
Modeling Parallel System Workloads with
Temporal Locality

Tran Ngoc Minh and Lex Wolters

Leiden Institute of Advanced Computer Science
Leiden University, 2333 CA, Leiden, The Netherlands

minhtn@liacs.nl and llexx@liacs.nl

Abstract. In parallel systems, similar jobs tend to arrive within bursty
periods. This fact leads to the existence of the locality phenomenon,
a persistent similarity between nearby jobs, in real parallel computer
workloads. This important phenomenon deserves to be taken into ac-
count and used as a characteristic of any workload model. Regrettably,
this property has received little if any attention of researchers and syn-
thetic workloads used for performance evaluation to date often do not
have locality. With respect to this research trend, Feitelson has suggested
a general repetition approach to model locality in synthetic workloads
[6]. Using this approach, Li et al. recently introduced a new method for
modeling temporal locality in workload attributes such as run time and
memory [14]. However, with the assumption that each job in the syn-
thetic workload requires a single processor, the parallelism has not been
taken into account in their study. In this paper, we propose a new model
for parallel computer workloads based on their result. In our research,
we firstly improve their model to control locality of a run time process
better and then model the parallelism. The key idea for modeling the
parallelism is to control the cross-correlation between the run time and
the number of processors. Experimental results show that not only the
cross-correlation is controlled well by our model, but also the marginal
distribution can be fitted nicely. Furthermore, the locality feature is also
obtained in our model.

1 Introduction

Parallel systems from supercomputers to clusters and grids have become more
and more popular for solving many problems not only in scientific computing
but also in industry. To enable effective resource allocation on these systems,
numerous schedulers have been built such as Maui [5] and KOALA [15]. The
quality of schedulers depends on their algorithms and has a considerable im-
pact on the overall performance of parallel systems. Hence, the evaluation of
scheduling algorithms is an essential part to build a scheduler. The accuracy of
the evaluation highly relies upon workloads applied, where real workloads (called
traces) are usually chosen because they reflect the system reality. However, there
are several reasons showing that workload models have a number of advantages



over traces [24]. Workload modeling creates a general model which can be used
to generate synthetic workloads.

Arrival time, run time and parallelism (the number of processors) are three
important workload attributes necessary to be modeled to apply for studies on
performance evaluation. While the arrival time attribute can be modeled indi-
vidually, two remaining attributes are more difficult and require to be modeled
at the same time because it is proven that there exists a cross-correlation be-
tween the run time and the parallelism [13, 24]. In [11, 23], a multifractal wavelet
model is introduced to control the fractal behaviour and the temporal correla-
tion of arrival rate processes. In [24], a combined model is suggested where the
interarrival times fit a hyper-Gamma distribution and the job arrival rates match
the daily cycle. Models for run time and parallelism are also proposed recently
based on fitting the marginal distribution [24] or Markov chains to control the
cross-correlation between these two attributes [1]. However, it can be seen that
although the phenomenon of locality - a persistent similarity between nearby jobs
- has been recognized to strongly exist in real parallel computer workloads [6],
this important characteristic is not taken into account in the studies mentioned.

With respect to this research trend, Feitelson [6] has proposed a general rep-
etition approach to model locality in synthetic workloads. Using this approach,
Li et al. [14] recently introduced a new two-stage method for modeling the run
time attribute with a temporal locality feature. The first stage consists of apply-
ing the model called mixture of Gaussians, whose parameters are estimated via
the Model-Based Clustering (MBC) framework [3]. The second stage includes a
Localized Sampling (LS) algorithm [14] for generating temporal locality in the
data series. However, with the assumption that each job in the synthetic work-
load requires a single processor, the parallelism has not been taken into account
in their model (MBC-LS). Furthermore, we also found that MBC-LS does not
control the locality very well to fit the locality of real data. In this paper, we
propose a new model for parallel computer workloads based on MBC-LS. In our
research, we firstly improve MBC-LS to control the temporal locality feature of
a run time process so that the locality of real data is matched better. Then,
the parallelism is modeled with the key idea that the cross-correlation between
two workload attributes -run time and parallelism- fits the real data as accu-
rately as possible. Experimental results show that not only the cross-correlation
is controlled well by our model, but also the marginal distribution can be fitted
nicely. Moreover, the temporal locality feature is also obtained by improving and
applying MBC-LS in our model.

The rest of this paper is organized as follows. Section 2 describes workload
data used in our experiments. MBC-LS and our improvements are presented in
section 3. We continue in section 4 to model the parallelism as well as to control
the cross-correlation between the run time and the parallelism. Experimental
results are shown in section 5. Finally, we conclude in section 6 our study and
discuss some future research.



2 Workload Data

Table 1 describes details of the traces used in our study. KTH is from the IBM
SP2 machine installed at the Swedish Royal Institute of Technology in Stock-
holm and is scheduled using the EASY backfilling scheduler [4]. LANL is from
the Connection Machine CM-5 installed at Los Alamos National Lab and is
scheduled using DJM [8]. SDSC is collected from the San Diego Supercomputer
Center Intel Paragon machine whose scheduling is based on NQS [16]. This trace
is available under two separate one-year traces, namely SDSC95 and SDSC96.
Though the first four traces in Table 1 are rather old, we select them in our
experiments for comparison with recent studies [1, 24].

Table 1. Traces used in the experiments.

Trace Period Number of processors Number of jobs

KTH 09/1996-08/1997 100 28480
LANL 01/1996-09/1996 1024 37517

SDSC95 12/1994-12/1995 416 53885
SDSC96 12/1995-12/1996 416 32032

LLNLATLAS 02/2007-05/2007 9216 23911
GRID5000 07/2006-08/2006 3216 42171

Newly collected traces are also considered in our study, including LLNLAT-
LAS and GRID5000. At the cluster level, LLNLATLAS, a large Linux cluster
called Atlas installed at the Lawrence Livermore National Lab and scheduled
by MOAB [18], is selected. At the grid level, GRID5000 [10], consisting of 9
sites with a total of 15 clusters geographically distributed in France, is chosen.
GRID5000 uses OARGrid as grid resource broker and OAR as batch scheduler
for its local clusters [19]. Note that this grid trace includes both jobs submitted
via the grid resource broker and jobs directly submitted to the clusters. All traces
and detailed information are available on [21], except for GRID5000 which are
collected from [9].

3 Modeling Job Run Time with Locality

We first show in this section the reason why we need to take into account tem-
poral locality when modeling the run time attribute. Then, we present briefly
a two-stage approach [14] to model job run time with the locality feature. The
first stage consists of the mixture of Gaussians model, whose parameters are
estimated via Model-Based Clustering (MBC) framework. The second stage in-
cludes a Localized Sampling (LS) algorithm for generating temporal locality in
the data series. In addition, we also describe our improvement on this approach
to control locality better.



3.1 Why Locality?

In the effort of improving the performance of parallel systems, several researches
on predicting job run time using historical data to provide schedulers with better
information have been done [12, 22, 26]. These studies are based on the belief
that the recent past is indicative of the near future. It is a generalization of
the idea of locality. Furthermore, we observe that the real workload data is far
from independently and identically distributed, instead, similar jobs tends to
arrive within bursty periods. Therefore, locality should be taken into account
when modeling parallel system workloads to help studies on predicting more
accurately.

3.2 Model-Based Clustering

Model-Based Clustering (MBC) [3] is a methodological framework that underlies
a powerful approach not just to data clustering but also to discriminant analysis
and multivariate density estimation. Instead of looking for a single probability
density function for the distribution of the data, the main idea of MBC is that
it considers the data as generated by a mixture of normal (Gaussian) probabil-
ity density functions, where each function represents a different cluster1. The
selection of the number of clusters is based on the Bayesian information cri-
terion. Gaussian parameters for these clusters are calculated by combining ag-
glomerative hierarchical clustering and the expectation-maximization algorithm
for maximum likelihood. MBC is implemented in the MCLUST software and
available on [17].

3.3 Localized Sampling

The localized sampling algorithm presented in this section is used to model
the locality feature of a job run time process. The concept and phenomenon of
temporal locality [20] has been recognized and recently studied to model parallel
workloads. To this end, a locality of sampling algorithm has been introduced by
Feitelson [6] based on the observation that the lengths of repetitions of equivalent
jobs empirically follow a Zipf-like (power law) distribution [7]. This algorithm
can be summarized by the following steps:

1. Sample a variate X from the probability distribution of the data.
2. Sample a variate R from the fitted Zipf distribution of repetitions in the

data.
3. Repeat the X variate R times to distort the distribution locally.
4. Return step 1 until the desired number of samples has been generated.

1 The term “cluster” stems from the concept of “data clustering”. Data clustering
is the classification of similar objects into different groups, or more precisely, the
partitioning of a data set into subsets (clusters), so that the data in each subset
(ideally) share some common trait. (definition from Wikipedia)



Though the locality can be obtained well, this algorithm still has a number of
limitations. Firstly, it is not easy to know exactly the probability density function
of the real data. Hence, sampling for the variate X in step 1 is very difficult and
almost infeasible. Secondly, repetition of a single value in step 3 is a simple
treatment and more sophisticated techniques are needed for better stochastic
approximation. To this end, a localized sampling algorithm has been proposed
by Li et al. in [14] to overcome these limitations. They found that not only
the repetitions of real data but also the repetitions of cluster labels empirically
follow a power law. The classification/cluster labels can be obtained via MBC
presented in section 3.2. The idea of their algorithm is that the cluster label
series instead of the real data is taken into account to serve as the input for
the 4-step procedure above. In this way, the first limitation is solved because
the probability distribution of cluster labels is known in advance via MBC.
Futhermore, the second limitation is also eliminated because each cluster label
represents a cluster of values instead of a single value. Each cluster label in the
generated series is converted into a specific value in the final synthetic run time
process by sampling the distribution of the corresponding cluster, which is also
known in advance via MBC.

Although using MBC to classify data series and applying these classifications
to the 4-step procedure above is a good idea, we found that a new limitation
occurs with this approach. That is only repetitions of cluster labels follow the
power law, but repetitions of the final synthetic run time process do not fit the
Zipf-like distribution as the real data any more. It is because the authors use
a cluster of values instead of a single value to overcome the second limitation
in Feitelson’s algorithm. Therefore, we propose a solution to solve this problem.
When we repeat a cluster label R times, we also equivalently sample the distribu-
tion of that cluster R times to produce R specific values in the final synthetic run
time process. Our idea is that instead of sampling the distribution of a cluster
R times, we will produce a single value r times with r < R and then sample the
distribution of the cluster R− r times. So how to obtain the value r? Observing
all the times where a cluster label appears repeatedly in the cluster label series,
we recognize that there are periods where no single value is produced repeatedly.
Based on this observation, we calculate a probability p to indicate the ability
that there is a single value produced repeatedly at a repetition time of a cluster
label. As such, r can be calculated by sampling from the fitted Zipf distribution
of repetitions in the real data with a probability p. Otherwise, with a probability
1− p, r is assigned to be equal to 0.

Combining the idea of Feitelson, the idea of Li et al. and our idea, we sum-
marize the following steps to model the locality feature for a run time process:

1. Run the model-based clustering procedure in section 3.2, where the real
run time process Datai, i = 1 → n serves as an input, to obtain mixture
of Gaussians parameters (µk,

∑
k; pk), k = 1 → G and classifications Li ∈

{1, · · · , G}, i = 1 → n; where G is the number of clusters, µk,
∑

k and pk are
mean, variance and probability of cluster k, respectively.



2. Count the lengths of repetitions in Li and fit them to a Zipf distribution ZL.
For example, if Li = {2, 2, 2, 3, 1, 1, 4, 5, 5, 5, 5}, we have a series of lengths
of repetitions as {3, 1, 2, 1, 4} and fit this series to a Zipf distribution.

3. Count the lengths of repetitions in Datai and fit them to a Zipf distribution
ZD.

4. Calculate the probability p for the occurence of the repetition of a single
value within each repetition in classifications Li.

5. Generate a series of cluster labels C according to the cluster probability pk.
6. Set the window size W . Form a series Cσ by applying the cluster permu-

tation procedure2 . This step is used to control the autocorrelation in the
synthetic data and completely independent on the locality. The autocorre-
lation increases when W is large and in the simplest case, Cσ = C when
W = 1. This step can be bypassed without any impact on the locality by
simply setting W = 1 if users do not want to control the autocorrelation.

7. Select a cluster label c from Cσ sequentially.
8. Sample a variate R from the fitted Zipf distribution ZL.
9. Sample a variate Prob from the uniform distribution over the range [0, 1].

10. If Prob ≤ p, sample a variate r from the fitted Zipf distribution ZD, else
assign r = 0. Note that the sampling work is done by a loop until we obtain
r < R.

11. Sample the Gaussian distribution fc(µc,
∑

c) to obtain a single value and
repeat this value r times.

12. Sample the Gaussian distribution fc(µc,
∑

c) R− r times.
13. Return step 7 until the desired number of samples has been generated.

4 Modeling Parallelism and Control the Cross-Correlation

For most parallel systems, parallelism is another vital workload attribute beside
run time. Furthermore, the cross-correlation between it and the run time is
also very important. In [25], Lo et al. demonstrated how different degrees of
this cross-correlation might lead to discrepant conclusions about the evaluation
of scheduling performance. Therefore, we should take into account this cross-
correlation when modeling parallel system workloads.

As indicated in [14], despite the fact that the mixture of Gaussians model
is a good choice for fitting the marginal distribution, it is not suitable for some
attributes with discrete values such as parallelism. Hence, we propose in this
section a new three-stage approach to model the parallelism as well as control
the cross-correlation between it and the run time. Firstly, the parallelism process
is classified into a number of classes. However, different from the run time process
with continuous values, the parallelism process with discrete values can not be
classified via MBC in section 3.2. Rather than, we create a new method for the
classification of the parallelism process. Secondly, we control the cross-correlation
2 Hereby we give an example of the cluster permutation procedure, for details see [14].

If we have a series of cluster labels generated in step 5 C = {1, 2, 1, 3, 2, 2, 3, 2, 4, 1, 4}
and W = 4, we deduce Cσ = {1, 1, 2, 3, 2, 2, 2, 3, 4, 4, 1}.



between the run time and the parallelism by creating and using a transition
table. Thirdly, we convert class labels into specific values based on the sample
probability.

4.1 Classify the Parallelism

Algorithm 1 Classify the parallelism process. The operator length(·) indicates
the length of a series and the operator round(X) rounds X to the nearest integer.

Input: A parallelism process Pi, i = 1 → n.
Output: A classification process Ci, i = 1 → n where Ci indicates the class to which
Pi belongs.

Assign maxcpus = max({Pi, i = 1 → n});
for j = 1 to maxcpus do

Calculate the number of occurences of j in {Pi}: countj = length({x = j, x ∈
{Pi}});
if countj 6= 0 then

countj = round(log2(countj)) + 1;
end if

end for
for i = 1 to n do

Ci = countPi ;
end for

Our approach to classify the parallelism is presented in detail in Algorithm 1.
We start by grouping jobs that require the same number of processors and count
the number of jobs in each group. Then, each group is assigned a label which is
an integer calculated by rounding the logarithm of the number of jobs in that
group to the base 2 and adding 1. Jobs belong to a group are also classified with
its label. As such, groups that have approximately equal quantities of jobs will
be assigned the same label. For example, if there are 250 jobs requesting 4 cpus
and 300 jobs requesting 10 cpus, all of them will be classified as 9. Note that
this classification approach can only be applied on a series with discrete values
such as parallelism.

4.2 Control the Cross-Correlation

We use Algorithm 2 to control the cross-correlation between the run time
and the parallelism. Firstly, we calculate the transition conditional probability
table Pr(c, l), where c and l are labels of the parallelism and the run time,
respectively. Pr(c, l) indicates the probability for a job to have the parallelism
label c with the condition that the label for its run time is known in advance
as l. Pr(c, l) of a job is calculated by the ratio between the probability P (c, l)
for that job to have the parallelism label c and the run time label l at the same



Algorithm 2 Create a series of parallelism labels.
Input: Classifications of the run time process Li, i = 1 → n obtained via MBC
in section 3.2, classifications of the parallelism process Ci, i = 1 → n obtained via
Algorithm 1 and the series of cluster labels CW .
Output: A series of parallelism labels CL.

Assign maxruntimelabel = max({Li, i = 1 → n});
Assign maxcpulabel = max({Ci, i = 1 → n});
for l = 1 to maxruntimelabel do

P (l) = length({x=l,x∈Li})
n

;
end for
for c = 1 to maxcpulabel do

for l = 1 to maxruntimelabel do
P (c, l) = length({i∈[1,n]:Ci=c,Li=l})

n
, where i represents a job;

Pr(c, l) = P (c,l)
P (l)

;
end for

end for
for each cwj in CW do

Select an integer x ∈ [1, maxcpulabel] according to the transition conditional prob-
ability table Pr(c, l) with l = cwj and assign clj = x to form a series of parallelism
labels CL;

end for

time and the probability P (l) for that job to have the run time label l. Secondly,
we form a series of parallelism labels based on the transition probability table
Pr(c, l). Each parallelism label corresponds to a cluster label in the series CW .
We obtain CW by using Cσ and repeating each cluster label in Cσ R times.
Reminding that in the algorithm presented in section 3.3, Cσ is formed in step
6 by applying the cluster permutation procedure. Each cluster label from Cσ is
selected and repeated R times in step 7 and step 8, where R is sampled from the
fitted Zipf distribution. For example, if we have Cσ = {1, 3, 2} and the values of
R for these labels are 2, 1, 4 respectively, we obtain CW = {1, 1, 3, 2, 2, 2, 2}.

4.3 Generate Specific Values

This stage receives a series of run time labels CW and a series of parallelism
labels CL as its inputs. The way to obtain CW is presented in section 4.2. CL
can be achieved via Algorithm 2. Combining CW and CL, we have a series of
labels for parallel jobs (cwi, cli), where cwi ∈ CW and cli ∈ CL. The specific
value for the run time of job i is generated by sampling the distribution of the
cluster with label cwi. The specific value for the number of processors of job i
with label cli is generated by the following steps:

1. Determine all jobs in the real data that have labels of (cwi, cli) based on
classifications of the run time process Li, i = 1 → n obtained via MBC
in section 3.2 and classifications of the parallelism process Ci, i = 1 → n



Fig. 1. Log-log histograms for the lengths of repetitions in the traces and synthetic
run time processes.



obtained via Algorithm 1. We can know exactly and call the number of
processors of these jobs {processors}.

2. Consider {processors} as a sample space, the specific value we seek is se-
lected in {processors} according to the uniform probability of this space.

5 Experimental Results

Details of the traces used in our experiments are described in section 2. All
these traces are applied on our model to generate synthetic workloads. The
quality of these synthetic workloads is evaluated by comparing with the real
data. Furthermore, we compare our model with the model of Song et al. [1] and
the model of Lublin/Feitelson [24]. They are recent models for parallel system
workloads.

Evaluation metrics used in our experiments include the marginal distribution,
the cross-correlation between the run time and the parallelism, and the squashed
area discussed in section 5.2. Note that we do not evaluate the locality feature
of the run time process since it is assured by the Zipf distribution of repetitions.
Instead, we only evaluate our improvement by comparing with MBC-LS model
[14].

5.1 Locality of the Run Time Process

Figure 1 shows experimental results in evaluating our improvement. Reminding
that our purpose is to fit the locality of the real data better. In order to compare
our model with MBC-LS, we count the lengths of repetitions in both synthetic
and real run time processes and draw the log-log histograms of these lengths.
It can be seen that in all cases, our improved model fits the real data better
than MBC-LS. Nevertheless, the model does not match the real data very well.
It is because the probability p we calculate in step 4 of the algorithm presented
in section 3.3 is not a perfect value. Another reason is that we only allow one
sequence of r repeated values each time R values are generated. Of course, we
can improve this matching by increasing p and allow more than one sequence but
it depends on the traces. In our experiment, we found that this method indeed
helps to match some traces better but also causes the situations of overfitting
for other traces. Therefore, we decide to select the current method to avoid
overfitting. However, more research is still left to improve the locality matching
of the model compared with the real data.

5.2 The Metric Squashed Area

The squashed area (SA) metric is proposed by Song et al. [1]. It is the total
resource consumptions of all jobs

SA =
∑

j∈Jobs

req processorj × run timej . (1)



Furthermore, the difference of squashed area is calculated by

d SA =
synthetic SA− original SA

original SA
. (2)

Table 2. The difference of squashed area. Results for Song et al.’s model are collected
from [1].

Trace Our model Song et al.

KTH 0.39% 15%
LANL 2.21% -1%

SDSC95 -0.04% -3%
SDSC96 -3.12% 8%

In [2], Ernemann et al. demonstrated that the squash area has significant
impacts on scheduling performance. It can be concluded from Equation (2) that
if d SA is closer to 0, the result is better (i.e. the model matches well the real
traces). The results in Table 2 show that our model is better than the model of
Song et al. since in most cases our differences of squashed area are smaller.

5.3 The Metric Cross-Correlation

One of the most difficult problems in modeling parallel workloads is how to con-
trol the cross-correlation between the run time and the parallelism as accurately
as in the real data. The cross-correlation is measured by calculating the corre-
lation coefficient between the run time and the parallelism. It can be seen from
Table 3 that our model controls the cross-correlation well since our results are
closer to the real data than those of the other models. As understanding from our
experiments, the cross-correlation is controlled well thanks to the combination
of Algorithm 2 and the way we generate specific values for parallelism labels as
described in section 4.3.

Table 3. The cross-correlation between the run time and the parallelism. Results for
the models of Song et al. and Lublin/Feitelson are collected from [1].

Trace Real data Our model Song et al. Lublin/Feitelson

KTH 0.011 0.015 0.005 0.005
LANL 0.172 0.192 0.226 0.29

SDSC95 0.277 0.233 0.140 0.105
SDSC96 0.371 0.332 0.155 0.116

LLNLATLAS 0.034 0.033 - -
GRID5000 0.006 0.009 - -



Fig. 2. Fitted marginal distribution of the parallelism.



Fig. 3. Fitted marginal distribution of the run time.



5.4 Marginal Distribution

Another important result from our model is that the marginal distribution is
fitted very well. Figure 2 and Figure 3 show how well the cumulative density
function (CDF) of the run time and the parallelism is fitted in our model. For
the run time with continuous values, the marginal distribution is determined
by the mixture of Gaussians model (see section 3.2). For the parallelism with
discrete values, our experiment proves that the marginal distribution is fitted
well by Algorithm 1 in section 4.1.

6 Conclusions and Future Work

When modeling parallel system workloads, researchers should take care of the
locality and the cross-correlation between the parallelism and the run time. The
locality feature is necessary for studies on predicting job run time, based on the
belief that the recent past is indicative of the near future. The cross-correlation
was demonstrated in [25] to have significant impacts on the evaluation of schedul-
ing performance.

With respect to the locality, Li et al. [14] and Feitelson [6] recently intro-
duced approaches to produce locality in the synthetic run time process. We also
discussed some limitations of their methods and suggested a solution to over-
come these limitations. Our solution indeed fits locality of the real data better
than Li et al. ’s model (see Figure 1) but not very well. The reason was already
discussed in section 5.1 and more effort to improve this result is left for future.

For the cross-correlation, experimental results (see Table 2 and Table 3)
showed that our model can control the cross-correlation between the run time
and the parallelism more accurately, compared with recent models for parallel
system workloads [1, 24].

In addition, another important result from our model is that the marginal
distributions of the synthetic run time and the synthetic parallelism fit the real
data very well (see Figure 2 and Figure 3).

From our results, we believe that modeling parallel system workloads based
on classifying data is a good approach. In future work, we continue to use this
idea to model other workload attributes such as user estimated run time and
requested memory in order to form a full synthetic workload with adequate
necessary attributes including real run time, user estimated run time, requested
memory and parallelism.

References

1. B. Song, C. Ernemann, R. Yahyapour, “Parallel Computer Workload Modeling
with Markov Chains”, Job Scheduling Strategies for Parallel Processing, Lecture
Notes in Computer Science, Volume 3277, Pages 47-62, 2004.

2. C. Ernemann, B. Song, R. Yahyapour, “Scaling of Workload Traces”, Job Schedul-
ing Strategies for Parallel Processing, Lecture Notes in Computer Science, Volume
2862, Pages 166-182, 2003.



3. C. Fraley, A. E. Raftery, “Model-Based Clustering, Discriminant Analysis, and
Density Estimation”, Journal of the American Statistical Association, Volume 97,
Pages 611-631, 2002.

4. D. A. Lifka, “The ANL/IBM SP Scheduling System”, Job Scheduling Strategies
for Parallel Processing, Lecture Notes in Computer Science, Volume 949, Pages
295-303, 1995.

5. D. B. Jackson, Q. Snell, M. J. Clement, “Core Algorithms of the Maui Scheduler”,
Job Scheduling Strategies for Parallel Processing, Lecture Notes in Computer Sci-
ence, Volume 2221, Pages 87-102, 2001.

6. D. G. Feitelson, “Locality of Sampling and Diversity in Parallel System Work-
loads”, in Proceedings of 21st ACM International Conference on Supercomputing,
ACM Press, USA, 2007.

7. D. G. Feitelson, “Workload Modeling for Computer Systems Performance Evalu-
ation”. Book Draft, Version 0.18, 2008.

8. Distributed Job Manager, http://bradley.c-sail.mit.edu/cm5docs/manuals/cm5/
doc/djm/.

9. Grid Workloads Archive, http://gwa.ewi.t-udelft.nl/.
10. Grid5000, http://www.grid5000.org/.
11. H. Li, “Long Range Dependent Job Arrival Process and Its Implications in Grid

Environments”, in Proceedings of MetroGrid Workshop, 1st International Confer-
ence on Networks for Grid Applications, ACM Press, France, 2007.

12. H. Li, D. Groep, L. Wolters, “ An Evaluation of Learning and Heuristic Techniques
for Application Run Time Predictions”, in Proceedings of 11th Annual Conference
of the Advance School for Computing and Imaging (ASCI), Netherlands, 2005.

13. H. Li, D. Groep, L. Wolters, “Workload Characteristics of a Multi-Cluster Su-
percomputer”, Job Scheduling Strategies for Parallel Processing, Lecture Notes in
Computer Science, Volume 3277, Pages 176-193, 2005.

14. H. Li, M. Muskulus, L. Wolters, “Modeling Correlated Workloads by Combining
Model Based Clustering and a Localized Sampling Algorithm”, in Proceedings of
21st ACM International Conference on Supercomputing, ACM Press, USA, 2007.

15. H. Mohamed, D. Epema, “The Design and Implementation of the KOALA Co-
Allocating Grid Scheduler”, European Grid Conference, Lecture Notes in Com-
puter Science, Volume 3470, Pages 640-650, 2005.

16. M. Wan, R. Moore, G. Kremenek, K. Steube, “A Batch Scheduler for the In-
tel Paragon with a Non-Contiguous Node Allocation Algorithm”, Job Scheduling
Strategies for Parallel Processing, Lecture Notes in Computer Science, Volume
1162, Pages 48-64, 1996.

17. MCLUST, http://www.stat.washington.edu/mclust/.
18. Moab Workload Manager, http://www.clusterresources.com/pages/products/mo-

ab-cluster-suite/workloadmanager.php.
19. OAR, http://oar.imag.fr/.
20. P. J. Denning, “The Locality Principle”, Communications of ACM, Volume 48,

Pages 19-24, 2005.
21. Parallel Workloads Archive, http://www.cs.h-uji.ac.il/labs/parallel/workload/.
22. R. Gibbons, “A Historical Application Profiler for Use by Parallel Schedulers”, Job

Scheduling Strategies for Parallel Processing, Lecture Notes in Computer Science,
Volume 1291, Pages 58-77, 1997.

23. R. H. Riedi, M. S. Crouse, V. J. Ribeiro, R. G. Baraniuk, “A Multifractal Wavelet
Model with Application to Network Traffic”, Journal of IEEE Transactions on
Information Theory, Volume 45, Issue 4, Pages 992-1018, 1999.



24. U. Lublin, D. G. Feitelson, “The Workload on Parallel Supercomputers: Modeling
the Characteristics of Rigid Jobs”, Journal of Parallel and Distributed Computing,
Volume 63, 2003.

25. V. Lo, J. Mache, K. Windisch, “A Comparative Study of Real Workload Traces and
Synthetic Workload Models for Parallel Job Scheduling”, Job Scheduling Strategies
for Parallel Processing, Lecture Notes in Computer Science, Volume 1459, Pages
25-46, 1998.

26. W. Smith, I. Foster, V. Taylor, “Predicting Application Run Times Using Histori-
cal Information”, Job Scheduling Strategies for Parallel Processing, Lecture Notes
in Computer Science, Volume 1459, Pages 122-142, 1998.


