningitidgo Our analysis extends previous work to a more
general setting in which different queries have differeygts. Moreover, queries may have more than two possible
responses and the distribution over hypotheses may be iif@nmnSpecific applications include active learning with
label costs, active learning for multiclass and partiaklajueries, and batch mode active learning. We also discuss
an approximate version of interest when there are very maayiep.

1 Motivation

We first motivate the problem by describing it informally. dgine two people are playing a variation of twenty
guestions. Player 1 selects an object from a finite set, @adifi to player 2 to identify the selected object by asking
guestions chosen from a finite set. We assume for every odijecevery question the answer is unambiguous: each
guestion maps each object to a single answer. Furthermaore qriestion has associated with it a cost, and the goal of
player 2 is to identify the selected object using a sequehgeestions with minimal cost. There is no restriction that
the questions are yes or no questions. Presumably, corgalicaore specific questions have greater costs. It doesn’t
violate the rules to include a single question enumeratirth@ objects (Is the object a dog or a cat or an apple or...),
but for the game to be interesting it should be possible totiflethe object using a sequence of less costly questions.

With player 1 the human expert and player 2 the learning #lyor we can think of active learning as a game of
twenty questions. The set of objects is the hypothesis,dlasselected object is the optimal hypothesis with respect
to a training set, and the questions available to player Zabed queries for data points in the finite sized training set
Assuming the data set is separable, label queries are ugaous questions (i.e. each question has an unambiguous
answer). By restricting the hypothesis class to be a set sdiple labellings of the training set (i.e. the effective
hypothesis class for some other possibly infinite hypothelsiss), we can also ensure there is a unique zero-error
hypothesis. If we set all question costs to 1, we recovertuitional active learning problem of identifying the tatg
hypothesis using a minimal number of labels.

However, this framework is also general enough to coverigtyenf active learning scenarios outside of traditional
binary classification.

e Active learning with label costs If different data points are more or less costly to label, \@a model these
differences using non uniform label costs. For example, ldreger document takes longer to label than a
shorter document, we can make costs proportional to docueregth. The goal is then to identify the optimal
hypothesis as quickly as possible as opposed to using asafeislas possible. This notion of label cost is
different than the often studied notion of misclassificatost. Label cost refers to the cost of acquiring a label
at training time where misclassification cost refers to th& of incorrectly predicting a label at test time.

e Active learning for multiclass and partial label queries We can directly ask for the label of a point (Is the
label of this point “a”, “b”, or “c"?), or we can ask less spiciguestions about the label (Is the label of this point
“a” or some other label?). We can also mix these questiorstypesumably making less specific questions less
costly. These kinds of partial label queries are parti¢dylanportant when examples have structured labels. In



Figure 1: Decision tree view of active learning. Internaties are questions (label queries), branches are answers
(label values), and leaves are target objects (hypothe3é® cost of identifying a target object is the sum of the
guestion costs along the path from the root to that object.

a parsing problem, a partial label query could ask for théipoof a parse tree corresponding to a small phrase
in a long sentence.

e Batch modeactivelearning Questions can also be queries for multiple labels. In theeme case, there can be
a question corresponding to every subset of possible sdejkepoint questions. Batch label queries only help
the algorithm reduce total label cost if the cost of queryfimga batch of labels is in some cases less than the
of sum of the corresponding individual label costs. Thids ¢ase if there is a constant additive cost overhead
associated with asking a question or if we want to minimizeetspent labeling and there are multiple labelers
who can label examples in parallel.

Beyond these specific examples, this setting applies toetivedearning problem for which different user interaato
have different costs and are unambiguous as we have defirmdexBmple, we can ask questions concerning the
percentage of positive and negative examples accordiniget@mptimal classifier (Does the optimal classifier label
more than half of the data set positive?). This abstradhgediso has applications outside of machine learning.

e Information Retrieval We can think of a question asking strategy as an index intsg¢hef objects which can
then be used for search. If we make the cost of a question fhected computational cost of computing the
answer for a given object, then a question asking stratetfylai cost corresponds to an index with fast search
time. For example, if objects correspond to point$tihand questions correspond to axis aligned hyperplanes,
a question asking strategy iskd-tree.

e Compression A question asking strategy produces a unique sequencepfiress for each object. If we make
the cost of a question the log of the number of possible resgroio that question, then a question asking strategy
with low cost corresponds to a code book for the set of objeittssmall code length [5].

Interpreted in this way, active learning, information ietal, and compression can be thought of as variations of the
same problem in which we minimize interaction cost, comfiortecost, and code length respectively.

In this work we consider this general problem for averageeaast. The object is selected at random and the goal
is to minimize the expected cost of identifying the seleabgbct. The distribution from which the object is drawn is
known but may not be uniform. Previous work[[L1, 6,/1,/3, 4] slagwn simple greedy algorithms are approximately
optimal in certain more restrictive settings. We extendéhesults to our more general setting.

2 Preliminaries

We first review the main result of Dasguplta [6] which our fireubd extends. We assume we have a finite set of
objects (for example hypothese)with |H| = n. A randomly chose* € H is our target object with a known
positiver(h) defining the distribution ovell by whichh* is drawn. We assumain;, 7(h) > 0 and|H| > 1. We also
assume there is a finite set of questignsy., ...¢,, €ach of which has a positive cast, ¢s, ...c,,,. Each question;
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Algorithm 1 Cost Sensitive Greedy Algorithm
1. S<H
2: repeat
3 i =argmax A;(S,7mg)/c;
S<{seS:qls)=qh")}

until |[S] =1

a m

maps each object to a response from a finite set of ansWér$Jh7i{qi(h)} and askingy; revealsy; (h*), eliminating
from consideration all objects for which ¢;(h) # ¢;(h*). An active learning algorithm continues asking questions
until »* has been identified (i.e. we have eliminated all but one ottlments fronH). We assume this is possible
for any element inif. The goal of the learning algorithm is to identifly with questions incurring as little cost as
possible. Our result bounds the expected cost of idengfiin

We assume that the distribution the hypothesis clasH, the questiong;, and the costs; are known. Any
deterministic question asking strategy (e.g. a detertigrastive learning algorithm taking in this known inforrat)
produces a decision tree in which internal nodes are quesséind the leaves are elementdhf Thecost of a query
tree T with respect to a distribution, C'(T, 7), is defined to be the expected cost of identifykifgvhenh* is chosen
according tor. We can writeC(T',7) asC(T,w) = 3,y 7(h)cr(h) wherecr(h) is the cost to identify, as the
target objectcr (k) is simply the sum of the costs of the questions along the path the root off” to 4. We define
ms to ber restricted and normalized w.r§. Fors € S, mg(s) = w(s)/m(S), and fors ¢ S, ms(s) = 0. Tree cost
decomposes nicely.

Lemmal. ForanytreeT andany S = |J, S*withV; ;SN ST =0, S # 0

C(T,7s) = Zws(si)C(T, Tgi)

We define theversion space to be the subset dff consistent with the answers we have received so far. Qusstio
eliminate elements from the version space. For a quesgtiand a particular version space C H, we define
Si & {s e S:q(s) = j}. With this notation the dependence gnis suppressed but understood by context. As
shorthand, for a distribution we definer(S) = > 4 7(s). On average, asking questignshrinks the absolute
mass ofS with respect to a distribution by

N m(SI m(S9)2
Asim) & Y TS (st = a(s) - 30 T

JEA k#j JEA

We call this quantity thehrinkage of ¢; with respect tq(S, 7). We noteA; (.S, ) is only defined ifr(S) > 0. If ¢;
has cost;, we callw the shrinkage-cost ratio of ¢; with respect tqS, 7).

In previous work![5| 1, 13], the greedy algorithm analyzechis algorithm that at each step chooses the question
¢; that maximizes the shrinkage with respect to the currergiorrspace),(S, 7s). In our generalized setting, we
define thecost sensitive greedy algorithmto be the active learning algorithm which at each step askguiestion with
the largest shrinkage-cost ratlo; (S, 7s)/c; whereS is the current version space. We call the tree generateddy th
method the greedy query tree. See Algorifim 1. Adler andiHger1] also analyzed a cost-sensitive method for the
restricted case of questions with two responses and unifoand our method is equivalent to theirs in this case. The
main result of Dasguptal[6] is that, on average, with unit€asd yes/no questions, the greedy strategy is not much
worse than any other strategy. We repeat this result here.

Theorem 1. Theorem 3 [6] If |A| = 2 and Vi ¢; = 1, then for any 7 the greedy query tree 79 has cost at most

O(17,7) < 4C* In1/(min = (h)

where C* = miny C (T, ).
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For a uniform,r, the log term becomds |H |, so the approximation factor grows with the log of the numtder
objects. In the non uniform case, the greedy algorithm casigluficantly worse. However, Kosaraju et al.|[11] and
Chakaravarthy et al.[[3] show a simple rounding method candeel to remove dependenceon We first give an
extension to Theoref 1 to our more general setting. We then gle how to remove dependencemnsing a similar
rounding method. Interestingly, in our setting this roumgdinethod introduces a dependence on the costs, so neither
bound is strictly better although together they generallkprevious results.

3 Cost Independent Bound
Theorem 2. For any 7 the greedy query tree 79 has cost at most

9 * ;
C(T9,7) <12C*In 1/(}11%1;1177(@)

where C* £ ming C(T, ).

What is perhaps surprising about this bound is that the tyualiapproximation does not depend on the costs
themselves. The proof follows part of the strategy used bsgDptal[6]. The general approach is to show that if the
average cost of some question tree is low, then there mugtlbash one question with high shrinkage-cost ratio. We
then use this to form the basis of an inductive argument. Mewthis simple argument fails when only a few objects
have high probability mass.

We start by showing the shrinkage@fmonotonically decreases as we eliminate elements fom

Lemma 2. Extension of Lemma 6 [I6] to non binary queries. If T C S C H,and T # 0 then, Vi, 7, A;(T,m) <
AZ(S, 7T).

Proof. For|S| = 1 the result is immediate sind&| > 1 and therefore5 = T. We show that if S| > 2, removing
any single element € S\ T from S does not increasi; (.S, 7). The lemma then follows since we can remove all of
S\ T from S an element at a time. Assume w.l.cagc S* for somek. Here letA’ = A\ {k}

(o g1 o (T(8F) = (@) (w(S) — m(ST) m(87)(n(S) — m(S7) — m(a))
Al tehm = =(S) — 7(a) NP
We show that this is term by term less than or equal to
(g TSH)(R(S) —7(S) m(87)(m(S) — m(57))
S T R DA €

For the first term
((S*) = 7m(a))(x(S) = 7(S*)) _ 7(S*)(x(S) —7(S¥))

w(S) — 7m(a) 7(S)

becauser(S) > m(S*) and=(a) > 0. For any other term in the summation,

<

m(87)(w(S) — 7(87) = w(a) _ m(S7)(x(S) —7(57))
m(S) = m(a) B 7(S)
becauser(S) — 7(S7) > m(a) > 0 andr(S) > 7 (a). O

Obviously, the same result holds when we consider shrinkageratios.
Corollary 1. f T C S C H,andT # 0 thenfor any i, m, A;(T,7)/c; < Ay(S,7)/c;.

We define thecollision probability of a distributionv over Z to beCP(v) £ >, v(z)? This is exactly the
probability two samples from will be the same and quantifies the extent to which mass isardrated on only a few
points (similar to inverse entropy). If no question has gdashrinkage-cost ratio and the collision probability is,lo
then the expected cost of any query tree must be high.
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Lemma 3. Extension of Lemma 7 [|6] to non binary queries and non uniform costs. For any set S and distribution v
over S, if Vi A;(S,v)/c; < AJe, thenfor any R C S with R # () and any query tree T whose leaves include R

c

C(T,vg) > ZU(R)(l — CP(vR))

Proof. We prove the lemma with induction dR|. For|R| = 1, CP(vg) = 1 and the right hand side of the inequality
is zero. ForR > 1, we lower bound the cost of any query tree®nAt its root, any query tree chooses sogavith
costc; that divides the version space inltJ for j € A. Using the inductive hypothesis we can then write the cost of
atree as

O(T.vr) > et Y va(R) 5 (o)1~ CPop))

JEA
= et go(R) Y (wr(R)? — (R’ CP(up)
JEA
= i+ $uR)A -1+ Y vn(R)? - CP(vg))

JEA

Here we used

ZUR R7)2CP(vgs) ZUR R7)? Z vRi(r Z’UR = CP(vg)

JEA JjEA reRrJ reR
We now notev(R)(1 — 3=,y vr(R/)?) = v(R) — 3 c 4 v(R7)?/v(R) = Ay(R, v)
C(T,vg) > q+§mmu_cmW»_A(RmK
Ac; — Ay(R,v)c

= SW(R)1 - CP(vg)) + 5

A

Using Corollanf1 A;(R,v)/c; < A;(S,v)/c; < A/c, s0Ac; — A;(R,v)ec > 0 and therefore

v(R)(1 = CP(vr))

which completes the induction. O

C(R, ’Us) >

l>|0

This lower bound on the cost of a tree translates into a lowentd on the shrinkage-cost ratio of the question
chosen by the greedy tree.

Corollary 2. Extension of Corollary 8 [|€] to non binary queries and non uniformcosts. For any S C H with S # ()
and query tree T" whose leaves contain S, there must be a question ¢; with A; (S, 7g)/¢; > (1 — CP(wg))/C(T, ws)

Proof. Suppose this is not the case. Then there is sAmre< (1 — CP(wg))/C(T, ms) such thaw'i A;(S,mg)/c; <
A/c. By Lemmd3 (withv £ 75, R £ 9),

C(T,7mg) > ms(95) 1-— CP(Trs)) > Fs(S)C(T, 7Ts) =C(T, 7T5)

C
A
which is a contradiction. O

A special case which poses some difficulty for the main prsefhien for some& C H we haveCP(wg) > 1/2.
First note that ifCP(7s) > 1/2 one objecthy has more than half the mass 6f In the lemma below, we use
R 2 S\ {ho}. Also letd; be the relative mass of the hypotheses?itthat are distinct fronh, w.r.t. question;.

UWEETR-2009-0005 5



m(ho) = 1120  w(hs) = 1/20 for i = 1.9

(h Sl = {ho} SZ = {hl,hg, ...hg}

Shrinkage of ¢ = .495
All of R separated from hg by ¢1

St = {ho, by} St = {h;} fori=2..9 I:I |:| I:I

Co = 0 cost

q2
1 2 3
Shrink: f 62 OD cost /
rinkage of g = .
8/9 of R separated from hg by g2 Sd

Figure 2: Left: Counter example showing that when a singfeollyesis:y contains more than half the mass, the query
with maximum shrinkage is not necessarily the query thaaisgps the most mass frag. Right: Notation for this
case.

§; = mr({r € R : q;(ho) # g:(r)}) In other words, when questian is asked R is divided into a set of hypotheses
that agree witth (these have relative mass- ;) and a set of hypotheses that disagree wiitithese have relative
mass);). Dasguptal[6] also treats this as a special case. Howenttigimore general setting treated here the situation
is more subtle. For yes or no questions, the question chaosttelgreedy query tree is also the question that removes
the most mass fron®. In our setting this is not necessarily the case. The leftigfife[2 shows a counter example.
However, we can show the fraction of mass removed fi@ry the greedy query tree is at least half the fraction
removed by any other question. Furthermore, to handle cestenust instead consider the fraction of mass removed
from R per unit cost.

In this lemma we usey;,,; to denote the distribution which puts all mass/gn The cost of identifyingi, in a
treeT™* is thenC* (ho) £ C(T™*, T(py})-

Lemma4. Consider any S C H and 7 with CP(rs) > 1/2 and w(ho) > 1/2. Let C*(ho) = C(T™, ) for any
T* whose leaves contain .S. Some question g; has d; /c; > 1/C*(hg).

Proof. There is always a set of questions indexed by thd seith total cost) ,_; ¢; < C*(ho) that distinguishhg
from R within S. In particular, the set of questions used to idgniif in T satisfy this. Since the set identifiés,
> icr 0 > 1 which implies
C; 51
— 1 >1/C*(h
ZGZIC*(hO) e = /C ( 0)

Because; /C*(hg) € (0,1] and}_,._; ¢;/C*(ho) < 1, there must be & such thav,;/c; > 1/C*(ho). O

el
Having shown that some query always reduces the relative ofa® by 1/C*(h) per unit cost, we now show
that the greedy query tree reduces the magds by at least half as much per unit cost.

Lemma5. Consider any 7 and S C H with CP(rg) > 1/2, w(ho) > 1/2, and a corresponding subtree T in the
greedy tree. Let C*(hg) = C(T™,myp,y) for any T* whose leaves contain S. The question ¢; chosen by T has
Proof. We prove this by showing that the fraction removed fr@rper unit cost by the greedy query tree’s question is
at least half that of any other question. Combining this wigmmd4, we get the desired result.

We can write the shrinkage @f in terms ofd;. Here letA’ 2 A\ {gi(ho)}. Sincer(S%")) = r(hg) +
(7(S) — &;w(R)), andr(S) — n(S% () = §;7(R), we have that

Ai(S,7s) = (ms(ho) + (1 = 6;)ms(R))ims (R) + D ms(S7)(ws(S) — ms(S57))
JEA’
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We use) " ms(S7) = dims(R).
We can then upper bound the shrinkage usig¢S) — 75 (S57) <
Ai(S,ms) < (ms(ho) + (1 = di)ms(R))dims(R) + dims (R) < 26;ms(R)
and lower bound the shrinkage using(ho) > 1/2 andrg(S) — 75(S7) > ms(ho) + (1 — &;)ws(R) foranyj € A’
Ai(S,mg) = 2(ms(ho) + (1 = 6i)ms(R))dims(R) = dims(R)

Let ¢; be any question ang; be the question chosen by the greedy tree givings, 7s)/c; > Ai(S,7s)/c.
Using the upper and lower bounds we derived, we then Kiigws (R)/c; > §;7s(R)/c; and can conclud®d; /c; >
8:/c;. Combining this with Lemm@l43; /c; > 1/(2C*(ho). O

The main theorem immediately follows from the next theorem.

Theorem 3. If T* isany query treefor = and 7' is the greedy query tree for 7, then for any S C H corresponding to
the subtree 7' of T,

C(T2, ms) < 120(T*, mg) n — )

s 718) = s mingegs 7(h)

Proof. In this proof we us€*(.5) as a short hand far'(T*, 7). Also, we usenin(S) for minscs 7(.5). We proceed

with induction on|S|. For|S| = 1, C(T¥,rs) is zero and the claim holds. Fg§| > 1, we consider two cases.
Caseone: CP(wg) < 1/2

At the root of 7', the greedy query tree chooses somwith costc; that reduces the version spaceStowhen
qi(h*) = j. Letn(ST) £ max{m(S7) : j € A} Using the inductive hypothesis

C(Tg,ﬂ's) = ¢+ Zﬂs(S'j)C(Tsj,ﬂ'sj)
JEA

7(S7)

min(.S7)

IN

i+ 12m(57)C*(S7) In

JEA

< o +120) ] ms(S)C () In
JjEA

Now using Lemmallz(S*) = 7(S)rs(S™), and therin(l — z) < —x

S)
g < . * 7T( * —+
C(TS,ms) < ¢i+120%(S)In TG 12C*(S) In7g(S)

m(5)
min(.5)

ms(ST) > 3,4 ms(S7)? because this sum is an expectation fds(S*) > m5(S7). From this follows

< ¢ +120%(S)In —12C*(S)(1 — 75(S™))

OTgms) < 4 120°(8)n E0s = 120°(S)(1 = 3wl s'))
(5) =~
= et 120°(8) n ) 105y, LT Zaea TS (5)7)
min(S) i
(1=3,cams(87)%) is Ai(S, ms), so by Corollary P and usingP(7s) < 1/2
; 4 120°(8) I ) 190 (5), L= CPUms)
C(Tg,ms) < ¢ +12C*(S)n min(9) 12C%(8)¢; o5
= ¢ +12C%(S)n I;I(f;) —12(1 — CP(3))ci
- 7(S)
< 12C0*(S)In — T
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which completes this case.
Casetwo: CP(wg) > 1/2

The hypothesis with more than half the mass, lies at some depth in the greedy tre@J. Counting the root of
T¢ as depthd, D > 1. At depthd > 0, letqo, q1,...qq—1 be the questions asked so fay, c1, ...cq_1 be the costs of
these questions, and,; = ZZ _o ¢i be the total cost incurred. At the rodty = 0.

At depthd < D, we defineR, to be the set of objects other thap that are still in the version space along the
path tohg. Ro = S\ {ho} and ford > 0 Ry = Rq—1 \ {h : qa—1(h) # qa—1(ho)}. In other words,Ry is Ryq_1
with the objects that disagree withy on ¢;_; removed. All of the objects iR, have the same response/asfor
40,91, ---,Ga—1. The right of FiguréR shows this case.

We first bound the mass remainingiity as a function of the label cost incurred so far. Eor 0, using Lemmals,

d—1
I I Ci —Ca/(2C" (ho))
< — ) <
T‘—(Rd) > T‘—(RO) i:O(l 20*(h0)) = W(Ro)e

Using this bound, we can bouiith, the cost of identifyingu, (i.e. C(T¢, ho)). First note thatr(Rp_1) > min(Ry)
since at least one objectis leftiy ;. Combining this with the upper bound on the mas&gfwe have ifD—1 > 0.

CD—l S 20*(]10) 1D(W(R0)/mln(Ro))

This clearly also holds iD — 1 = 0, since,Cy = 0. We now only need to bound the cost of the final question (the
question asked at levéd — 1). If the final question had cost greater th&®i* (), then by Lemma&l5, this question
would reduce the mass of the set containiggo less thanr(hg). This is a contradiction, so the final question must
have cost no greater tha@* (hy).

. 7(Ro) .
<
CD S 2C (ho) In Inin(Ro) + 2C (ho)

Weused), | £ 2 A\qq_1(ho). Lets € Si be the set of objects removed fraRy_; with the question at depth 1
such thatgg—1(s) = j, thatisRa—1 = Ra+ Ujeca, | S7. LetS, = Usea, | S7. The right of FiguréR illustrates
this notation. A useful variation of Lemnia 1 we use in thedwaifing is that forS = S' U S? andS' N 5% = 0,
7(S)C*(S) = m(SH)C*(SY) + n(S?)C*(S?).

We can write

W(S)C(Tgvﬂ's) é hO CD+Z Z Cd+C( SJ,TFSJ))

d=1jecA!,_,

b 7(S%)

< 7(ho)Cp + Sd Cqg+ SJ 12C* SJ) - d’
Z ; 7€AZ 1 min(S%)

é w(ho)Cp + (Ro)Cp + 127(Rp)C*(Rp) In m(Ro)

- min(Ry)

d . m(Ro)

<

< 27(ho)Cp + 127(Rp)C*(Ro) In min(Ro)

Here a) decomposes the total cost into the cost of identjfinand the cost of each branch leaving the path¢o
For each of these branches the total cost is the cost incaoréal plus the cost of the tree rooted at that branch. b)
uses the inductive hypothesis, c) usesS; N S; = 0 andlJ, Sq = Ry, and d) uses(Ry) < m(ho). Continuing

W(RQ) (RO)
min(Ry) min(Ro)

n(S)O(Te,ms) < 4m(ho)C™ (ho)(In +1) + 127 (Ro)C*(Ro) In

A<

. 7(9) * ( )
A7 (ho)C™ (ho)(In min(S) +1) +127(Ro)C™ (Ro) In mln(S)
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where a) uses our bound 6y and b) usesy C S. Finally

S) 7(S)
g < * ﬂ—( *
W(S)C(TS,TFs) S 127T(h0)0 (ho) In mm(S) + 127T(R0)C (RO) In mm(S)
_ ] (S)
= 7(5)12C*(S)In min(S)
where we user(S) > 2min(S) and thereforén ﬁf;) > In2 > .5. Dividing both sides byr(S) gives the desired
result. O

4 Distribution Independent Bound

We now show the dependence srcan be removed using a variation of the rounding trick usedsaraju et al.
[11] and Chakaravarthy et al. [3]. The intuition behind ttrisk is that we can round up small valuesoto obtain
a distributionz” in which In(1/ minpeg 7'(h)) = O(Inn) while ensuring that for any tre€, C(T,x)/C(T, ")
is bounded above and below by a constant. Here |H|. When the greedy algorithm is applied to this rounded
distribution, the resulting tree gives &l{log n) approximation to the optimal tree for the original disttilon. In our
cost sensitive setting, the intuition remains the samethmiintroduction of costs changes the result.

Let cmax = max; ¢; andemin = min; ¢;. In this discussion, we considireducible query trees, which we define
to be query trees which contain only questions with non-atminkage. Greedy query trees will always have this
property as will optimal query trees. This property let'sassume any path from the root to a leaf has at masides
with cost at most,,,,.n because at least one hypothesis is eliminated by each gueBgfiner’ to be the distribution
obtained fromr by addingemin/ (cmaxn®) Mass to any hypothesisfor which 7w(h) < cmin/(cmaxn®). Subtract the
corresponding mass from a single hypothégifor which(h;) > 1/n (there must at least one such hypothesis). By
construction, we have thatin; 7’ (h;) > cmin/(cmaxn’). We can also bound the amount by which the cost of a tree
changes as a result of rounding

Lemma 6. For any irreducible query treeT" and 7,

%C’(T, 7) < O(T,x') < SC(T, )

Proof. For the first inequality, lek’ be the hypothesis we subtract mass from when rounding. Téte@alentifyh’,
cr(h') is at mostey,.xn. Since we subtract at mosti, /(cmaxn?) Mass andr (k') < cmaxn, we then have

C(T, ') 2 OT,m) = ™ en(W) > O(T,m) = 22 > ZC(T,m)

CmaxTl n

The last step uses a7, ) > cpmin @andn > 2. For the second inequality, we add at magst, / (cmaxn®) mass to
each hypothesis and;, cr(h) < cmaxn?, SO

Cmin Cmin 3
C(T, ) < C(T,m)+ > = er(h) < C(T,m) + =22 < SC(T )
heH
The last step again us€§7', ) > cuyin andn > 2 O

We can finally give a bound on the greedy algorithm applied'tan terms ofn andcax /Cmin

Theorem 4. For any 7 the greedy query tree T for 7’ has cost at most

C(T9, 1) < O(C* In(n22%Y)

Cmin

where C* £ ming O(T, ).

UWEETR-2009-0005 9



Algorithm 2 e-Approximate Cost Sensitive Greedy Algorithm
1. S<H
2: repeat
3: Find: SOAZ'(S, 7r5)/ci > (1 — 6) max; Alj(S, 7T5)/Cj
4 S<{seS:q(s)=q(H)}
5. until |S| =1

Proof. Let7” be an optimal tree fot’ andT™* be an optimal tree for. Using Theoreml2nin; 7/ (h;) > cmin/(Cmaxn®),
and Lemmalkp.

C(T9, 1) <2C(T9,7') < 72C(T", 7') In(n 222X

Cmin

<720(T*, ') In(n S22 < 108C(T*, ) In(n 22

Cmin Cmin

5 e-Approximate Algorithm

Some of the non traditional active learning scenarios wwallarge number of possible questions. For example, in the
batch active learning scenario we describe, there may bestiqn corresponding to every subset of single data point
guestions. In these scenarios, it may not be possible tdlgxfd the question with largest shrinkage-cost ratioslt i
not hard to extend our analysis to a strategy that at eacHistépa question; with

Al(S, Ws)/ci 2 (1 — 6) m?xAj(S, 7T5)/Cj

for e € [0,1). We call this thec--approximate cost sensitive greedy algorithm. Algoriffmu@ines this strategy. We
showe > 0 only introduces an /(1 — ¢) factor into the bound. Kosaraju et al. [11] report a simileteasion to their
result.

Theorem 5. For any 7 the e-approximate greedy query tree T' has cost at most

C(T,m)<(12/(1—¢))C*In 1/(}1%1;11 7w(h))

where C* = ming C (T, 7).

This theorem follows from extensions of Corollédy 2, Lenimhaid Theorerhl3. The proofs are straightforward,
but we outline them below for completeness. It is also shthigward to derive a similar extension of Theorem 4.
This corollary follows directly from Corollary]2 and theapproximate algorithm.

Corollary 3. For any S C H and query tree T" whose leaves contain .S, the question ¢; chosen by an e-approximate
query treehas A; (S, ws)/c; > (1 —€)(1 — CP(rwg))/C(T, ws)

This lemma extends Lemria 5 to the approximate case.

Lemma 7. Consider any = and S C H with CP(7g) > 1/2 and a corresponding subtree T’ in an e-approximate
greedy tree. Let C*(ho) = C(T™*, 7y, ) for any T, The question ¢; chosen by T's hasd; /c; > (1 —¢€)/(2C*(ho)). .

Proof. The proof follows that of Lemmial 5. We show the fractionf®femoved for unit cost by the-approximate
greedy tree is at leagl — ¢)/2 that of any other question. Using Lemia 4 the result themvl Letg; be any
question andy; be the question chosen by arapproximate greedy treed;(S,ns)/c; > (1 — €)Ai(S,7s)/ci.
Using upper and lower bounds from Lemfja 5, we then k@éyrs(R)/c; > (1 — €)d;ms(R)/c; and can conclude
26;/(cj(1 —€)) > 8;/ci. The lemma then follows from Lemrha 4. O

Theorem 6. If 7™ is any query tree for = and 7 is an e-approximate greedy query tree for 7, then for any S C H
corresponding to the subtree T'§ of T,

O™, ms) <
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k> 2 Nonuniforme; Nonuniformm  Result
Kosarajuetal. [11] | Y N Y O(logn)
Dasgupta [6] N N Y O(log(1/ minp, w(h)))
Adler and Heeringa [1]| N Y N O(logn)
Chakaravarthy et al. [3] Y N Y O(log klog n)
Chakaravarthy et al. [4] Y N N O(logn)
This paper Y Y Y O(log(1/ minp, w(h)))
This paper Y Y Y O(log(n max; ¢;/ min; ¢;))

Table 1: Summary of approximation ratios achieved by rdlaterk. Heren is the number of objectg, is the number
of possible responses, are the question costs, ands the distribution over objects.

Proof. The proof follows very closely that of Theordr 3, and we useghme notation. We again use induction on
|S|, and the base case holds trivially.
Caseone: CP(rg) <1/2

Using the inductive hypothesis and the same steps as in &imE®one can show

12 7)) 12 o (=3 ms(87)%)
1o O ~a=ag¢ ®e o

C(Tg,ﬂ's) < ¢+

(1 =32 eams(87)%) is Ai(S,7s), so using Corollary]3 an@P(rs) < 1/2.

12 7(S) 12 1—CP(mg)
TS < ¢ *(9)1 — * (1 —€)————22
CT5ms) < at qg@ @i —a=g¢ Gall - =715
12 7(9)
¢+ = e)C (S)In mn(S) 12(1 — CP(ms))¢;
12 7(S)
< *
- (1- e)O (%) min(S)
which completes this case.
Casetwo: CP(wg) > 1/2
Using Lemmal and the same steps and notation as in Thédrem 3
w(Ra) < m(Rp)e Call=e/(2C7(ho))
Using this bound, we can again boufig, the cost of identifying.
2 7(Ro) 2
< *(ho)1 “(h
Cp = gl iomy T a9 ()
The remainder of the case follows the same steps as Thédrem 3. O

6 Reated Work

Table[1 summarizes previous results analyzing greedy appss to this problem. A number of these results were
derived independently in different contexts. Our work gitke first approximation result for the general setting
in which there are more than two possible responses to gussthon uniform question costs, and a non uniform
distribution over objects. We give bounds for two algoriirane with performance independent of the query costs
and one with performance independent of the distributicer objects. Together these two bounds match all previous
bounds for less general settings. We also note that Kosatraju[11] only mention an extension to non binary queries
(Remark 1), and our work is the first to give a full proof of @flog n) bound for the case of non binary queries and
non uniform distributions over objects..

UWEETR-2009-0005 11



Our work and the work we extend are examples of exact actamnileg. We seek to exactly identify a target
hypothesis from a finite set using a sequence of queries. r@tbek considers active learning where it suffices to
identify with high probability a hypothesis close to thegeirhypothesis [7, 2]. The exact and approximate problems
can sometimes be related [10].

Most theoretical work in active learning assumes unit casid simple label queries. An exception, Hanneke
[9] also considers a general learning framework in whichrigiseare arbitrary and have known costs associated with
them. In fact, the setting used by Hanneke [9] is more geimethht questions are allowed to have more than one valid
answer for each hypothesis. Hanneke [9] gives worst-cagerugmd lower bounds in terms of a quantity called the
General Identification Cost and related quantities. Thezdrderesting parallels between our average-case asalysi
and this worst-case result.

Practical work incorporating costs in active learning [Phas also considered methods that maximize a benefit-
cost ratio similar in spirit to the method used here. Howg@eattles et al. [12] suggests this strategy may not be
sufficient for practical cost savings.

7 Implications

We briefly discuss the implications of our result in termsha iotivating applications.

For the active learning applications, our result shows tttost-sensitive greedy algorithm approximately min-
imizes cost compared to any other deterministic strategygube same set of queries. For the the batch learning
setting, if we create a question corresponding to each tulb¢ke dataset, then the resulting greedy strategy does
approximately as well as any other algorithm that makes aesgae of batch label queries. This result holds no matter
how we assign costs to different queries although resiristmay need to be made in order to ensure computing the
greedy strategy is feasible. Similarly, for the partialdbuery setting, the greedy strategy is approximatelynogiti
compared to any other active learning algorithm using theesset of partial label queries.

In the information retrieval domain, our result shows thhewthe cost of a question is set to be the computational
cost of determining which branch an object is in, the resgltireedy query tree is approximately optimal with respect
to expected search time. Although the result only holds fpeeted search time and for searches for objects in the
tree (i.e. point location queries), the result is very gahdn particular, it makes no restriction on the type of tspli
(i.e. questions) used in the tree, and the result therefipkes to many kinds of search trees. In this applicatiom, ou
result specifically improves previous results by allowing érbitrary mixing of different kinds of splits through the
use of costs.

Finally, in the compression domain, our result shows givesund on expected code length for top-down greedy
code construction. Top-down greedy code construction dsvrto be suboptimal, but our result shows it is approxi-
mately optimal and generalizes previous bounds.

8 Open Problems

Chakaravarthy et all [3] show it is NP-hard to approximate dptimal query tree within a factor éi(logn) for
binary queries and non uniform This hardness result is with respect to the number of ohj&time open questions
remain. For the more general setting with non uniform quersts; is there an algorithm with an approximation
ratio independent of both andc;? The simple rounding technique we use seems to require depea orc;, but a
more advanced method could avoid this dependence. Alsahedl(log n) hardness result be extended to the more
restrictive case of uniform? It would also be interesting to extend our analysis to aflewguestions to have more
than one valid answer for each hypothesis. This would alloerigs which ask for a positively labeled example from
a set of examples. Such an extension appears non triviaktagightforward extension assuming the given answer is
randomly chosen from the set of valid answers produces atrekich the mass of hypotheses is split across multiple
branches, affecting the approximation.

Much work also remains in the analysis of other active leagisiettings with general queries and costs. Of particu-
lar practical interest are extensions to agnostic algastthat converge to the correct hypothesis under no assumspti
[@,2]. Extensions to treat label costs, partial label qegrand batch mode active learning are all of interest, askth
learning algorithms could potentially be extended to ttkase three sub problems at once using a similar setting.

For some of these algorithms, even without modification wegigarantee the method does no worse than passive
learning with respect to label cost. In particular, Dasgugital. [7] and Beygelzimer et all[2] both give algorithms
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that iterate througf’ examples, at each step requesting a label with probapjlitf hese algorithm are shown to not
do much worse (in terms of generalization error) than thesipaslgorithm which requests every label. Because the
algorithm queries for labels for a subset®fi.i.d. examples, the label cost of the algorithm is also nesedhan

the passive algorithm requestifigrandom labels. It remains an open problem however to shosetalgorithms can

do better than passive learning in terms of label cost (nilostyl this will require modifications to the algorithm or
additional assumptions).
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