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Abstract. The research on computational advertising so far has focused
on finding the single best ad. However, in many real situations, more than
one ad can be presented. Although it is possible to address this problem
myopically by using a single-ad optimisation technique in serial-mode,
i.e., one at a time, this approach can be ineffective and inefficient because
it ignores the correlation between ads. In this paper, we make a leap
forward to address the problem of finding the best ads in batch-mode,
i.e., assembling the optimal set of ads to be presented altogether. The
key idea is to achieve maximum revenue while controlling the level of
risk by diversifying the set of ads. We show how the Modern Portfolio
Theory can be applied to this problem to provide elegant solutions and
deep insights.

1 Introduction

Online advertising has become a major industry. It is now an important source
of income for many Web sites, particularly search engines such as Google and
Yahoo!.

The research on computational advertising so far has focused on finding the
single best ad [1]. However, in many real situations, more than one ad can
be presented. For example, both Google and Yahoo! currently display up to
8 ads (sponsored links) for each query. Although it is possible to address this
problem myopically by using a single-ad optimisation technique in serial-mode,
i.e., one at a time, this approach can be ineffective and inefficient because it
totally ignores the correlation among the “best” ads. While the selected ads all
have high expected revenue, they can be very similar to each other, therefore
displaying those ads is like “putting all eggs in one basket”.

In this paper, we make a leap forward to address the problem of finding the
best ads in batch-mode, i.e., assembling the optimal set of ads to be presented
altogether. Our approach to batch-mode computational advertising is motivated
by two observations: (1) the future revenues of ads are inherently uncertain; (2)
the future revenues of ads are usually correlated with each other. The key idea
is to achieve maximum revenue while controlling the level of risk by diversifying
the set of ads. For example, given the query ‘London weather’, even if the most
profitable ads are all from companies selling umbrellas, it could be a better



strategy for the search engine to show a mixture of ads from umbrella companies
and sunscreen companies, because the revenue would be more stable. For another
example, given the query ‘fashion magazine’, men and women are probably
looking for different products, therefore displaying some ads for men and some
ads for women would give every user something relevant no matter what the
gender is, and thus provide a better user experience overall and hopefully lead
to an increase in revenue.

2 Approach

Assume that there are n ads ai,as,...,a, available in the advertising system.
Given k ad places in the target Web page (either a search result page in ‘spon-
sored search’ or a content page in ‘content matching’), the problem of batch-
mode computational advertising is to select the optimal set of k ads.

We think this problem can be recast in the language of investment as follows.
Each ad a; is an asset (e.g., stock) with future return 7, € R (i = 1,...,n),
which is determined by its bid price and click-through rate (CTR) following the
popular pay-per-click (PPC) model. The CTR of each ad can be estimated from
the historical data or approximated by the relevance of the ad to the query or
the contextual page. The future return on a risky asset is inherently uncertain,
so r; should be regarded as a random variable. Suppose that the mean of r; is
E(r;) = p; and the variance of r; is Var(r;) = o?. Moreover, let oi; be the
covariance between r; and r; for all 1 <4,j < n. It is well-known that o = o2,
and when ¢ # j we have o;; = p;;0,0; where p;; € [—1,1] is the correlation
coefficient between r; and 7;. The covariance values can be estimated from the
historical data or approximated using the pair-wise similarity of ads.

A set of k ads, S, can be considered as a portfolio of assets. Let a binary
variable b; € {0, 1} indicate whether a; is selected: b; = 1 if a; € S or 0 otherwise.
Let w; = b;/k, i.e., the fraction of the ad a; in the portfolio. Then the overall
future return of the portfolio, 7, = >_1, (bir;)/k = >, w;r;, is characterised
by its mean and variance: E(rp) = Y21 wips, Var(rp) = Y0, 330 wiw;oy;.

We would like to find the optimal portfolio that has the maximum return for
a given risk, or equivalently the minimum risk for a desired return E(r,) = u, of
portfolio. Here the risk of portfolio is quantified by Var(r,): the less variance,
the less volatility, the less risk.
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However, it turns out that the above combinatorial optimisation problem is
NP complete and thus computational intractable. Therefore we relax the con-
straint to allow w; = b;/k to take any real value in R. The value of w; can be
considered as the weight of ad a;. We first solve the following continuous opti-
misation problem to get the optimal weights, and then select the top k ads with
highest weights as an approximation of the optimal portfolio.
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In addition to making the computation feasible, we are now able to apply Modern
Portfolio Theory (MPT) [2] to this problem to get elegant solutions and deep
insights.

We can rewrite the above problem in matrix-vector form as follows:

minimize f(w) = ~w! Vw

2
subject to g1 (w) =w'e —p, =0
Gpw)=wll-1=0,

where w = (w1, wa,...,w,)T, e = (p1,p2, -, pn)t, 1 = (1,1,...,1)T, and
V e R™™ is the covariance matrix with V(i,5) = 045, 1 < 4,5 < n. Using
Lagrange multipliers, we can solve the above problem analytically to get the
optimal vector of portfolio weights

1 1
w, = 5(BV_ll —AV.le) + B(C’V_le - AV ')y, ,

where A =eTV~11, B=eTV~le, C =eTV~11, and D = BC — A2,

The above analytical solution is helpful in understanding the optimal portfo-
lio, but it is computational expensive as it involves inversion of a dense matrix V.
In practice, we can use numerical computation techniques to get the numerical
solution efficiently.

Every possible portfolio can be plotted in the risk-return space (with return
tp o1 the y-axis and risk o, on the x-axis), and the collection of all such portfolios
defines a region in this space. The hyperbola along the upper edge of this region
is known as the efficient frontier (aka the Markowitz frontier), as illustrated
in Fig 1. Combinations along this line represent portfolios for which there is
lowest risk for a given level of return. Conversely, for a given amount of risk,
the portfolio lying on the efficient frontier represents the combination offering
the best possible return. The efficient frontier is the set of portfolios for which
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Fig. 1. The efficient frontier.

one cannot improve both risk and return. On one hand, the region above the
efficient frontier is unachievable by holding risky assets alone, i.e., no portfolios
can be constructed corresponding to the points in this region. On the other hand,
points below the frontier are suboptimal. Therefore a rational investor will hold
a portfolio only on the frontier.

3 Conclusions

This paper presents a sketch theoretical development towards batch-mode com-
putational advertising based on Modern Portfolio Theory (MPT). It is necessary
to perform large scale experiments on real-world ad datasets to empirically eval-
uate our proposed approach, and compare it with existing heuristic methods in
information retrieval for diversifying search results (such as MMR [3]). Further-
more, due to the sparsity of ad click-through data, how to estimate the future
return of ads and their correlations effectively and efficiently remains to be an
open research problem.
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