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A Generalised Model for Distortion Performance

Analysis of Wavelet based Watermarking
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Abstract. A model for embedding distortion performance for wavelet
based watermarking is presented in this paper. Firstly wavelet based
watermarking schemes are generalised into a single common framework.
Then a mathematical approach has been made to find the relationship
between distortion performance metrics and the watermark embedding
parameters. The derived model shows that for wavelet based watermark-
ing schemes the sum of energy of the selected wavelet coefficients to be
modified is directly proportional to the distortion performance (the mean
square error) measured in the pixel domain. The propositions are made
using the energy conservation theorem between input signal and trans-
form domain coefficients for orthonormal wavelet bases. Such an analysis
is useful to choose the wavelet coefficients during watermark embedding
procedure and to find suitable input parameters such as wavelet kernel
or the choice of subband.

Key words: Watermarking, wavelet transforms, distortion performance.

1 Introduction

With the success of transforms based image/video compression schemes, such
as, JPEG, JPEG2000 and MPEG-2, the frequency domain watermarking has
received a huge attention. The discrete wavelet transform (DWT) has been
widely used as a multi-resolution analysis method in most frequency domain
watermarking techniques. [1–11]. Usually the imperceptibility and robustness
are considered as two major properties of any watermarking scheme. The im-
perceptibility is often measured by evaluating the distortion of the host image.

In this work we address the problem of modelling and analysis of embedding
distortion. In the literature, such analysis have been presented by only focusing
on single specific techniques [12]. Our focus in this paper is to derive a common
analysis model involving an exhaustive list of wavelet based algorithms charac-
terised by their input parameters. The main objective of the work is to derive
a generalised model for distortion performance analysis of wavelet based water-
marking. The generalisation of our model is based on fitting all major wavelet
based watermarking schemes into a common framework, which was presented
in [13].



2 Bhowmik and Abhayaratne

DWT
(Wv

1
)

Host
Image (I)

Coefficient selection 
and watermark 

embedding

Watermark 
(W)

IDWT
(Wv

1
-1)

Watermarked 
Image (I’)

Attack
(including CA)

Test 
Image (J)

DWT
(Wv1)

Original Image (I) for 
non blind detection

Watermark 
Extraction

(Blind / Non-blind)

Comparison of 
original and extracted 

watermark

Extracted 
Watermark (W’)

Authentication 
Decision

DWT
(Wv

1
)

Host
Image (I)

Coefficient selection 
and watermark 

embedding

Watermark 
(W)

IDWT
(Wv

1
-1)

Watermarked 
Image (I’)

Attack
(including CA)

Test 
Image (J)

DWT
(Wv1)

Original Image (I) for 
non blind detection

Watermark 
Extraction

(Blind / Non-blind)

Comparison of 
original and extracted 

watermark

Extracted 
Watermark (W’)

Authentication 
Decision

Fig. 1. Block diagram of the generalised functional modules of wavelet based water-
marking schemes.

In the distortion performance model first a proposition is made to show the
relationship between the noise power in the transform domain and the input
signal domain. Then using the above proposition a relationship is established
between the distortion performance metrics and the input parameters of a given
wavelet based watermarking scheme. The rest of the paper is organised with
Sect. 2 presenting the generalisation of embedding schemes. Detailed mathe-
matical analysis and the model is presented in Sect. 3 followed by experimental
results in Sect. 4. Concluding remarks can be found in Sect. 5.

2 The common framework for wavelet based watermark

embedding

There are many wavelet based watermarking schemes available in the literature.
In this context a formal evaluation framework for wavelet based methods is really
useful to the watermarking community. It is observed that most of the popu-
lar wavelet based watermarking schemes can be dissected in common functional
blocks as shown in Fig. 1. In this paper we discuss and present the distortion
performance model of wavelet based algorithms and therefore restrict our dis-
cussion to the embedding part of the watermarking schemes. In a more general
form of the watermarking schemes a forward wavelet transform is applied to the
target image. The wavelet coefficients are then modified according to the partic-
ular embedding procedure. The modification is done on the selected coefficients
in the selected subbands. An inverse wavelet transform which is the same as the
forward wavelet kernel is then applied to produce the watermarked image. The
basic embedding principle for any wavelet based watermarking algorithm is the
same and the modified coefficient C ′

m,n at (m,n) position, can be presented as:

C ′

m,n = Cm,n + ∆m,n , (1)



A generalised model for distortion performance... 3

Table 1. Realisation of wavelet based algorithms using different combination of input
parameters

Method Selection Coeff Subband Wavelet Level Reference ∆ as
< a1, a2, a3, a4 > Selection Kernel Function of

Direct(b = 2) < 1, 0, 0, 0 > High Haar 2 [1] f(Cm,n)
Direct(b = 1) < 1, 0, 0, 0 > All Biorthogonal 3 [2] f(Cm,n)
Direct(b = 1) < 1, 0, 0, 0 > Low Biorthogonal, 3 [14] f(Cm,n)

Non-linear
Direct < 0, 0, 1, 0 > High Orthogonal 4 [11] f(Cm,n)
Direct < 0, 0, 0, 1 > High Any 2 [10] f(Cm,n)

Quantisation - Low Any 2 [6] f(Cmin, Cmax)
Quantisation - High Haar 1 [4] f(Cmin, Cmax)
Quantisation - High Any 2 [3] f(Cmin, Cmax)

where Cm,n is the coefficient to be modified and ∆m,n is the modification due
to watermark embedding. Based on the modification algorithms, the embedding
procedures are categorised into two main types of embedding algorithms: direct
coefficient modification [1, 2, 7, 10, 11] and quantisation based modification [4, 6,
8, 3].

In the direct coefficient modification schemes, selected coefficients are directly
modified based on the following generalised modification value ∆m,n at (m,n)
position:

∆m,n = (a1)α(Cm,n)bWm,n + (a2)vm,nWm,n + (a3)βCw + (a4)Sm,n , (2)

where a1, a2, a3, a4 are the selection coefficients, Cm,n is the coefficient to be mod-
ified, α is the watermark weighting factor, b = 1, 2... is the watermark strength
parameter, Wm,n is the watermark value, vm,n is the weighting parameter based
on pixel masking in HVS model, β is the weighting parameter in the case of fu-
sion based scheme, Cw is the watermark wavelet coefficient and Sm,n is any other
value which is normally a function of Cm,n. In most of the algorithms watermark
weighting parameters α and β are user defined to an optimal value. The water-
mark information Wm,n is either generated randomly with a random seed or
taken from a gray scale logo or a binary logo. As mentioned before the weighting
parameter and the watermark information are always user defined, hence these
are considered as constant parameters in a controlled experimental environment.
Other parameters in the modification equation are a function of the wavelet co-
efficient Cm,n which depends on the input image and considered as a variable
here. Therefore it is observed that in all the cases the modification value is a
direct function of the coefficient Cm,n as mentioned in Table 1. This table also
represents the common input parameters used in the embedding procedure and
shows how different algorithms can be realised with this generalised framework.
Considering a specific case, in this paper we have not chosen HVS model based
watermarking scheme as our main focus is on distortion performance analysis
which is different from HVS based performance metrics.

On the other hand in the case of quantisation based algorithms, the modifi-
cation is based on the quantisation steps. Normally a rank order based algorithm
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is proposed in these type algorithms. The algorithms change the median value
of a local area (typically a 3x1 coefficient window) considering the neighbouring
values. The modification value ∆m,n is decided based on the quantisation step δ

(−δ ≤ ∆ ≤ δ) within the range of the selected 3x1 window. Different functions
are suggested in the literature to find the value of δ and the functions normally
consist of minimum (Cmin) and maximum (Cmax) value of the coefficients in
each selected window. A predefined weighting factor α is often used to deter-
mine the value of δ. As ∆ depends on step size δ and α is user defined, the
modification value ∆ is typically a function of Cmin and Cmax in each selected
3x1 window (refer Table 1).

With this common generalised framework we have analysed and proposed a
distortion performance model in the next section.

3 Embedding Distortion Performance Analysis

In this section a detailed discussion is carried out on the proposed model. The
embedding distortion performance is usually measured by the Mean Square Error
(MSE).

Definition 1. The Mean Square Error (MSE) or average noise power Pp in
pixel domain between original image I and watermarked image I ′ is defined by:

Pp =
1

MN

M−1
∑

j=0

N−1
∑

i=0

|I(j, i) − I ′(j, i)|2 , (3)

where M and N are the image dimension and j and i indicate each pixel position.
In order to formulate the model we show the transformation of noise energy

from frequency domain to the signal domain using Parseval’s equality.
Definition 2. In the Parseval’s Equality, the energy is conserved between an

input signal and the transform domain coefficient in the case of an orthonormal
filter bank wavelet base [15]. Assuming the input signal x[n] with the length
of n ∈ Z and the corresponding transformed domain coefficients of y[k] where
k ∈ Z, according to energy conservation theorem,

‖x‖2 = ‖y‖2 . (4)

Based on these primary definitions we build the model which consists of the
following propositions and its proof.

Proposition 1. Sum of the noise power in the transform domain is equal
to sum of the noise power in the input signal for orthonormal transforms. If
the input signal noise is defined by ∆x[n] and the noise in transform domain is
∆y[k] then

∑

n

|∆x[n]|2 =
∑

k

|∆y[k]|2 , (5)

where n ∈ Z is the length of the input signal and k ∈ Z is the length in the
transform domain, respectively.
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Proof. The discrete wavelet transform (DWT) can be realised with a filter
bank or lifting scheme based factoring. In both cases the wavelet decomposition
and the reconstruction can be represented by a polyphase matrix [16]. The in-
verse DWT can be defined by a synthesis filter bank using the polyphase matrix

M ′(z) =
(

h′

e
(z)

g′

e
(z)

h′

o
(z)

g′

o
(z)

)

where h′(z) represents the low pass filter coefficients and

g′(z) is the high pass filter coefficients and the subscripts e and o denote even
and odd indexed terms, respectively. Now the transform domain coefficient y

can be re-mapped into input signal x as bellow:

(

xe(z)
xo(z)

)

=
(

h′

e
(z)

g′

e
(z)

h′

o
(z)

g′

o
(z)

)(

ye(z)
yo(z)

)

. (6)

Assuming ∆y is the noise introduced in wavelet domain and ∆x is the modified
signal after the inverse transform, we can define the relationship between the
noise in the wavelet coefficient and the noise in the modified signal using the
following equations. From (6) we can write

(

xe(z)+∆xe(z)
xo(z)+∆xo(z)

)

=
(

h′

e
(z)

g′

e
(z)

h′

o
(z)

g′

o
(z)

)(

ye(z)+∆ye(z)
yo(z)+∆yo(z)

)

. (7)

From (7) using the Linearity property of the Z transform of the filter coefficients
and signals in the polyphase matrix we can get,

xe(z) + ∆xe(z) = h′

e(z)(ye(z) + ∆ye(z))

+h′

o(z)(yo(z) + ∆yo(z)) ,

h′

e(z)ye(z) + h′

o(z)yo(z) + ∆xe(z) = h′

e(z)ye(z) + h′

e(z)∆ye(z)

+h′

o(z)yo(z) + h′

o(z)∆yo(z) ,

∆xe(z) = h′

e(z)∆ye(z) + h′

o(z)∆yo(z) . (8)

Similarly ∆xo(z) can be obtained and written as

∆xo(z) = g′e(z)∆ye(z) + g′o(z)∆yo(z) . (9)

Combining (8) and (9), finally we can write the polyphase matrix form of the
noise in the output signal:

(

∆xe(z)
∆xo(z)

)

=
(

h′

e
(z)

g′

e
(z)

h′

o
(z)

g′

o
(z)

)(

∆ye(z)
∆yo(z)

)

. (10)

Recalling the Parseval’s energy conservation theorem as stated in Definition 2.,
from (10) we can conclude that

∑

|∆xe|
2 +

∑

|∆xo|
2 =

∑

|∆ye|
2 +

∑

|∆yo|
2 ,

∑

n

|∆x[n]|2 =
∑

k

|∆y[k]|2 . (11)

¥
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Using the generalised framework, the Proposition 1 can be applied to build
the relationship between the modification energy in the coefficient domain to
embed the watermark and the distortion performance metrics. In this model we
made propositions for two different categories of embedding schemes, discussed
in previous section.

Proposition 2. In a wavelet based watermarking scheme, the mean square
error (MSE) of the watermarked image is directly proportional to the sum of
the energy of the modification values of the selected wavelet coefficients. The
modification value itself is a function of the wavelet coefficients and therefore we
propose two different cases based on the categorisation.

Case A. For the direct modification embedding method the modification is a
function of the selected coefficient to be watermarked and the relationship between
MSE (Pp) and the selected coefficient (Cm,n) is expressed as:

Pp ∝
∑

|f(Cm,n)|2 . (12)

Case B. For the quantisation based method the modification is a function
of the neighbouring wavelet coefficients of the selected median coefficient to be
watermarked and the relationship between MSE (Pp) and the wavelet coefficients
Cmin and Cmax is expressed as:

Pp ∝
∑

|f(Cmin, Cmax)|2 . (13)

Proof. In a wavelet based watermark embedding scheme the watermark informa-
tion is inserted by modifying the wavelet coefficients. This watermark insertion
can be considered as introducing noise in the transform domain. Hence the sum
of the energy of the modification value due to watermark embedding in the
wavelet domain is equal to the sum of the noise energy in the transform domain
as stated in Proposition 1. From (1) and (5), the energy sum of the modification
value ∆m,n can be defined as:

∑

m,n

|∆m,n|
2 =

∑

k

|∆y[k]|2 . (14)

Similarly, the pixel domain distortion performance metrics which is represented
by MSE is considered as the noise error created in the signal due to the noise
in wavelet domain. Therefore, the sum of the noise energy in the input signal is
equal to the sum of the noise error energy Pp in the pixel domain:

Pp.(MN) =
∑

n

|∆x[n]|2 , (15)

where M and N are the image dimensions. Now the relationship between the
distortion performance metrics MSE of the watermarked image and the coef-
ficient modification value which is normally a function of the selected wavelet
coefficients can be decided using the Proposition 1. Thus from (14) and (15) we
can write:

Pp.(MN) =
∑

m,n |∆m,n|
2 , (16)



A generalised model for distortion performance... 7

where M and N are the image dimensions. Hence for any watermarked image,
the average noise power Pp is proportional to the sum of the energy of the
modification values of the selected wavelet coefficients:

Pp ∝
∑

m,n |∆m,n|
2 . (17)

Now with the help of the categorisation in the generalised form of the popular
wavelet based watermarking schemes as discussed in Sect. 2, a relationship is
established between the error energy of the watermarked image and the selected
wavelet coefficient energy of the host image. For a direct modification based
algorithm, the mean square error Pp is directly proportional to the sum of the
energy of the modification value ∆ which is a function of wavelet coefficient value
as stated below:

Pp ∝
∑

|f(Cm,n)|2 . (18)

Similarly for the quantisation based method the mean square error depends on
the neighbouring wavelet coefficient values. In this case the modification energy
|∆m,n|

2 hold an inequality due the modification range −δ ≤ ∆m,n ≤ δ:

|∆m,n|
2 ≤ |δ|2 . (19)

Therefore the upper bound of the mean square error Pp is defined by:

Pp ∝
∑

|f(Cmin, Cmax)|2 . (20)

¥

3.1 An Example of Direct Modification

Considering a specific case of the direct modification algorithm in [2] the modifi-
cation value ∆ is a direct function of wavelet coefficient (∆m,n = αCm,nWm, n).
Hence (18) can be modified and the MSE Pp can be expressed as:

Pp ∝

l
∑

k=1

|C(k)|2 , (21)

where C(k) is the selected coefficients to be watermarked and l is the number of
such selected coefficients.

3.2 An Example of Quantisation based Method

In an intra subband based quantisation method suggested in [6], the quantisation
step δ is defined as:

δ = α
Cmax + Cmin

2
, (22)

where α is the user defined weighting factor. As the modification value ∆ depends
on δ, with reference to (20), the relationship between the maximum limit of MSE
Pp and wavelet energy is defined by the following equation:

Pp ∝
∑

k

(C(k)max + C(k)min)2 , (23)

where C(k)max and C(k)min are the neighbourhood coefficients of the median
value and l is the number of such selected median value.
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Table 2. Correlation coefficient values between sum of energy and the MSE for different
wavelet kernel in various subbands.

Direct modification Intra Subband Based
Haar D-4 D-6 D-8 D-10 D-16 Haar D-4 D-6 D-8 D-10 D-16

LL3 0.99 0.99 0.99 0.99 0.99 0.99 0.80 0.84 0.87 0.88 0.86 0.89
LH3 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
HL3 0.99 0.99 0.99 0.99 0.99 0.99 0.93 0.96 0.95 0.96 0.97 0.99
HH3 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
LH2 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
HL2 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
HH2 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
LH1 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
HL1 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.98 0.99 0.98 0.98 0.99
HH1 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

4 Experimental Simulations

The propositions made in the previous section are verified in the experimental
simulations. The sum of the energy of the selected wavelet coefficients and the
MSE of the watermarked image have been calculated for 30 different images
with a combination of different input parameters. As the wavelet coefficients
varies greatly in different subbands we have considered the performances of all
subbands separately after a 3 level wavelet decomposition. Also a set of dif-
ferent wavelet kernels having various filter lengths are selected to perform the
simulations. We simulated and studied the performance of different wavelet ker-
nels such as Haar, Daubechies-4 (D-4), Daubechies-6 (D-6), Daubechies-8 (D-8),
Daubechies-10 (D-10) and Daubechies-16 (D-16) in order to verify our proposed
model. Two different sets of results are obtained and displayed to verify the
effects of different input parameters which are responsible for embedding distor-
tion performance. These two sets of experimental arrangements and resulting
plots are discussed separately as follows:

– In the experiment Set 1, the sum of energy of the selected wavelet coefficients
to be modified and MSE of the watermarked image have been calculated
using the same α and the same binary watermark logo for each selected
method. We have used various wavelet kernels and observed the results for
each selected subbands. The correlation between MSE and the energy sum is
displayed in Fig. 2 and Fig. 3 for direct modification and intra subband based
embedding, respectively. The correlation coefficients are also calculated and
presented in Table 2.
In another representation a set of graphs are plotted in Fig. 4 and Fig. 5 for
direct modification and in Fig. 6 for intra subband based embedding. These
plots present the average values of the MSE and the sum of energy for the
test image set. The error bars denote the accuracy up to the 95% confidence
interval. For display purposes the sum of energy value was scaled, so that
they can be shown on the same plot for comparing the trend.
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– In the experiment Set 2, the performance for different subbands are plotted
for each wavelet kernel in a similar fashion as mentioned in experiment Set 1
in order to observe the trend. The direct modification results are shown in
Fig. 7 and the intra subband modification methods are shown in Fig. 8. As
earlier, a 95% confidence interval is considered which is denoted by the error
bars.
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Fig. 2. Watermark embedding (Direct Modification) performance correlation plot:
MSE vs. sum of energy, in different subband for individual images. Six wavelet kernels
used here such as 1. Haar, 2. D-4, 3. D-6, 4. D-8, 5. D-10 and 6. D-16, respectively.
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Fig. 3. Watermark embedding (Intra subband based) performance correlation plot:
MSE vs. sum of energy, in different subband for individual images. Six wavelet kernels
used here such as 1. Haar, 2. D-4, 3. D-6, 4. D-8, 5. D-10 and 6. D-16, respectively.

The simulation results show a strong correlation between MSE of the wa-
termarked image and the energy sum of the selected wavelet coefficients to be
modified. It is observed that for a direct modification, the correlation coefficient
value is more than 0.97 and more than 0.80 in the case of intra subband based
modification, for different wavelet kernels and various selected subbands. On the
other hand, a similar graph patterns are observed in Fig. 4, Fig. 5, Fig. 6, Fig. 7
and Fig. 8, which show the proportionality trend between MSE and the energy
sum as proposed in the model.

These extensive simulation results strongly support the proposed model for
a wide range of input images and various orthogonal wavelet kernels.
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Fig. 4. Watermark embedding (Direct Modification) performance graph for different
subbands. Six different wavelet kernels used here such as 1. Haar, 2. D-4, 3. D-6, 4.
D-8, 5. D-10 and 6. D-16, respectively. Subbands are shown left to right and top to
bottom: LL3, LH3, HL3, HH3, LH2 and HL2, respectively.

5 Conclusions

We have presented a generalised model for embedding distortion performance
analysis of wavelet based watermarking schemes. With this mathematical anal-
ysis model we have achieved two different goals: generalisation of wavelet based
embedding schemes and the effect of input parameters on distortion performance.
We have proposed the model for orthonormal wavelet bases following the Parse-
val’s Equality. Our model suggests that in a wavelet based watermarking scheme
the MSE of the watermarked image is directly proportional to the sum of energy
of the modification values of the selected wavelet coefficients. We have veri-
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Fig. 5. Watermark embedding (Direct modification) performance graph for different
subbands. Six different wavelet kernels used here such as 1. Haar, 2. D-4, 3. D-6, 4.
D-8, 5. D-10 and 6. D-16, respectively. Subbands are shown left to right and top to
bottom: HH2, LH1, HL1, HH1.

fied the model by evaluating the embedding distortion performance for different
choices of wavelet kernels, subbands and the coefficient selections used in wavelet
based watermark embedding. The experimental simulation successfully verified
the proposed model.
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Fig. 7. Watermark embedding (Direct Modification) performance graph for various
wavelets in different subband. Wavelet kernels are shown left to right and top to bottom:
Haar, D-4, D-6, D-8, D-10 and D-16, respectively.
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Fig. 8. Watermark embedding (Intra subband modification) performance graph for
various wavelets in different subband. Wavelet kernels are shown left to right and top
to bottom: Haar, D-4, D-6, D-8, D-10 and D-16, respectively.
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