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Abstract. We investigate the length of event sequence giving best predictions
when using a continuous HMM approach to churn prediction from sequential
data. Motivated by observations that predictions based on only the few most re-
cent events seem to be the most accurate, a non-sequential dataset is constructed
from customer event histories by averaging features of the last few events. A sim-
ple K-nearest neighbor algorithm on this dataset is found to give significantly
improved performance. It is quite intuitive to think that most people will react
only to events in the fairly recent past. Events related to telecommunications oc-
curring months or years ago are unlikely to have a large impact on a customer’s
future behaviour, and these results bear this out. Methods that deal with sequen-
tial data also tend to be much more complex than those dealing with simple non-
temporal data, giving an added benefit to expressing the recent information in a
non-sequential manner.

1 Introduction

In the telecommunications industry, it has been estimated [13] that on average it can
cost between 5-8 times more to gain a new customer than it would to keep an existing
customer (for example by offering a small incentive). However this incentive is wasted
if it is not offered to someone who, in the near future, is likely to churn (that is, to leave
the company for a competitor). The high churn rate prevalent in this area means that
fairly small improvements in the accuracy of churn prediction can mean significant cost
savings. Thus the problem of predicting customer churn is an important one.

It is a very difficult problem. Though we have large quantities of data available, it is
limited in that many possible reasons for churn will likely leave no imprint in this data,
for example competitor’s offers, or changes in personal circumstances.

We can expect, however, that in some cases the reason for the decision to churn
will leave an imprint in the data prior to the event. This could be in the form of certain
patterns of complaints, or repairs, or other warning signs in the pattern of customer
behaviour. In these cases, which we focus on in this paper, we may be able to model
and therefore detect situations which will likely result in churn.

The remainder of the paper will be structured as follows. The next section will
present the related work which will be followed by the results from an HMM method



using different length customer histories, as motivation for the non-sequential represen-
tation which will be presented in section 4. This section will also contain results using
KNN for churn prediction. The final section will conclude.

2 Related work

At the base of all churn prediction methods is the data used, and here already there are
many options. Demographical data (i.e data about the customer) can be used to predict
churn, however this may be unsuitable for a number of reasons [12]. Alternatives are
call pattern changes and contractual information [12] or customer repair/complaint/provision
data [7]. This latter type of data is that used in the current paper.

Neural networks, regression trees and linear regression are compared with regards
to their churn predicting potential on repair/complaint/provision data in [7]. The re-
gression tree was found to be most accurate overall achieving 82% correct predictions.
However linear regression was the most successful in predicting non-churners whereas
the neural network was better in predicting churners. Similar data in a sequential rep-
resentation encompassing months of a customers historical data is used in a k nearest
sequence method in [11] to predict churn, with an improvement found over standard
classification techniques which use only the last month of data.

In [12], contractual and call pattern data are used together with a decision tree (C4.5,
see [10]) based combination method. The combination method is used to combat the
skewed nature of the data; as there are many more non-churn than churn examples, trees
are trained on subsets of the training data each of which contains all the churn examples
but different samples of the non-churn examples. This gives a number of more balanced
training sets on which the trees are trained. The individual predictions are combined via
weighted voting. The popular combination methods of bagging [2] and boosting [6] are
tested on a mixture of customer and contractual data in [8].

This paper will focus on churn prediction from repair/complaint/provision data. As
customers interact with the service provider, certain details of these interactions are
logged, and from these we can build customer histories by constructing a sequence
of time-ordered events for each unique customer. For the purposes of this paper, each
event is described by 5 features. The precise details of the features cannot be given
for reasons of confidentiality, but can be described in general terms. The (anonymised)
dataset is available on request. One of these features is more naturally categorical; it
denotes the event as one of four different types one of which is churn. These categories
were expressed numerically for use in a Mixture of Gaussians Hidden Markov Model,
or MGHMM (see section 3), the other features are naturally real-valued. One takes
positive integer values from zero to a few hundered, two are positive real valued from
zero to a few tens, and the final one is real valued with range± a few tens about zero.

Common sense suggests that more recent events should be given more weight when
trying to predict future customer behaviour. This problem is quite common when deal-
ing with prediction from sequential data; what is the relevance horizon of the data you
have? In order to discover the timeframe over which it is best to take events when con-
structing a customer history, we constructed training sets in which only the most recent



N events are considered, forN = 3 : 10. When necessary, a subscript will denote the
lengths of sequences allowed, so as an exampleTRany or TRN for N = 3 : 10.

It was found (see the next section) that models trained on the shortest histories per-
formed best. This motivates the approach taken in section 4, as a short history can be
expressed in a non-sequential representation quite easily. This could have applications
in any domain where a short relevance horizon applies, especially in the services do-
main.

3 A sequential HMM approach

One class of method that has seen wide use and success on sequential data are Hid-
den Markov Models (HMMs) (see for example [5]). For a review of machine learning
methods for sequential data see [4]. The simplest form of HMM assumes discrete out-
puts. For each event only certain discrete outputs can be produced, with the probability
of each output depending only on the hidden state of the system. As the data we have
consists of four continuous features and one categorical feature, it is more naturally
represented in a continuous space so a more flexible model called Mixture of Gaus-
sians HMM (or MGHMM) which allows for this is more useful. I will not describe the
method further due to space constraints; the references above contain descriptions of
the standard MGHMM we use in this paper.

HMM’s will be generated from the customer data, trained iteratively via the usual
EM (expectation maximisation) algorithm [1]. Separate models are trained on churn
and non-churn sequences, denoted byMc andMn respectively, and classification is
performed as follows. Given a trained model, the probability that it would generate a
given test sequence can be calculated. The sequence can then be classified according to
which model has the highest probability of generating it, taking into account the class
priors.

These models are highly sensitive to the initialization of the model. One way of
reducing this dependency on a specific initialization is to train a number of models
using different initializations, and then combine their predictions. We have done this in
a relatively simple, rank based manner. For a given individual pair of modelsMc,Mn,
after calculating for each sequence the probability of churn, the sequences are ranked
in order of descending probability. For each sequence, then, we have the ranksr =
r1, ..., rN whereN is the number of models to be combined. We define a function to
map this vector of values onto the real numbers, and rank them again according to
this new value. We tried a variety of simple functions, and settled on an inverse square
functions =

∑
i
1
r2i

though performance is not too sensitive to the form of this function
so long as it increaces sufficiently quickly for smallri.

We then take the top P sequences as our predictions. Here we have a trade-off to
decide between. A larger P means we detect more of the actual churn events, but at a
higher error rate. This trade-off is summed up in Fig. 1. For example, if we choose to
take the top 0.4% as churn predictions (the percentage of sequences which are churn
in the training set), we can expect a correct identification rate of just over 0.3. How-
ever if we choose to take the top 0.8% as predictions, we can expect to predict more



churn events correctly (about 33% more) but at the lower recognition rate of 0.2. The
experimental work will be covered in more detail in the next section.

This ability to specify trade-off easily is one advantage of a rank-based approach.
Instead of choosing a fairly arbitrary threshold above which we will classify a sequence
as in danger of churn, we can specify the level of trade-off we require and allow the data
to set the threshold. We could then use this threshold for later classification of single
sequences in for example an on-line scenario.

3.1 Results/Discussion

The data used in these experiments was constructed as described in section 2. There
are 8080 customer history sequences from which to build the training data, but the final
number of training/testing sequences will depend on the restrictions we place on their
length. Sequences were split 60-40 into training and testing sets.

In Fig. 1, the performance measure is the fraction of churn predictions which are
correct. The basic HMM architecture used was 12 hidden states, with 4 gaussians per
state. Transitions depend only on the previous state. The HMM toolbox of Murphy [9] is
used to build and train the HMM, and the default training parameters are used, with 12
training iterations. These values were chosen on the basis of preliminary tests. Varying
these by a few either way has little effect, with the exception of reducing the number
of gaussians below 4, which degrades performance quite markedly. A likely reason
for this is that one feature (the event type) takes 4 discrete values, meaning at least 4
gaussians are needed to model the relative probabilities of these in general. Diagonal
covariance matrices could have been used in order to reduce the number of parameters
to be estimated, however this was not done as the data used is such that there is likely
to be correlations between some features.

As can be seen in Fig. 1, the combination method improves performance quite sig-
nificantly. This serves to illustrate that even quite simple combination methods can pro-
vide a large benefit in real world applications. The length of sequence used in the his-
tories can also be seen to have a large impact on performance, with shorter sequences
of only the most recent historical events resulting in much better performance. This
illustrates a point that it is still extremely important to choose the data correctly and
represent it in the most suitable way. It is in this spirit that we will represent the data in
a non-sequential manner in the next section.

In order to compare results from the HMM approach with those from the KNN
method that follows, we will introduce a new performance measure. Performance will
be measured using the following value:

G =
pchurn

pprior
=
c1|1(c1|1 + c1|0 + c0|1 + c0|0)

(c1|1 + c1|0)(c0|1 + c1|1)

Wherec∗|∗ denotes the confusion matrix element, the first subscript being the pre-
dicted value (1 for churn, 0 for non-churn) and the second the actual.pchurn is the
fraction of churn predictions which are correct, andpprior is the prior probability of
churn. This is used because, unlike the HMM, there is no natural way of specifying
a tradeoff between number of predictions, and accuracy - the KNN method will sim-
ply give a set number of predictions. The metric is appropriate to the problem, as it is
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Fig. 1.The top line shows the combined performance using training sequences of length
3. Average performance of individual models plotted against percentage of sequences
taken as predictions, for training sequences of length 3,4,5, and 6 are the lower plots
(from top to bottom line).

the ratio of the fraction of the methods churn predictions which are truly churn, to the
fraction of examples that are churn. Thus ifG = 5 say, this indicates that using the
prediction method we make 5x more correct churn predictions than if we simply made
predictions based on randomly predicting an observation to be churn in proportion to
the prior probability of churn. It is the proportion of correct CHURN predictions, not
the number of correct predictions absolute, which is important.

A further set of experiments was run for the shortest sequences.Q = 2 : 20 hidden
states in the HMM were used for histories of length 2, for histories of length 3 this was
only taken up toQ = 10. The dataset was again split 60-40 into training/testing sets
and runs over 20 different splits were performed for each Q. The results are shown in
Fig. 2. The number of predictions taken to give the g value is the same proportion of the
testing set as are churn in the training set. It is also illustrative to look at the confusion
matrices corresponding to some specific g-values indicated by arrows in 2.

g1 =

(
27 46
85 21026

)

g2 =

(
13 64
24 21128

)

in the top right

g3 =

(
29 43
43 21067

)

g4 =

(
22 54
54 21098

)

and the bottom two are

g5 =

(
19 55
78 17700

)

andg6 =

(
24 49
49 17903

)
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Fig. 2. G value vs Q for individual and combined HMM predictions, using histories as
labelled

It can be seen that though the g-value is actually increacing for larger Q and se-
quences of length 2, few churn predictions are actually being made at higher values
(seeg1 compared tog2) making the model less useful. The drop in g-value for higher
Q for the combined method is probably related to this low number of churn predictions
made by the individuals, and even though g is lower the combination method keeps the
number of correct churn predictions made to a more useful level.

As can be seen again, the combination method clearly outperforms the individual
models. The even shorter sequences of length 2 also outperform those of length 3, giving
further motivation to our attempt at a non-sequential representation. This is the subject
of the next section.

4 A non-sequential KNN approach

Instead of representing the customer history as a sequence, and making the implicit
assumption that each event is related to the one before as in a HMM based approach, we
may try to represent the data non-sequentially. In this case we make a slightly different
assumption, which is that while the decision to churn is based on previous events, the
previous events are not necessarily related to each other. Which is truer is debatable, it
is easy to imagine scenarios where either could be the case. However there is no doubt
that non-sequential data is easier to deal with. All the classical techniques such as KNN,
parzen, tree, and support vector classifiers can be used, we chose KNN as an illustration
as it performed better in preliminary tests, due to its suitability for problems when the
classes are highly imbalanced. This suitability stems from the fact that by choosing K
appropriately the number of data points contributing to the classification can be limited
so that points of the more prevalent class do not always swamp the minority class. The
fact that the churn examples tend to be a little more clustered than the non-churn also
contributes to making KNN an appropriate choice.



A non-sequential dataset could be made from the above event histories by either
averaging over the events in a sequence for each feature, to give the non-sequential
feature values, or by creating new features to represent the features for different events.
This latter would giveNk features for sequences of lengthN and events withk features.
It is the first method that we chose to use, though the second may be worth looking at
in the future. The new features can be thought of as recording information answering
questions like ’were things provided late during the last few events?’, ’did the last few
events take long?’. This is still highly useful information, what we lose is information
on which event, for example, most of the delay/time was due to, or if it was spread
over more than one. The second method of creating the new features would retain this
information, but at the cost of creating many more features.

We show that when the relevance horizon for a sequential dataset is quite small, it
is possible to get good results using classical techniques on a non-sequential represen-
tation. Guided by the results in the previous section which pointed to only the few most
recent events being relevant, we chose to average features as little information is lost
averaging a feature over just a few events.

Our features have some similarities with auto-regressive models. An AR model
models a time series entry as being a linear combination of previous entries in the time
series, possibly with a noise component:

Xt = c+

t−1∑

i=1

αiXt−i + εt

.
c is a constant andε is a white noise component. We use a similar construction, but

not in a predictive sense - we rather use it to construct a single feature which is a linear
combination of feature entries in a time series:

X = c+

T−1∑

i=0

αiXT−i

whereT is the length of the series. Thus far we have used a very simple set of
coefficients - the firstτ αi are 1

τ
, the rest zero. An interesting extension would be to

look at other sets of coefficients, perhaps exponentially decaying in timestep.

4.1 Method

The non-sequential dataset is constructed by averaging the features of the lastτ events
of the sequence, not including the last, label-defining event. The event type of this last
event is used to label the data point as churn or non-churn. Only 3 features were in-
cluded. These are event type (churn, complaint, repair and order are given the values
1,2,3 and 4 respectively), event duration (can be zero if not known or is not applicable),
and promise (if something was promised, how early it was achieved; it is negative if that
something was late. It can be zero if not relevant). These were chosen from a common
sense view of what factors would be most likely to influence someone to churn, and
from the results of preliminary experiments.



This dataset is split 60-40 into training and testing sets, and a simple K nearest
neighbor algorithm is used to perform the classification. A nearest neighbor algorithm
was chosen as it deals well with datasets such as this where the prior probabilities of the
classes are highly imbalanced. The HMM is very computationally expensive to train,
but it is cheap to calculate predictions when trained. In comparison, the KNN costs
nothing to train, however it can be very expensive to calculate very large numbers of
predictions. There are many methods available in the literature to increase the efficiency
of such nearest neighbor searches though, for just one example see [3]. Results, and
some discussion and interpretation, follow.

4.2 Results/Discussion

The first three subplots in Fig. 3 show the results on datasets averaging the features of
1,2 and 3 events respectively, using 1-7 nearest neighbors for classification. The next
event in the sequence is predicted. Performance is measured using the g value presented
in section 3.1.
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Fig. 3.Performance vs NN for histories and prediction time frame as labelled

The final subplot shows the performance when trying to predict two events into the
future, using a history of 2 and 1-9 nearest neighbors. This can be seen to be much



less successful, showing that knowledge of the most recent event is very important.
Using histories of other lengths to predict two events into the future also results in bad
performance, and so is not shown.

From the above figures, it can be seen that an event history of 2 gives optimal perfor-
mance using this method, and that taking simply the last event is totally inadequate for
prediction. This shows that it is necessary to take into account the sequential nature of
the data, even if only over a short time. An event history of 3 performs well, but worse
than the shorter time period. This shows that the most relevant events in a customers
history are the last two or three, as intuition would support. Also the non-sequential
representation is less suitable for longer sequences. Performance does not seem to be
overly dependant on NN number, with a nearest neighbor count of over 5 performing
well.

Again looking at the confusion matrices gives a little more insight. From top left to
bottom right, the g values indicated are:

g7 =

(
26 40
1278 13711

)

g8 =

(
28 36
16 14866

)

g9 =

(
9 57
7 14948

)

g10 =

(
3 51
34 12384

)

Fromg7 we can see that although prediction from the last event detects churn quite
well, there are very many false positives too resulting in a low g. Fromg8 we see
that including an extra event into the history has little effect on the number of correct
churn predictions, but vastly reduces the number of false churn predictions, improving
both specificity and sensitivity thus making this a much more useful tool for practical
churn prediction. Looking at the confusion matrixg3 for the HMM, we see that there
is a decrease in false churn prediction compared to this too, while maintaining a very
similar level of correct churn prediction. A third event in the history can be seen ing9
to reduce churn predictions markedly, both correct and false. This lowers the sensitivity
drastically, and in this case the number of churn predictions made is too low to be really
useful, compared to using just 2 event histories.

Trying to predict more than one event into the future can be seen to result in very
few churn predictions.

We can attempt to interpret what these results could mean in real terms by looking
more closely at the nature of the data we have. Roughly half of all the churn examples
correspond to sequences in which the last two events are complaints, which is revealing
in itself, although it shouldn’t really be surprising. Almost all the churn examples cor-
respond to event sequences in which the last two events have been of the same type, and
many of them where the last two events are quite similar. These observations could be
interpreted as indicating that a customer does not like to have to do the same thing twice
when dealing with the service provider, especially when that thing is a complaint. Churn
examples are also quite closely clustered, indicating that complaints falling into a few
distinct, well defined subclasses may be especially likely to provoke a churn response.



5 Conclusions

We have proposed, based on observations from a HMM method, that only the most
recent events in a customers history have an effect on the future behaviour of that cus-
tomer, and shown that a short sequence of events corresponding to a recent history
can be represented easily in a non-sequential way. This allows the use of all the tools
available for simple, non-sequential pattern recognition, and we show that a K-nearest
neighbor algorithm performs well on this data. This provides much better performance
and potentially reduced computational complexity over the HMM methods. We explain
the success of this method by noting that many churn events when represented in this
way lie in a few small, dense clusters, and observe that many churn events follow a
history of two events of the same type, often with similar feature values. This indicates
that perhaps having to do the same thing twice, especially with regards to a complaint,
often leads to churn.
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