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Abstract. We describe our participation in the 2008 CLEF Domain-specific track.
We evaluate blind relevance feedback models and concept models on the CLEF

domain-specific test collection. Applying relevance modeling techniques is found

to have a positive effect on the 2008 topic set, in terms of mean average preci-

sion and precision@10. Applying concept models for blind relevance feedback,

results in even bigger improvements over a query-likelihood baseline, in terms of
mean average precision and early precision.
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1 Introduction

Our approach to retrieving documents that are annotated with thesaurus terms is to
model the language use associated with concepts from a thesaurus or ontology. To this
end we use the document annotations as a “bridge” between vocabulary terms and the
concepts in the knowledge source at hand. We model the language use associated with
concepts using a generative language modeling framework, which provides theoreti-
cally sound estimation methods and builds upon a solid statistical background.

Our concept models may be used to determine semantic relatedness or to generate
navigational suggestions, either in the form of concepts or vocabulary terms. These can
then be used as suggestions for the user or for blind relevance feedback [8,9,14]. In
order to apply blind relevance feedback using our models, we perform a double trans-
lation. First, we estimate the most likely concepts given a query and then we use the
most distinguishing terms from these concepts to formulate a new query. To find the
most distinguishing terms given a concept, we apply a technique based on expectation-
maximization (EM) [4] to re-estimate probabilities of one model with respect to an-
other. Events that are well-predicted by the latter model will lose probability mass,
which in turn will be given to the remaining events. Recently, we have successfully
applied this technique to the estimation of relevance models on a variety of tasks and
collections [9,10].

We address two research questions: (i) What are the effects of estimating and ap-
plying relevance models to the collection used at the CLEF 2008 Domain-specific
track [7]? And (ii) what are the results of applying our concept models for blind rel-
evance feedback? We find that applying relevance models helps for the CLEF 2008



Domain-specific test collection in terms of both mean average precision and early pre-
cision, although not significantly. Our concept models are able to significantly outper-
form a baseline query-likelihood run, both in terms of mean average precision and early
precision. Moreover, we even improve over relevance models in terms of MAP.

The remainder of this paper is organized as follows. In Section 2 we introduce our
retrieval framework. In Section 3 we introduce the details of our models. In Section 4
we describe our experimental setup, parameter settings, and document preprocessing
steps. In Section 5 we discuss our results and we end with a concluding section.

2 Language Modeling

In the area of information retrieval, language modeling-based methods have been around
for about a decade now [5,12,16]. Such methods are centered around the assump-
tion that a query as issued by a user is a sample generated from an underlying term
distribution—the information need. The documents in the collection are modeled in a
similar fashion and are usually considered to be a mixture of a document-specific model
and a more general background model. At retrieval time, each document is ranked ac-
cording to the likelihood of having generated the query (query-likelihood).

Lafferty and Zhai [6] propose to generalize the query likelihood model to the KL-
divergence scoring method, in which the query is modeled separately. Scoring docu-
ments then comes down to measuring the divergence between a query model P(¢|6y)
and each document model P(¢|8p), in which the divergence is negated for ranking pur-
poses. The query model can be defined using the empirical maximum-likelihood esti-
mate (MLE) on the original query as follows:

P(tbg) = P(t|Q) =n(1:0)-|0| ", (1

where n(; Q) is the number of occurrences of term ¢ in query Q and |Q| the length of
the query. Under this definition, KL-divergence produces the same document ranking
as the query likelihood model [16]. More formally, the score for each document given
a query using the KL-divergence retrieval model is:

Score(Q,D) = —KL(0¢||6p)
=— Y P(1180)1ogP(1|0p) + Y P(t|60)logP(]8p), 2)
eV eV

where 7/ denotes the vocabulary. The expression Y,.q P(t|6¢)log P(t|6p)—i.e., the
entropy of the query—is constant per query and can be ignored for ranking purposes.

2.1 Document Modeling

Each document model P(7|0p) is estimated as the MLE of each term in the document
P(t|D), linearly interpolated with a background language model P(z), which in turn is
calculated as the likelihood of observing ¢ in a sufficiently large corpus, such as the
entire document collection:

P(18p) = ApP(t|D) + (1 — Ap)P(1). 3)



This may be interpreted as a way of accounting for the fact that the (pseudo-)relevant

documents contain terms related to the information need as well as terms from a more

general model. We smooth using Bayesian smoothing with a Dirichlet prior and set
ID|

Ap = ‘m%y and (1—2Ap) = Er where p is the Dirichlet prior that controls the influ-

ence of smoothing [3,18].

2.2  Query Modeling

Relevance feedback can be applied to better capture a user’s information need [1,7,15].
In a language modeling context, this can be performed by re-estimating the query
model, i.e., P(¢|0¢) in Eq. 2 [12,17]. For blind relevance feedback one considers terms
in a set of (pseudo-)relevant documents and selects the most informative ones. These
terms may then be reweighed and used to estimate a query model.

Relevance modeling is one specific technique for estimating a query model given
a set of (pseudo-)relevant documents Dyp. The query and documents are both taken to
be samples of an underlying generative model—the relevance model. There are several
ways to estimate the parameters of this model given the observed data, each following
a different independence assumption [7]. We use method 2, which is formulated as:

P(t|éQ) O(P(t) HinQZDiEDQ P(ql|9D,)P(eD,|I)7 (4)

where g1, ..., gy are the query terms, D a document, and ¢ a term. Bayes’ rule is used to
estimate the term P(6p|t):

P(8plt) = P(1(0p)P(8p) - P(1) ", )

where we assume the document prior P(6p) to be uniform. The initial query is inter-
polated with the expanded part [2,13,17], thus reweighing the initial query terms and
providing smoothing for the relatively sparse initial sample P(¢|0¢):

P(t18g) = LoP(t|6g) + (1 —1o)P(t]6p) (6)

3 Concept Models

In order to leverage the explicit knowledge encapsulated in the GIRT/CSASA thesauri
used in the CLEF Domain-specific track, we perform blind relevance feedback using the
concepts defined therein. To incorporate concepts in the retrieval process, we propose
to leverage the conceptual knowledge in the estimation of a query model, which is
obtained from a double translation. In this translation, concepts are used as a pivot
language; the initial query is translated to concepts and back to expanded query terms:

P(t|6g) = Yocc P(tlc)P(c|Q). @)

We assume that the probability of selecting a term is no longer dependent on the query
once we have selected a concept given that query. Two components need to be estimated
here: P(t|c), to which we refer as a generative concept model, and P(c|Q), to which we
will refer as conceptual query model. These will be detailed in the following sections.



Table 1. Top 6 stemmed terms for the document model belonging to document
CSASA-1-EN-9706464 (entitled “American indian ethnic renewal: red power and the
resurgence of identity and culture.”) from the CLEF Domain Specific collection.

P(t|D) estimated using MLE P(¢|D) estimated using Eq. 13

0.061 the 0.54 indian
0.054 of 0.46 ethnic
0.045 indian

0.038 ethnic

0.028 in

0.028 american

3.1 Conceptual Query Modeling

The conceptual query model P(c|Q) is a distribution over concepts specific to the query.
In some settings, concepts are provided with a query or as part of a query. If this is
not the case, however, we may leverage the document annotations to approximate this
step. We formulate the estimation of concepts relevant to a query by determining which
concepts are most likely given the query. To estimate this probability, we consider the
top-ranked documents returned by an initial retrieval run, denoted Dp, and look at the
annotations associated with these documents. So, in order to determine the probability
of a concept given a query, we look for concepts with the highest posterior probability:

P(c|Q) = Lpen, P(c|D)P(D|Q). ®)

Here, P(D|Q) is determined by applying Bayes’ rule on the initial retrieval scores, simi-
lar to Eq. 5. We assume that the probability of observing a concept is independent of the
query, once we have selected a document given the query; the estimation of this term
is addressed below (viz. Eq. 15). As an example, Table 1 shows the top six terms from
a (term) document model, before and after parsimonization; clearly, the parsimonious
document model is much more specific.

3.2 Generative Concept Models

As to the first component in Eq. 7—the concept model P(t|c)—we associate each
GIRT/CSASA thesaurus concept with a language model. We determine the level of
association between a term ¢ and a concept ¢ by looking at the way annotators have
labeled the documents and determine the probability of observing ¢ given c¢: P(t|c) =
P(t,c)-P(c)~'. The concepts used to annotate documents may have different charac-
teristics from other parts of a document, such as title and content. The annotations are
selected by trained indexers from a concept language while the actual content consists
of free text. Since the terms that make up the document are “generated” using a dif-
ferent process than the concepts, we assume that ¢ and ¢ are independent and identical
samples given a document D in which they occur. So, the probability of observing both
tand c is

P(t,c) = Xp P(D)P(c,1|D) = Ypen, P(D)P(t|D)P(c|D), €)



where D¢ denotes the set of documents annotated with concept c. When we assume
each document in this set to have a uniform prior probability of being selected, we
obtain

Plte) 1 Y. P(t|D)P(c|D). (10)

PO =)~ P &,

Hence, it remains to define three terms: P(c), P(¢|D), and P(c|D). The term P(c)~!
functions as a penalty for frequently occurring and thus relatively non-informative con-
cepts. We estimate this term using standard MLE on the document collection:

P(c) = Ypn(c;D) '

Zc’ ZD/ Vl(C/;D/>
Next we turn to P(x|D), where x € {r,c}. The size of these models (in terms of the
number of words or concepts that receive a non-zero probability) may be large, e.g.,
in the case of a large document collection or of frequently occurring concepts. Not all
observed events (i.e., terms or concepts) are equally informative. We have assumed that
each document is a mixture of document-specific and more general terms (Eq. 3); we
generalize this to also include concepts. We update each document model by reducing
the probability mass of non-specific events by iteratively adjusting the individual prob-
abilities in each document, based on a comparison with a large reference corpus (the
collection). Formally, we maximize the posterior probability of D after observing x:

AcP(x|D)
(1=2c)P(x) +AcP(x|D)’
Note that Ac may be set differently from Ap (Eq. 3) and differently for either terms or
concepts. In this paper, we fix Ac = 0.15 [9]. We then apply the following EM algorithm
until the estimates no longer change significantly:

E-step: ex = P(Dlx) (13)
n(x;D)ey
Yy n(x/;D)ex’ .
After the EM algorithm converges, we remove those events with a probability lower

than a threshold 3. Thus, the resulting document model for terms, P(t|éD), to be used
in Eq. 10 is given by:

an

P(Dlx) = (12)

M-step: Pc(x|D) =

P(tlo) = Zp, - Pc(t|D) if t € D and Pc(¢|D) > &,
D770 otherwise,

where Zp, is a document-specific normalization factor: Zp, = 1/Y, Pc(¢|D). Table 1
gives an example of the effects of applying this algorithm to a document from the
current document collection. Similarly, the resulting document model for concepts,
P(c|p), to be used for P(c|D) in Eq. 10, is given by:

~ [ Zp.-Pc(c|D) if ¢ € D and Pc(c|D) > &,
P(clOp) = {0 otherwise,

(14)

5)

where Zp, is a document-specific normalization factor: Zp, = 1/Y.. Pc(c|D). We fix
8 =06, =0.01.



Table 2. Statistics of the CLEF 2008 Domain-specific test collection.

Documents Topics Relevant Documents
Avg. Std.dev. Avg. Std.dev. Avg. Std. dev.
Total length length concepts concepts Total length length Total Avg. Min. Max.

171319 1983 423 10.1 4.2 25 3 1.7 2133 8 4 206

4 Experimental Setup

Other than replacing HTML entities we did not apply any preprocessing to the docu-
ment collection. To estimate our concept models, we used the CONTROLLED-TERM-EN
field in the documents. Given the models introduced in the previous sections, we need
to estimate a number of parameters, viz. Ag (Eq. 6), | Dp| (Eq. 4), || (Eq. 4), and |C|
(Eq. 7). We choose to optimize the parameter values by determining the mean average
precision for each set of parameters and show the results of the best performing settings.
For Ay we sweep in the interval [0,1] with increments of 0.1. The other parameters are
investigated in the range [1,10] with increments of 1. We determine the MAP scores on
the same topics that we present results for, similar to [11,18]. While computationally
expensive (exponential in the number of parameters), this approach provides us with an
upper bound on the performance one might achieve using the described models.

As our baseline, we employ a run based on the KL-divergence retrieval method
and set Ap = 1 (viz. Section 2, Eq. 6). As to u (Eq. 3), we set this parameter to the
average document length. All the results that we report on use this baseline as their
initially retrieved document set. Since our concept language models also rely on pseudo-
relevance feedback, we use the method introduced by [7] (Eq. 4) as another baseline.

5 Results and Discussion

Table 3 lists the results of our runs. We see that our conceptual language model (CM)
has a significant positive effect on the number of relevant documents retrieved. Com-
pared with QL and RM,

CM loses in very early
precision (P5), but not Table 3. Results of the query likelihood (QL), relevance

significantly. It already (RM) and conceptual language model (CM). Percentages
makes up for this later in indicate relative difference with QL. Significance is tested
the top 10 (P10) and even Using a Wilcoxon sign rank test; * indicates a statistically
more so further down the Significant difference against QL (p < 0.05).

ranking. The differences QL RM M

in PS5, P10 and MAP be-  pojevantretrieved 1468 1473 +03% 1602 +9.1%*
tween the three runs are  pg 0.5280 0.5680 +7.6% 0.4880 -7.6%
not significant; given the p | 0.4680 0.4800 +2.6% 0.4840 +3.4%
relatively small number of 7, p 0.2819 0.2856 +1.3% 0.2991 +6.1%

topics (25), it is hard to
achieve statistically sig-
nificant differences.
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(a) MAP (b) P5 (c) P10

Fig. 2. Per-topic breakdown of the improvement of CM over the QL baseline on various
evaluation measures. A positive value indicates an improvement over the baseline.

Next we turn to the precision-recall plot for our three runs, QL, RM and CM; see
Figure 1. As can be expected, given the numbers in Table 3, at very low recall lev-
els RM and QL both outperform CM; at high recall levels (between 0.5 and 0.9) CM
outperforms QL and RM, that perform at very comparable levels.

Finally, we turn to a topic level comparison of CM and the baseline run QL; see Fig-
ure 2. First, in terms of MAP, CM outper-
forms QL on 14 out 25 topics, while QL oo Do
beats CM on 8; there is a large gain for A Conceptual Eanguage Modeis
one topic (211: Shrinking cities). In terms A
of PS5, CM outperforms QL on only 4 top-
ics, while QL beats CM on 7; here, top-
ics 223 (Media in the preschool age) and i
210 (Establishment of new businesses af- o \\
ter the reunification) are especially hard o NN
for CM (-0.40 and -0.70, respectively). In o N
terms of P10, CM beats QL on 11 tOpiCS, ®%0 01 o0z 03 o4 05 o5 07 08 09 10
but loses on 8: topics 223 and 210 are still e
amongst the topics on which CM loses,
but the losses are not as dramatic as they were for PS5 (-0.20 and -0.40, respectively).

0.6
05

g 04

Precision

Fig. 1. Precision recall graph

6 Conclusion

We described our participation in the 2008 edition of the CLEF Domain Specific track.
Specifically, we examined blind relevance feedback models and concept models. Ap-
plying relevance modeling techniques was found to have a positive effect on the current
topics, in terms of mean average precision and precision@ 10. When applying concept
models for blind relevance feedback, we observed an even bigger as well as significant
improvement over the query-likelihood baseline, also in terms of mean average preci-
sion and early precision. The most noticable effect of our concept models was on recall;
in future work, on larger topic sets, we aim to analyze these effects further.
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