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obtained due to the continuity of state-space domain. Therefore, in this paper, we use
topological approach along with the computability results of Type Two theory of Effectivity in
order to construct a computable CTL semantics for discrete-time and continuous-space
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Abstract

Dynamic systems are widely applied for modelling and analysis in
physiology, biology, chemistry and engineering. The high-profile and
safety-critical nature of such applications has resulted in a large amount of
work on formal methods for dynamic systems: mathematical logics, com-
putational methods, formal verification, and etc. In our work, we focus
on the verification approach called model checking, and its computability
aspects. In this approach, a desired system property, specified using some
logical formalism, is verified against the dynamic-system model via an
exhaustive state-space exploration. This process typically involves com-
putation of reachable and /or chain-reachable sets that in certain cases can
not be obtained due to the continuity of state-space domain. Therefore,
in this paper, we use topological approach along with the computability
results of Type Two theory of Effectivity in order to construct a com-
putable CT L semantics for discrete-time and continuous-space dynamic
systems.

Keywords: Computability, Model Checking, CTL, Dynamic Systems

1 Introduction

A dynamic system describes the system-state evolution over time. Sometimes
the system has inputs and/or outputs and then it is called a control system. The
inputs may represent either uncontrollable disturbances or control signals, and
the outputs may represent quantities that either need to be measured or con-
trolled. Dynamic systems are often used in modelling and analysis of processes
in physiology, biology, chemistry and engineering. The commonly known appli-
cation fields are air traffic control, automated manufacturing, chemical process
control, and etc. Verification of performance requirements for dynamic systems
is essential for designing systems, such as power plants and robots, and analysing
natural phenomena, such as chemical reactions and biological processes.

Given a formal model M of a system design, along with a specification
formula ¢ that represents a desired system property, formal verification answers
the question: “Does the model M satisfy the property ¢7?”. This question is
typically put as a formula M |= ¢, that uses a satisfiability relation .



The system model M, representing the dynamic system, can be described
using various formalisms, such as time-automaton, hybrid automaton, differ-
ential equation, differential inclusion and others. The system property ¢ is
typically described using a logical formalism, some sort of temporal or modal
logic, such as LTL [13], CTL [4], CTL* [9], propositional modal/temporal p-
calculus [10]. In general, modal and temporal logics are second-order logics
for reasoning about afid]operatirg on sets di] states. This is distinct from the
first-order Ibgics in which one reasons about elements in the interpretation do-
main, functions, and predicates of elements. There are two main methods for
the verification of modal or temporal logic properties, namely: model-checking
algorithms, and deductive proof systems. The latter ones are Hilbert-style (ax-
iomatic), tableaux, or Gentzen-style proof systems, whereas the former ones are
algorithms for exhaustive state-space exploration. The focus of this paper will
be on model checking.

As assumed by its name, except for the system property, model-checking
required a formal model of the system. In case of dynamic systems, the model
includes an evolution function, that defines how the system progresses over
time, the domain on which the system operates (the state-space), and boundary
conditions that provide the system’s initial states. Typical system properties,
that need to be verified, are reachability — “Does the system reach the certain set
of goal states?” — and repeated reachability — “Does the system return to the set
of goal states infinitely often?”. The model-checking algorithms, for verifying
such properties, require computation of system’s reachable states (images or
pre-images of sets of states under the system’s evolution function), as well as
computation of union, intersection of sets, and testing them for inclusions.

Unfortunately, the state-spaces of dynamic systems are typically not only
infinite, but also continuous (e.g. R™) or hybrid (e.g. a product of R™ and Z).
At the same time, for model-checking algorithms to be sound, they have to be
in some sense computable, i.e. effectively implementable on digital computers.
These requirements, respectively, rise two problems. The first is that the ordi-
nary computability and complexity theory is not powerful enough to express the
computability of real-valued functions and therefore sets of any continuous or
hybrid domain. This is because a computable partial word function f operates
on a countable domain, i.e. f : ¥* — X* with a finite alphabet X. Clearly, ¥*
is not sufficient for encoding continuous domains. The second is that digital
computers do not allow for exact computations on continuous domains (e.g. a
subset of R). This is why there is a need for approximate algorithms that can
guarantee arbitrarily high levels of accuracy. A natural solutions to both of these
problems are offered by Type-2 Theory of Effectivity (TTE) [15], which defines
computability based on Turing machines with finite and infinite input/output
sequences. TTE has been already applied to analysis of computiahility of reach-
able sets of control systems in [6].

The aim of this paper is to provide a “computable” logic for model-checking
of discrete-time and continuous-sifgce dynamic systems (DTCSDSs). This should
be seen as a first step towards a computable logic for general hybrid systems.
Our results are based on TTE and the way we approach the problem is divided
into the following steps. First, we overview several modal logics for hybrid sys-
tems and choose CTL as the logic to work with. Second, since TTE hardly
relies on topologies, we analyse the original CT' L semantics and alter it to be-
come computable (topological) for the case of DTCSDS models. For simplicity,



we work with discrete time domain.

The rest of the paper is organised as follows. The preliminary material is
provided in Section 2. Since TTE hardly relies on topological spaces, we begin
our discussion by recalling some of the important aspects of topological theory.
Then, we talk about IITCSDS models and, because they are typically expressed
by multivalued-maps, we discuss continuity aspects thereof and provide some
of their properties. Further, we talk about TTE and computability of various
sets/functions. After that, we conclude the section by an overview of various
available logics for hybrid systems. In Section 3 we construct a computable
semantics of C'I'L on DTCSDS models. This is done by considering the stan-
dard C'TL semantics and then altering it in such a[fay that its model-checking
becomes computable. The latter sketches the approximate model-checking al-
gorithms of CT'L on DTCSDSs that can be implemented with the use of digital
computers. Section 4 concludes.

2 Preliminalgles

2.1 Topological Spaces

Let us recall several important notions and results from the topological theory.
A topological space is a pair T = (X, 7) where X is an arbitrary set and 7 C 2%
is such that: 0, X € 7, VU, Us € 7= U1 NUz € 7, and VU C 7 = Jy ey U € 7.
For a topological space T', elements of 7 are called open and their complements
in X are called closed. Let x € X and B C X then B is a neighbourhood
of point z if there exists an open set U € 7 such that + € U C B. Let
B C X and U C 7 then U is an open cover of B if B C UUE[UU. Let S C X,
then the set Int (S) = U{U|U C SAU € 7} is called the interior of S and
CL(S) = N{A|]S C AN Ais closed} is called the closure of S. A set C C X
is compact iff every open cover of C' has a finite sub cover. A subset of X is
pre-compact iff it’s closure is compact. For a topological space we have O — a
set of open, A — a set of closed, and K — a set of compact sets.

Let T = (X, 7) be a topological space. Then 8 C 7 is a base of the topology
7 if every element of 7 can be represented as a union of elements from 5. A
topological space is called second countable if its topology has a countable base.
A Hausdorff space (Ty space) is a topological space such that Vz,y € X where
x # y there exist U,,U, € 7 such that z € U,, y € U, and U, N U, = 0.
A Hausdorff space is called locally compact if every x € X has a compact
neighbourhood.

2.2 Dynamic Systems

Roughly speaking, for a given state space, a dynamic system describes state
evolution over time. When such a system has inputs and outputs it is called
a control system. The inputs then may represent either uncontrollable distur-
bances or control signals, and the outputs may represent quantities that either
need to be measured or controlled.

In order to understand with what type of dynamic systems we will work, let
us briefly discuss their classifications. Based on the state space type, dynamic
systems are divided into: Discrete — The state values are from a countable of



finite domain; Continuous — The state takes values in Euclidean space R™, with
n > 1; Hybrid — A part of the state takes values in R™ and another part takes
values in a finite set.

Considering the the set of times over which the state evolves, dynamic sys-
tems can be also divided into: Discrete time — The time domain is a subset of
integers (Z). Here, the system-state evolution is described by a difference equa-
tion; Continuous time — The time domain is a sub interval of R. In this case,
the evolution of system state is typically described by an ordinary differential
equation; Hybrid time — The system evolves over a continuous time domain, but
the system dynamic changes at specific discrete time points.

In our work we consider discrete-time continuous-space dynamic systems,
which means that the state space of the system is continuous and the time
domain is discrete (the system state changes at discrete time points). In system
theory, dynamic systems are given by functions f : X x U — X, where X
is the state space, and U can either represent control or system noise. These
functions are typically converted into multivalued maps F' : X =% X such that
F(z)=f(z, U).

2.3 DTCSDSs and Multivalued Maps

A multivalued map F : X = Y, also known as multivalued function or multi-
function, is a total relation on X x Y. If we define F' (S) = {F (z) |z € S} for S C
X then F can be seen as a function F' : X — 2Y. This last definition is more con-
venient when we want to talk about function composition. For example, for two
multivalued maps F': X =Y, G: Y == Z and their composition G o F' we have
GoF : X = Z and thus for any x € X we can simply write GoF (z) = G (F (x)).
A weak preimage of Fon BCY is F7'(B)={zx € X : F(z)NB#0} and a
strong preimage is F< (B) = {x € X : F () C B}. The notion of continuity
for multivalued maps is an extension of continuity for the regular functions. Let
us only note that, for a continuous multivalued map F' and an open set U C'Y
the preimages F~!(U) and F*< (U) are open sets. The space of continuous
multivalued maps F : X — 2V will be denoted as C (X,Y).

2.4 Type-2 Theory of Effectivity (TTE)

TTE [15], as well are regular computability theory, is based on Turing machines.
The difference is that TTE (type-2) machines allow for infinite computations. In
particularithey can accept infinite inputs and produce infinite outputs. The com-
putability is first defined on type-2 machines and then is extended to arbitrary
functions, sets and their elements by means of notations and representations.

Let M be a type-2 machine with a fixed finite alphabet ¥, k > 0 input
tapes, one output tape and Y; € {¥*, 2%} where ¢ € 0,...,k. Then, a (partial)
string function fps @ Y1 X ... X Yy — Yy is computable iff it is realised by a
type-2 machine M. The latter means that for y; € Y; we have fas (y1,...,yx) =
yo € X* iff M halts on input (y1,...,yx) with yo on the output tape and
I (s yk) = yo € X¥ iff M computes forever on input (yi,...,yr) and
writes yo to the output.

The important property of a type-2 machine is that it can not re-read from
input tapes and re-write onto output tape. This implies that if fj; is a com-
putable string function, then M must always eventually write something on the



output tape. This means that every finite part of the output must be defined
by some finite part of the input. Since the output tape can not be re-written
this can be interpreted, in case of yg € X%, as follows: a function is computable
if increasing the accuracy of its arguments (read more symbols from the input
tapes), we always eventually increase the accuracy of the function’s result (write
more symbols on the output tape).

By definition, every elements of ¥* is computable, and v € 3¢ is computable
iff the constant function g : ) — X%, such that g () = u, is computable. The
computability on ¥* and ¥¢ is generalised by means of notations and represen-
tations. A notation of set X is a partial surjective function v : ¥* — X and a
representation is a partial surjective function ¢ : ¥ — X. These functions en-
code elements of the domain X into strings and sequences. For example, for a Ty
space T' = (X, 7) with a countable base and a condition that allows to compute
intersection of the base elements, any closed subset A C X can be identified
(encoded) by the list of names of all U € 7 such that U N A # (. Further, we
provide other important facts from TTE that we use in the Section 3.1.

A computable Hausdorff space is a tuple (X, 7, 5,v) such that (X,7) is a
second-countable locally-compact Hausdorff (7%) space; 3 is a countablg Hase of
T consisting of pre-compact open sets; v is a notation of 3; we take effectivity
properties in [3] (Lemma 2.3) as axioms; and assume that Cl:  — K is com-
putable. Let us have a computable Hausdorff space and the Sierpinski space S.
Then, the elemdiits of O, A, and K have so called canonical and equivalent to
them (admissible) representations that are needed for the computability results
below. Also, let us assume that F~! (U) and F< (U) are computable for U € 7
and F € C(X,X). If all of the above conditions are met then the following
operations are computable (continuous): countable union as O x O — O, com-
plement as O — A, subset operation as K x O — S, the F~!(.) and F< (.) as
O — O. The following operations are known to be uncomputable: closure as
O — A, interior as A — O.

2.5 Modal Logics

In this section, we are going to provide an overview of a selected set of logics
for hybrid systems. We consider hybrid systems, since they are a more general
class of models than DTCSDSs and our ultimate, but far distant goal, is to
provide a computable logic for hybrid systems. This overview is in no way
complete, and a better one can be found, e.g., in [§]. Our purpose here is to
discuss the most used and convenient logical formalisms. Also, we want to take
into account topological aspects of hybrid systems. Rémember that, the latter
is important for the computability analysis because it strongly depends on the
topology of the underlying state space. E.g., sets computable in one topology
can be uncomputable in another.

A hybrid system is a heterogeneous dynamical system that is characterised
by interacting continuous and discrete dynamics. In a simple hybrid system
the state can evolve continuously, for some period of time, according to one
set of differential equations, then can be abruptly reset by some discrete event
to a new value and continue evolution according to another set of differential
equations. Typically, the continuous dynamic of the system corresponds to a
network of plants and the discrete events, guiding the plant’s behaviour, are
generated by a discrete automaton, also known as a control automaton. These



automata can trigger only finitely many different control events (signals).

In [8], one can find an exhaustive discussion on various modal and temporal
logics. In addition, this paper talks about temporal logics for hybrid systems,
see Sectiph IV.G. There, the authors focus on extensions of temporal logics that
address issues arising when working with real time. The discussion is split into
three parts, based on various time semantics: (i) branching , (%) linear , and
(#ii) interval temporal logics.

With branching-time logics one can reason about every possible future be-
haviour of the system, starting from the given state. In other words, branching
time refers to the fact that at each moment of time there may be several differ-
ent possible futures. This way, logical formulae are evaluated on a tree of states,
where each path represents one possible future sequence of computations. The
semantics for linear temporal logics is different. There, one has the power to
express properties of possible computation sequences. I.e., each formula is eval-
uated on every possible computation sequence, rather then on the tree of all
possible futures. The idea behind interval temporal logics is somewhat different
and for the sake of brevity we leave them out of scope.

The most commonly used branching and linear temporal logics are CTL [4]
and LTL [13]. These logics are incomparable, see [5], and can be united to
form a more powerful logic known as CTL*. All of these logics are typically]
interpreted ifi terms of Kripke structures. According to [8], temporal extensions
of these logics are often used to represent properties of hybrid systems. For
CTL, this includes Timed CTL (TCTL), Integrator CTL](ICTL) and Timed
p-caleulus (T'C'p). An extension of LTL is, e. g., Metric Temporal Logic (MTL).

Topological aspects play an essential role in model checking of hybrid sys-
tems. One of the important motivations for this is that the control automaton
has to interpret the plant sensor readings and to transform them into the control
events. Since the state space of a plant is continuous and the control automaton
has only finitely many control events, it is natural to expect that close values,
obtained from the sensor, trigger the same control signal. This implies that the
preimage of every control symbol is an open set in the topology of the contin-
uous state space of the plant. Moreover, only the finite sub topology generated
by this finite set of open sets is used by the control automaton for making
decisions. Therefore, having a topological interpretation of logical formulae is
very important. Logics that provide topological semantics are called topological
logics and deal with topological spaces rather than with Kripke structures.

One of the topological logics is a branching-time logic called Dynamical
Topological Logic (DTL) [11]. A distinguishing feature of this logic is that
it contains one topological modality, namely the interior operator. Another
topological logic is discussed [ii] [1]. Since the authors claim that modal logics
are unable to deal with continuous or mixed (hybrid) dynamical systems, they
provide a topological interpretatiofijof a propositional logic with universal and
existential quantifiers. Here, atomic propositions are open sets of states and
each formulae must result in an open set. This, unlike in [11], requires an
altered interpretation of negations, i.e. they results in the interior for the set
complement.

Since we work with discrete time and we are interested in topological aspects,
as well as usability of temporal logics, further we provide details on: DT L, LTL,
CTL, and CTL*. Then, we choose one of them to work with.

Dynamic Topological Logic (DTL) [11] is a logic for Dynamic Topological



Models (DTM) that are defined as tuples (X, ,). Here, X is a topological space,
V is a labelling function that assigns labels to some subsets of X, and f : X — X
is a continuous function which, thought of in temporal terms, moves points of
X from one moment of time to another. DT L is a three modal logic with one
topological modality: o —the set interior operator, and two temporal modalities:
X — the next operator, and G — the henceforth operator. Here, for a set A C X
the interpretation of these operators is as follows: A° = Int (A) — the interior of
the set A; X A= f~!(A) — the preimage of 4; and GA = (;cy+ X* A. DTL
also supports propositional operators: conjunction, disjunction, negation, and
implication. These are interpreted in the common sense of the set theory.

CTL, LTL, and CTL* are typically interpreted over Kripke structures. A
Kripke structure M is a tuple (S, I, R, L) where M is a countable set of states;
I C S is a set of initial states; R C S x S is a transition relation such that Vs €
S3s’ € S: (s,8') € R; AP is a finite set of atomic propositions; and L : § — 24F
is an interpretation (labelling) function on S. A path in a Kripke structure M is
an infinite sequence of states sps182 ... such that Vi > 0: (s, 8,41) € R. A set
of paths starting in state s is denotes as Paths(s). For the same state s there is
an infinite computation tree, obtained by unfolding the Kripke structure, with
the root s, such that (s’,s”) is an arc in the tree if (s',s”) € R.

Computational Tree Logic (CTL) [4] has a syntax that is divided in to
state formulae: ® == p | =@ | @A D | Vo | ¢ and path formulae: ¢ =
X ®| U D | PR P The state formulae have the following semantics:
sEpiffpeL(s);sE Qi ~(sE®P); sEPATVIH (sEP)A(sET);
s | 3¢ iff 3o € Paths(s) : 0 = ¢; s E V¢ iff Vo € Paths(s) : 0 E
¢. The semantics of path formulae is as follows: o = X @ iff o[1] E P
cEQUTITTI >0: (cj]]EVAVOLi<j:c[il]EDP); c VY R D iff
VMi>0:0[i]E®)V(Fj>0:(c[j]EYAVO<i<j:o[i E ®)). It is agreed
that path formulae can be only used as sub formulae of state formulae.

Linear Temporal Logic (LTL) [13] consists of state formulae: ® ::= V¢
and path formulae: ¢ :==p | "¢ | d NP | X ¢ | 0 U ¢ | v R ¢ LTL
reasons about computation sequences Bl therefore allows for a recursive use of
path formulae. For example the semantics of until operator is: o | ¢ U 1 iff
3j>0:(0; EvAY0<i<j:o; = ¢); The state formulae have the following
semantics: s = V¢ iff Vo € Paths(s) : 0 = ¢. For the path o € Paths(s), where
0 = 505152 ..., for any j > 0 we have 0; = $;sj115j42..., and o [j] = s;, the
semantics of path formulae is as follows: o = p iff p € L(0[0]); 0 &= —¢ iff
~(oE¢o oAVt (oG N(oEY);o =X pilfor Eg ool
iff3j>0: (0, EvAVO<i<j:oilE¢);oE=y Rt (Vi>0:0,=¢)V
(Fi>0: (0 EvAVO<i<j:o;=0)).

Branching Temporal Logic (CTL*) [9] is a combination of LTL and CTL,
it’s syntax is defined by state formulae: ® :=p | =P | DA D | V¢ | Ip and
path formulae: ¢ 2= D | = | dANS| X ¢ ¢ U ¢ | ¥ R ¢ The corresponding
semantics is naturally induced by CT'L and LT L which allows for expressing
more general properties.

Similar to [1], we will require formulae to result in open sets on states.
Thus, the DT L semantics is not particularly suitable for us. There are two
reasons for that [We assume f-continuous and A-open). First, the henceforth
operator does not result in an open set, because the countable intersection of
open sets is not necessarily open. The authors remedy this situation by using
Alexandrov spaces, but this limitation rules out all cases of particular interest.



Second, the negation operator does not necessarily result in an open set, since
a complement of an open set is closed (clopen sets are exceptions). Also the
interior operator is not of a major concern for us, since we restrict our interest
to atomic propositions given by open sets. For the rest, DT L is a subset of
CTL. LTL and CTL* generally require evaluation of a formula on each system
path and thus assume reasoning about sets of paths. Since paths are infinite,
this requires us to use product topology and to reason about open sets of paths,
rather than states. This complicates matters a little, and therefore for this
paper we decide to choose CT' L that is easier to provide computable semantics
for (avoiding reasoning about paths).

3 Computable C'T'L model checking

As it was mentioned in Section 2.5, CTL is the logic we choose to provide a
computable semantics for. Our choice is motivated by a relative simplicity of
it’s original semantics (there are fic_hested path formulae), and a reasonably
reach variety of operators (CTL and LTL have a non-trivial common frag-
ment [12]). Below, we consider CT L formulae and argue about which of them
are computable and which are not. We also state some desired properties of the
set of infitihl states. Along the way, we construct the computable semantics of
CTL that implies corresponding model-checking algorithms. In the following
we strongly rely on results provided in Section 2.4.

Let us extend the definition of DTCSDS (given in Section 2.3) to make it
suitable for a computable CTL model checking. []

Definition 1 A discrete-time continuous-space control systems ECSDSS) is
a tuple M = (T, F, L) where: T = (X, 7, 8, v) is a computable Hausdorff
space; F € C(X,X) is a multivalued map which defines the system’s evolution;
and L : X — 2A% s q labelling function where AP is a finite subset of 7. For
any x € X we have L (z) = {U € AP|z € U}.

The labelling function L (.) is an equivalent of the interpretation function for
Kripke structures. Each of the open sets in L (z) can be seen as an atomic propo-
sition that labels x and corresponds to some system property. The motivation
behind choosing atomic propositions to be open sets is the same as in [1].

Let us consider a DTCSDS model M = (T, F, L) with a set of initial states
I C X. To derive a computable semantics for CTL we should define atom-
putable meaning for M,I | ® (when obvious, we will omit M), i.e. the fact
that the model M satisfies & € CTL for all initial states I. From now on we
assume that the system’s evolution F is such that taking F~! (U) and F< (U)
for U € T are computable operations.

Below, in Section 3.1, we first discuss computability of C'I'L formulae in the
original semantics and devise a computable one. Further, Section 3.2 discusses
how the modified semaftits influences C'I'L model checking.

-
3.1 Computable semantics for C'TL
For a CTL formula @, let Sat (®) be a set of states satisfying ® on some model

M. If we can compute Sat (®), then for a given set of initial states I, verification
of M, I = ® requires verifying I C Sat (®). Due to this, we will often identify a



CTL formula with a set of states satisfying it. Thus, we can write things like:
M, I=UforUeTtor®er.

Now, let us consider verifying validity of an atomic proposition p € AP. By
definition I |=p < I C Sat(p). Since Sat (p) is open, from Section 2.4 we know
that, we can only verify I C Sat(p) in a computable way, if I is a compact.
Thus, to make things uniform, we must assume that in model-check[@ig]we can
only consider sets I that are compact. Then, we also need to require that any
® results in an open set of states, since otherwise I = ® is not computable.

In the following we will see that then we can alter C'T'L semantics in such a
way that any state formula results in an open set of states. This will be done
implicitly by induction on the length of the formula. I.e. for any CTL formula
we will assume that its sub-formulae result in open sets of states.

Semantics: I = —®. By definition Sat(—®) = X \ Sat(®) which is a
closed set and thus I C Sat(—®) is uncomputable. Therefore, we follow the
topological semantics given in [1] and define Sat (=®) = Int (X \ Sat(®)). The
latter provides as the following computable semantics:

ICInt(X\®) =TI E .

Here X\ Sat (®) is closed and computable but Int (X \ Sat (®)) is uncomputable
due to the interior operator. Of course, we could assume that the representation
of Sat (®) is such that we can compute Int (X \ Sat (®)), but for an arbitrary ®
this assumption is not very realistic.

It is known that (see e. g. [14]), any CT L formula can be transformed into an
equivalent CTL formula in the negation normal form (NNF). In NNF, negation
only prefix atomic propositiong ahd thus one can make sure that the represen-
tations of those are good enough to make their negations computable. The
transformation into NNF can be done using the following equivalences:
=P = P, “(PAD) =DV D, X=X -9,

¢ = ¢, - (Vo) = 3¢, “(PUT)=-T R -

Let us consider the remaining C'T'L operators. We will omit the case of
® A U, since it is trivially computable, assuming that Sat (®) and Sat (V) are
open sets.

Semantics: I |V (X ®). For an open set Ug = Sat (®), F< (Up) is the set
of states from which we always go into Ug states in one step. Clearly, F< (Us)
is open and computable and thus I C F< (U) is also computable. Therefore,
we define the computable semantics as:

IEV(XU)eICFEU).

Semantics: I = 3(X ®). Similar to the previous case, since F~1 (Us) is
open and computable, we define the computable semantics as:

IE3(XUs) eI CF 1 (Us).

We use weak preimage to account for the existential quantifier.
Semantics: I |=Y (@ U V). As before, we assume that ® and ¥ corresponds
to open sets Ug and Uy. According to the original semantics of CT'L:

I'=VY(Us UUy) Ve el: Yo & Paths(z):35>0:
(cljleUs AVO<i<j:ofi] € Us)



In other words, initial set of states I satisfies the formula if, for every state x € I,
every path starting in x consists of a finite prefix of states from Ug that is then
followed by at least one state from Uy. Therefore, the set Sy = Uy gives states
in which the formula V® U/ ¥ is satisfied right away. States S1 = F< (Ug) NUs
satisfy the formula, since any path o € Paths(S1) is such that o [0] € Ug and
0[0] € Ug ( because o[1] € F (c[0]) € Ug). By induction, for any n > 1

we have that S,, = F'< U?:_Ol Sl-) N Ug is an open set that consists of states

satisfying the formula. Clearly, the union [J;_ S, gives us all system states
where the formula is satisfied and thus we can define: I =V (Us U Uy) < I C
U2 Sn- Notice that, this semantics is computable since every S; is open and
computable and a countable union of S; is also open and computable.

Semantics: I = 3(® U V). Since S) = Uy and S, = F~! (U?:_Ol Sl-) NUs
are open and computable, we define the computable semantics as:

ITEIUsUTy) & TC S

n=0

We use weak preimage to account for the existential quantifier.

Semantics: I = V(G®). Let us consider G® (henceforth operator) — a
common abbreviation of (false R ®). First, we provide a computable seman-
tics for this formula and then discuss a more complex case of the release op-
erator. Intuitively, the CTL semantics for this formula can be expressed as:
ITEV(GU) < I C N, ySs, with Sg =U and for alln > 1: 5, = F< (S,-1).
It is easy to see that ()~ Sy is a set of states from which every path goes only
through states in U. Unfortunately, even though every S, is open, countable
intersection of open sets is not necessarily open (see Section 2.1) and thus the
semantics above is not computable. Notice that, a set equivalent to ﬂzozo Sy is
given by: P = J{SC X|SCUASC F<(S)}. This set is yetther open nor
computable. Let us define P’ == [J{O €7|O CUAO C F‘I%} Clearly,
P’ C P and the set P’ is “almost computable”. The latter is because P’ is a
union of open sets but since U and F< (O) are open the checks O C U and
O C F< (0) are not computable. Also, getting all open subsets from 7 is not
a computable operation. To remedy these problems we define the computable
semantics as:

1< J{Br e7|CL(B,) CUACLH(B,) C F< (B.)} = I =Y (GU)

Here, each B, € 7 is a finite union of base elements (e. g. open rational boxes
in X) and from the definition of the computable Hausdorff space Cl(B,) is
computable and compact. Since the union of sets on the left-hand side of the
implication is a subset of P’ C P = ﬂzozo Sy, we have that if the formula satis-
fied in the computable semantics, then it is satisfied in the original semantics.

Semantics: I =3 (G®). Similar to the previous case, we define

1S\ J{B, e7ICU(B,) CUACH(B,) CF " (B,)} = I |=3(GU)

We use weak preimage F~! (B,) to account for the existential quantifier.
Semantics: 1 EV (¥ R ®). According to the original semantics of CT L:

I'=VY Uy RUs) & Vrel:Vo e Paths(z): (Vi>0:0[i] € Us)V
(Fj>0:(c[jleUs AYO<i<j:0i] € Us))

10



Assuming an abbreviation for GUg, we get:
I'=EVY(Uy RUs) < Ve €l :Vo € Paths(z): (0 |EGUs)V (0 EUs U (Us NUW)).

Clearly, a path o satisfies (Uy R Usg) iff either every state of the path belongs

to Ug or there is a finite prefix of states from Ug where the last state of the
prefix is also in Uy N Ug. We already know how to treat universal until and
henceforth operators, here we should simply combine the approaches:

1| J{B: € 7ICL(B,) C Us A (CL(B,) C Uy V CL(B,) C F= (B, U (Us NUs)))}
= I ): V(Uq/ R Uq>)

Note that, since we require Cl(B,) C Us, the second condition on the set
B, serves two purposes: (i) to provide fixed point characterisations for the
paths satisfying GUs; (i) to allow paths with prefixes in Us and the last
states of these prefixes being in Uy N Ug. The latter results in paths satis-
fying (Ups U (Up AUyg)). Since B, U (Uy NUsg) is an open set, the resulting
semantics is computable.

Semantics: T =3 (¥ R ®). Similar to the previous case, we define:

1| J{B- €7I|CI(B,) CUs A (CL(B,) C Uy vV CI(B,) C F~ (B U (Usy NUs))) }
= I ': 3 (U\p R U<1>)

Once again, we use weak preimage to account for existential quantifier.

3.2 Changes in the semantics

A consequence of the (necessary) choice of semantics of the negation and release
(henceforth) operators is that there can not be a proof by contradiction (the
Law of Excluded Middle does not hold). In other words, if ® contains at least
one of the above mentioned operator, the fact that M, I = ® does not hold does
not imply that M, I = —® holds. Moreover, such a ® can be true (on M, I) but
not computably verifiable.

There is nothing we can do about the Law of Excluded Middle for the release
(henceforth) operator. Moreover, in [7] it was shown that our semantics for
the henceforth operator is optimal. For the negation operator, let us notice
that in the standard semantics =—® and[® are equivalent whereas in the given
topological semantics we generally have I = -—® ¢ I | ®. Thus, converting
® into NNF, prior to model checking, does not only allow to make negation
computable, but also reduces the effects of the topological semantics.

4 Concluding remarks

In this work we focused on model checking of discrete-time continuous-space
control systems and in particular on computability aspects thereof. Due to
continuity of the state space, regular computability and complexity theory of
Turing is not applicable and therefore a more powerful approach is required.
Our choice is the Type Two Effectivity theory (TTE). One of our main goals
was to provide a logic that would allow to express system properties that are
effectively verifiable (computable) in the sense of TTE. After considering several
popular logics for hybrid systems, including topological logics, we decided to
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provide a computable semantics for the branching time logic called CT' L. We
have analysed this logic with respect to its computability aspects. It turned out
that logical operators such as megation and release until require a significant
change in their interpretation, to make sets of states satisfying formulae using
them computable.

As it was discussed in Section 3.1 the computable model checking of C'T'L
on DTCSDSs assumes a compact set of initial states I, a C'T'L state formula
®, and a system model M = (T, F, [L where T' = (X, 1, 3,v) is a computable
Hausdorff space and a map F € C (X, X) for which F~! (U) and F< (U) are
computable for U € 7. If ® contains negations, then it must be converted into
NNF and the open sets, corresponding to atomic propositions that are then
prefixed with negations, must have representations that allow for computing
interiors of their complements. In computable semantics, if & contains negation
or release (henceforth) operators and I, M = ® does not hold then it does not
imply that I, M = —® holds. If the formula holds in the computable semantics,
then it also holds in the original one.

Currently, we work on extending the approach presented in this paper to-
wards computable model checking of LT L and CTL*. Our long-standing goal
is to provide a computable logic for the most general class of hybrid systems.
Another plan is to implement the computable model checking algorithms in a
framework for reachability analysis of hybrid systems called Ariadne [2].
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