
Foundations of Concurrent Kleene Algebra

C.A.R. Hoare1, B. Möller2, G. Struth3, and I. Wehrman4

1 Microsoft Research, Cambridge, UK
2 Universität Augsburg, Germany

3 University of Sheffield, UK
4 University of Texas at Austin, USA

Abstract. A Concurrent Kleene Algebra offers two composition opera-
tors, one that stands for sequential execution and the other for concurrent
execution [10]. In this paper we investigate the abstract background of
this law in terms of independence relations on which a concrete trace
model of the algebra is based. Moreover, we show the interdependence
of the basic properties of such relations and two further laws that are
essential in the application of the algebra to a Jones style rely/guarantee
calculus. Finally we reconstruct the trace model in a more abstract set-
ting based on the notion of atoms from lattice theory.

1 Introduction

A Concurrent Kleene Algebra (CKA) is one which offers two composition op-
erators, one that stands for sequential execution and the other for concur-
rent execution. They are related by an inequational form of the exchange law
(a ◦ b) • (c ◦ d) = (a • c) ◦ (b • d) of two-category or bicategory theory (e.g. [16]).

The applicability of the algebra to a partially-ordered trace model of program
execution semantics and to the validation familiar proof rules for sequential pro-
grams (Hoare triples) and for concurrent programming (Jones’s rely/guarantee
calculus) is shown in [10]. The mentioned trace model is based on a dependence
relation between atomic events.

In the present paper we investigate how the laws of concurrent Kleene al-
gebra reflect this relation; we show that two central laws are equivalent to its
transitivity and acyclicity, resp. The traces obeying a generalised version of the
second law are characterised in terms of convexity w.r.t the dependence rela-
tion. Moreover we introduce the notion of an event-based concurrent Kleene
algebra which is a more abstract version of the concrete trace model, based on
the notions of atoms and irreducible elements. We show that in such algebras
the dependence relation can be recovered from the operations of sequential and
concurrent composition. Most of our reasoning has been checked by computer
using the system Prover9/Mace4 [17]. A collection of input files and proofs can
be found under http://www.dcs.shef.ac.uk/~georg/ka/.

Sect. 2 summarises the definitions of the trace model and its essential opera-
tors. In Sect. 3 we develop an abstract calculus of independence relations, both
in formulas and diagrammatic rules. Sect. 4 presents quantales as a fundamental
structure and gives the axiomatisation of CKAs in terms of quantales. Sect. 5
gives a definition of invariants as used in the mentioned rely/guarantee calculus.
In Sect. 6 we establish the equivalence of two fundamental laws with (weak)
acyclicity and transitivity of the basic dependence relation. Sect. 7 presents a
simplified rely/guarantee calculus. Finally, Sect. 8 develops the notion of event-
based CKAS and reconstructs the trace model and the dependence relation in
terms of that notion. Appendix A summarises the laws characterising the various
structures involved.

2 Operations on Traces and Programs

In this section we present a concrete model of Concurrent Kleene Algebra which
serves as a motivation of the abstract algebraic treatment in the later sections.

We assume a set EV of event occurrences together with a dependence relation
→ ⊆ EV × EV between them: e → f indicates occurrence of a data flow or
control flow from event e to event f .

Definition 2.1 A trace is a set of events; the set of all traces over EV is
TR(EV) =df P(EV). A program is a set of traces; the set of all programs
is PR(EV) =df P(TR(EV)).

We deliberately keep the definition of traces and programs so liberal to ac-
commodate systems with very loose coupling of events; “conventional” linear
traces can, e.g., be obtained by including time stamps into the events and defin-
ing the dependence relation such that it respects time.

Examples of very simple programs are the following. The program skip, which
does nothing, is defined as {∅}, and the program [e], which does only e ∈ EV , is
{{e}}. The program false =df ∅ has no traces, and therefore cannot be executed
at all. It serves the rôle of the ‘miracle’ [18] in the development of programs by
stepwise refinement.

Following [11] we will define four operators on programs P and Q:

P ∗Q fine-grain concurrent composition, allowing dependences between
P and Q;

P ; Q weak sequential composition, forbidding dependence of P on Q;
P ‖Q disjoint parallel composition, with no dependence in either direc-

tion;
P ⌈⌋Q alternation – only one of P or Q is executed, if at all; details will

be given below.
To express the restrictions in this list we introduce the following independence

relation.

Definition 2.2 For traces tp, tq we define the independence relation by

tp 6← tq ⇔df ¬∃ p ∈ tp, q ∈ tq : q → p .

Viewing tp as a set of events that should occur before all the ones in tq, one
can read tp 6← tq as the requirement that tp must not depend on its “future” tq.

Now, for each operator ◦ ∈ {∗, ;, ‖, ⌊⌉} we define an associated binary relation
(◦) between traces such that for programs P, Q we can define generically

P ◦Q =df {tp ∪ tq | tp ∈ P ∧ tq ∈ Q ∧ tp (◦) tq} . (1)

From this definition it is immediate that ◦ distributes through arbitrary unions
of families of programs and hence is ⊆-isotone and false-strict, i.e., false◦P =
false = P ◦ false. Moreover, skip is a neutral element for ◦, i.e.,

skip ◦ P = P = P ◦ skip . (2)

Finally, if (◦) is symmetric then ◦ is commutative.
Now the above informal descriptions are captured by the definitions

tp (∗) tq ⇔df tp ∩ tq = ∅ ,

tp (;) tq ⇔df tp (∗) tq ∧ tp 6← tq ,

tp (‖) tq ⇔df tp (;) tq ∧ tq 6← tp ,

tp (⌊⌉) tq ⇔df tp = ∅ ∨ tq = ∅ .

It is clear that (⌊⌉) ⊆ (‖) ⊆ (;) ⊆ (∗) and that (∗), (‖) and (⌊⌉) are symmetric.

Another essential operator is the union operator which again is ⊆-isotone
and distributes through arbitrary unions. However, it is not false-strict.

By the Tarski-Kleene fixpoint theorems hence all recursion equations involv-
ing only the operations mentioned have ⊆-least solutions which can be approx-
imated by the familiar fixpoint iteration starting from false. Use of union in
such a recursion enables non-trivial least fixpoints.

3 Independence Calculus and Exchange Laws

To prove the most essential laws about the interaction of our operators we now
give a slightly more abstract treatment. We start by observing that an equivalent
relation-algebraic formulation of the independence relation 6← is tp 6← tq ⇔
tp× tq ∩ →˘ = ∅, where→˘ is the converse of→. By straightforward set theory
this entails

(tp ∪ tq) 6← tr ⇔ tp 6← tr ∧ tq 6← tr ,

tp 6← (tq ∪ tr) ⇔ tp 6← tq ∧ tp 6← tr .

It turns out that these bilinearity properties are the essence of the characteristic
laws about the interplay of our various operators. This motivates the following
definition.

Definition 3.1 An aggregation algebra is a structure (A, +) consisting of a set
A and a binary operation + : A × A → A. An independence relation on an
aggregation algebra is a bilinear relation R ⊆ A×A, i.e.,

(p + q)R r ⇔ p R r ∧ q R r ,

p R (q + r) ⇔ p R q ∧ p R r .

In our example of traces and programs, A would be the set of traces and +
would be trace union. For now, we will however consider an aggregation algebra
as absolutely free, i.e., + need not satisfy any laws. Later we will need aggregation
algebras that are (commutative) semigroups or monoids. The first condition on
R says that an aggregate p + q is independent of r iff both its parts p and q

are independent of r. The second condition says that p is independent of the
aggregate q + r iff it is independent of both its parts, q and r. An independence
relation on (TR(EV),∪) is 6←.

We can visualise the independence conditions by the following diagrams.

q

p

r ⇔

q

p

r

r

q

p ⇔

r

q

p

The ovals display aggregates. The letters in the ovals represent the entities that
form their parts. In the first diagram, the oval around p and q denotes the aggre-
gate p + q. The arrow-like symbols denote the independence relation R, where
the sign [means that any flow of dependence is blocked there. In the leftmost
diagram, the arrow relates the aggregate p + q to r, hence the aggregate formed
by p and q is independent of r. In its neighbour diagram, there is no aggregate
and both p and q are related to r, hence independent of r. The equivalence be-
tween the diagrams visualises the first bilinearity law. Analogous remarks apply
to the second pair of diagrams.

An important tool for a uniform treatment of our operators from Sect. 2 is
the following lemma, whose proof is straightforward.

Lemma 3.2

1. The set of independence relations on an aggregation algebra is closed under
intersection.

2. The relations (∗), (;), (‖) and (⌊⌉) are independence relations on (TR(EV),∪).

We now consider the interplay of two independence relations R and S on an
aggregation algebra A.

Lemma 3.3 Let R and S be independence relations on an aggregation algebra
(A, +) such that R ⊆ S. Then
1. (p + q)R r ∧ p S q ⇒ p S (q + r) ∧ q R r.
2. p R (q + r) ∧ q S r ⇒ (p + q)S r ∧ p R q.

Proof.

(p + q)R r ∧ p S q ⇔ p R r ∧ q R r ∧ p S q

⇒ p S r ∧ q R r ∧ p S q

⇔ q R r ∧ p S (q + r).

p R (q + r) ∧ q S r ⇔ p R q ∧ p R r ∧ q S r

⇒ p R q ∧ p S r ∧ q S r

⇔ p R q ∧ (p + q)S r.

⊓⊔

Obviously, we now must introduce two different kinds of arrows in diagrams.
The first law can be visualised as

q rp⇒p q r

The second law looks similar. A diagrammatic proof of the first law is

q

p

r ⇔

q

p

r ⇒

r

q

p ⇔

r

q

p

A simple consequence is the following.

Corollary 3.4 Let R be an independence relation on an aggregation algebra
(A, +). Then

(p + q)R r ∧ p R q ⇔ q R r ∧ p R (q + r).

q rp⇔p q r

Proof. Set S = R in Lemma 3.3. ⊓⊔

We can also prove the following exchange laws which are crucial for concur-
rent Kleene algebra.

Theorem 3.5 Let R and S be independence relations on an aggregation algebra
(A, +) such that R ⊆ S and S is symmetric. Then

(p + q)R (r + s) ∧ p S q ∧ r S s ⇒ p R r ∧ q R s ∧ (p + r)S (q + s) .

Proof.

(p + q)R (r + s) ∧ p S q ∧ r S s

⇔ p R r ∧ q R r ∧ p R s ∧ q R s ∧ p S q ∧ r S s

⇒ p R r ∧ q S r ∧ p S s ∧ q R s ∧ p S q ∧ r S s

⇒ p R r ∧ q R s ∧ r S q ∧ (p + r)S (s) ∧ p S q

⇒ p R r ∧ q R s ∧ (p + r)S (q) ∧ (p + r)S (s)

⇔ p R r ∧ q R s ∧ (p + r)S (q + s) .

⊓⊔

The diagrammatic statement of the exchange law (neglecting hypotheses) is

q

p r

s

⇒

p r

q s

A diagrammatic proof is

q

p r

s

⇔

q

p

s

r

⇒

q

p

s

r

⇔

p r

q s

As immediately obvious from the diagrams, the hypotheses also entail

(p + q)R (r + s) ∧ p S q ∧ r S s ⇒ p R s ∧ q R r ∧ (p + s)S (q + r) . (3)

The proofs in this section, logical and diagrammatical, are only intended to
give a flavour of the approach. In fact, the former ones have all been automated,
hence formally verified, with Prover9 [17] and could as well have been omitted.
Proofs at this level of complexity present no obstacle to ATP systems.

We now apply our results to our special aggregation algebra (TR(EV),∪).

Lemma 3.6 Let ◦, • ∈ {∗, ;, ‖, ⌊⌉}.
1. If (•) ⊆ (◦) and (◦) is symmetric then (P ◦Q)• (R ◦S) ⊆ (P •R)◦ (Q•S).
2. If (•) ⊆ (◦) then (P ◦Q) •R ⊆ P ◦ (Q •R) and P • (Q ◦R) ⊆ (P •Q) ◦R.
3. ◦ is associative.

Proof.
1. For traces tp ∈ P, tq ∈ Q, tr ∈ R, ts ∈ S we have by (1) and Theorem 3.5

(tp ∪ tq) ∪ (tr ∪ ts) ∈ (P ◦Q) • (R ◦ S)
⇔ tp(◦)tq ∧ tr(◦)ts ∧ (tp ∪ tq))(•)(tr ∪ ts)
⇒ tp(•)tr ∧ tq(•)ts ∧ (tp ∪ tr))(◦)(tq ∪ ts)
⇔ (tp ∪ tr) ∪ (tq ∪ ts) ∈ (P •R) ◦ (Q • S) .

Since (tp ∪ tq) ∪ (tr ∪ ts) = (tp ∪ tr) ∪ (tq ∪ ts), we are done.
2. Similar to the proof of Part 1, using Lemma 3.3.
3. Use the two previous laws with • = ◦. ⊓⊔

A particularly important special case of Part 1 is the exchange law

(P ∗Q) ; (R ∗ S) ⊆ (P ; R) ∗ (Q ; S) . (4)

In the remainder of this paper we shall no longer deal with the less interesting
operators ‖ and ⌈⌋ .

4 Quantales and Concurrent Kleene Algebras

We now abstract further from the concrete example of traces and programs.

Definition 4.1 A semiring is a structure (S, +, 0, ·, 1) such that (S, +, 0) is a
commutative monoid, (S, ·, 1) is a monoid, multiplication distributes over ad-
dition in both arguments and 0 is a left and right annihilator with respect to
multiplication (a · 0 = 0 = 0 · a). A semiring is idempotent if its addition is.

In an idempotent semiring, the relation ≤ defined by a ≤ b ⇔df a + b = b is
a partial ordering, in fact the only partial ordering on S for which 0 is the least
element and for which addition and multiplication are isotone in both arguments.
It is therefore called the natural ordering on S. This makes S into a semilattice
with addition as join and least element 0.

Definition 4.2 A quantale [19] or standard Kleene algebra [5] is an idempotent
semiring that is a complete lattice under the natural order and in which com-
position distributes over arbitrary suprema. The infimum and the supremum of
a subset T are denoted by ⊓ T and ⊔ T , respectively. Their binary variants are
x ⊓ y and x ⊔ y (the latter coinciding with x + y).

Let now PR(EV) denote the set of all programs over the event set EV . From
the observations in Sect. 2 the following is immediate:

Lemma 4.3 (PR(EV),∪, false, ∗, skip) and (PR(EV),∪, false, ; , skip) both are
quantales.

In a quantale S, finite and infinite iteration ∗ and ω are defined by

a∗ = µx . 1 + a · x , aω = νx . a · x ,

where µ and ν denote the least and greatest fixpoint operators. The star used
here is not to be confused with the separation operator ∗ above; it should also
be noted that aω in [1] corresponds to a∗ + aω in the quantale setting.

It is well known that then (S, +, ·, 0, 1, ∗) forms a Kleene algebra [14]. From
this we obtain many useful laws for free. As instances we mention

a∗ ·a∗ = (a∗)∗ = a∗ , (a · b)∗ ·a = a · (b ·a)∗ , (a+ b)∗ = a∗ · (b ·a∗)∗ .

Since in a quantale the function defining star is continuous, Kleene’s fixpoint
theorem shows that a∗ =

⊔
i∈N

ai. Moreover, we have the star induction rules

b + a · x ≤ x ⇒ a∗ · b ≤ x , b + x · a ≤ x ⇒ b · a∗ ≤ x . (5)

Hence in (PR(EV),∪, false, ∗, skip) and (PR(EV),∪, false, ; , skip) the pro-
gram P ∗ consists of all finite disjoint unions and all finite sequential compositions
of traces in P , resp. In the latter case P ∗ is denoted by P∞ in [11].

If, in addition, the complete lattice (S,≤) in a quantale is completely dis-
tributive, i.e., if + distributes over arbitrary infima, then (S, +, ·, 0, 1, ∗, ω) forms
an omega algebra [4]. Again this entails many useful laws, e.g.,

(a · b)ω = a · (b · a)ω , (a + b)ω = aω + a∗ · b · (a + b)ω .

Since PR(EV) is a power set lattice, it is completely distributive. Hence both
program quantales also admit infinite iteration with all its laws. The infinite
iteration ω in (PR(EV),∪, false, ∗, skip) is similar to the unbounded parallel
spawning !P in the π-calculus [22]. The abstract combination of two quantales
leads to the following definition [10].

Definition 4.4 A concurrent Kleene algebra (CKA) is a structure (S, +, 0, ∗, ; , 1)
such that (S, +, ∗, 0, 1) and (S, +, ; , 0, 1) are quantales linked by the exchange
axiom

(a ∗ b) ; (c ∗ d) ≤ (b ; c) ∗ (a ; d) .

Compared with the original exchange law (4) this one has its free variables in
a different order. This does no harm, since the concrete ∗ operator on programs
is commutative and hence satisfies the above law as well. Hence we have

Corollary 4.5 (PR(EV),∪, false, ∗, ; , skip) is a CKA.

The reason for our formulation of the exchange axiom here is that this form
of the law implies commutativity of ∗ as well as a ; b ≤ a ∗ b and hence saves two
axioms. We list some important consequences of this axiomatisation; the proofs
are given in [10].

Lemma 4.6 In a CKA the following laws hold.
1. a ∗ b = b ∗ a.
2. (a ∗ b) ; (c ∗ d) ≤ (a ; c) ∗ (b ; d).
3. a ; b ≤ a ∗ b.
4. (a ∗ b) ; c ≤ a ∗ (b ; c).
5. a ; (b ∗ c) ≤ (a ; b) ∗ c.

5 Invariants

For the further development we need to deal with the set of events a program
may use.

Definition 5.1 A power invariant is a program R of the form R = P(E) for a
set E ⊆ EV of events.

It consists of all possible traces that can be formed from events in E and
hence is the most general program using only those events. The smallest power
invariant is skip = P(∅). The term “invariant” expresses that often a program
relies (whence the name R) on the assumption that its environment only uses
events from a particular subset, i.e., preserves the invariant of staying in that
set. We will now investigate the properties of power invariants and, later on, of
their abstract counterparts.

To this end we want to define a function that forms from a program the
smallest power invariant containing it. We denote, for a program P , by |P | =df⋃

P the set of all events occurring in traces of P ; when convenient, |P | can also
be considered as a trace.

It is straightforward to check that | | distributes through arbitrary unions.
Hence it has an upper adjoint F , defined by the Galois connection

P ⊆ F (X) ⇔ |P | ⊆ X .

This entails F (X) = P(X) and |P(X)| = X . Moreover, as adjoints of a Galois
connection, P() and | | are ⊆-isotone. Setting X = |P | we obtain P ⊆ P(|P |).
Finally, for X, Y ⊆ EV we have P(X) ⊆ P(Y) ⇔ X ⊆ Y .

Motivated by the above remarks we now define INV(P) =df P(|P |). Then
INV(P) is the most general program that can be formed from the events of P .
As a composition of isotone functions, INV is isotone again.

We now prepare for our abstract notion of invariants. An invariant is a
program R with R = INV(R). In particular, every invariant in our concrete
CKA of programs is a power invariant. In general CKAs we will replace INV by
a suitable abstract operator the properties of which will be discussed below. The
definition implies that invariants are fixpoints of an isotone function and hence
form a complete lattice under the inclusion order.

The operation ∇ from [11] and INV are interrelated. To this end we set
SINGLES(P) =df {{e} : {e} ∈ P}. Then

INV(SINGLES(Q)) = Q∇Q , Q∇R = INV(SINGLES(Q ∪R)) .

We shall use INV, since it leads to simpler and more intuitive formulations.
We give a few useful properties of INV.

Theorem 5.2

1. INV(P) is the smallest invariant containing P .
2. INV(INV(P)) = INV(P); hence INV(P) is an invariant.
3. INV is a closure operator.
4. skip ⊆ INV(P).
5. INV(P ∗Q) ⊆ INV(P ∪Q).

Proof. 1. We have already seen above that P ⊆ INV(P). Let S be another in-
variant with P ⊆ S. Then, by isotony of INV and the definition of invariants,
INV(P) ⊆ INV(S) = S.

2. Since, as remarked above, |P(X)| = X , we have

INV(INV(P)) = P(|P(|P |)|) = P(|P |) = INV(P) .

3. By Part 1 INV is extensive. By the Galois connection it is isotone and by
Part 2 it is idempotent.

4. Immediate from the definition of INV.
5. By the definition of ∗ we have |P ∗ Q| ⊆ |P ∪ Q| and the property follows

by isotony of P . ⊓⊔

Since INV is a closure operator we have the following (see e.g. [3]).

Corollary 5.3 For set R of power invariants,
⋂
R and INV(

⋃
R) are the meet

and join of R in the complete lattice of invariants, resp.

We now again abstract from the concrete case of programs and use the fact
that INV is a closure and Parts 4 and 5 of Theorem 5.2 as the characteristics of
abstract invariants, since these properties suffice to prove the results about the
rely/guarantee calculus in Section 7 we are after.

Definition 5.4 A CKA with invariants is a structure (S, +, 0, ∗, ; , 1, ι) such
that (S, +, 0, ∗, ; , 1) is a CKA and ι : S → S is a closure operator that addi-
tionally satisfies, for all a, b ∈ S,

1 ≤ ι a , ι (a ∗ b) ≤ ι (a + b) .

An invariant is an element a ∈ S with ι a = a.

In [10] a more specific view of invariants is taken: there an invariant is an
element r with 1 ≤ r and r ∗ r ≤ r, which are the properties of invariants
shown in Theorem 5.6 below. This entails that the invariants are precisely the
fixpoints of the finite iteration operator ∗ w.r.t. concurrent composition ∗. This
still allows proving many of the above properties, but does not characterise
power invariants and hence is not adequate for all purposes. However, we have
the following connection.

Lemma 5.5 Defining in a CKA ι a =df a∗ makes it a CKA with invariants.

Proof. By standard Kleene algebra ∗ is a closure operator with 1 ≤ a∗. The
remaining axiom is shown by star induction (5) and isotony as follows:

(a ∗ b)∗ ≤ (a + b)∗ ⇐ 1 + a ∗ b ∗ (a + b)∗ ≤ (a + b)∗ ⇐
1 ≤ (a + b)∗ ∧ (a + b) ∗ (a + b) ∗ (a + b)∗ ≤ (a + b)∗ ⇔ TRUE . ⊓⊔

Again it is clear that the invariants in the abstract sense form a complete
lattice with properties analogous to those of Corollary 5.3. Moreover, one has
the usual Galois connection for closures (e.g. [7]):

a ≤ ι b ⇔ ι a ≤ ι b . (6)

With this definition we can give a uniform abstract proof of idempotence of
operators on invariants.

Theorem 5.6 Consider a CKA S with invariants. Let ◦ be an isotone binary
operation on S that has 1 as neutral element and satisfies ∀ a, b : ι (a ◦ b) ⊆
ι (a + b). Then for invariant r we have r ◦ r = r.

Proof. We first show r ◦r ≤ r. By extensivity of ι , the assumption and r+r = r

as well as invaraince of r we have r ◦ r ⊆ ι (r ◦ r) ⊆ ι r = r. The converse
inclusion is shown by r = r ◦ 1 ≤ r ◦ r, using neutrality of 1, the axiom 1 ≤ ι a

and isotony of ◦. ⊓⊔

The original motivation for discussing invariants was that they should allow
guaranteeing that a program only uses events from a given admissible set. To
this end we define a guarantee relation, slightly more liberally than [11], by

a guar b ⇔df ι a ≤ ι b .

Since ι as a closure is extensive, isotone and idempotent, the right hand side is
equivalent to a ≤ ι b. If b is an invariant, i.e., b = ι b, we obtain by (6)

a guar b ⇔ ι a ≤ ι b ⇔ a ≤ ι b ⇔ a ≤ b .

We have the following properties.

Theorem 5.7

1. If g is an invariant then 1 guar g.

2. If g, g′ are invariants and ◦ is again an isotone binary operation satisfying
∀ a, b : ι (a ◦ b) ≤ ι (a + b) then

b guar g ∧ b′ guar g′ ⇒ (b ◦ b′) guar (g + g′) .

3. For the concrete case of programs, [e] guar G ⇔ e ∈ |G|.

Proof. 1. Immediate from the axioms and the above remark on guar.

2. b guar g ∧ b′ guar g′

⇔ {[above remark on guar]}

ι b ≤ g ∧ ι b′ ≤ g′

⇒ {[isotony of +]}

ι b + ι b′ ≤ g + g′

⇒ {[isotony of ι]}

ι (b + b′) ≤ g + g′

⇒ {[assumption about ◦]}

ι (b ◦ b′) ≤ g + g′

⇔ {[extensivity of ι]}

ι (b ◦ b′) ≤ ι (g + g′)

⇔ {[definition]}

(b ◦ b′) guar (g + g′) .

3. By the definitions and the Galois connection for | |,

[e] guar G ⇔ INV([e]) ⊆ INV(G) ⇔ {e} ⊆ INV(G) ⇔ e ∈ |G| . ⊓⊔

6 Characterising Dependence

In [10] it is shown that the definitions of ∗ and ; for concrete programs in terms
of the transitive closure →+ of the dependence relation → entail two important
further laws that are essential for the rely/guarantee calculus to be presented
below:

Theorem 6.1 Let R = P(E) be a power invariant in PR(EV).

1. If → is acyclic and e ∈ EV then

R ∗ [e] ⊆ R ; [e] ; R .

2. If → is transitive then for all P, Q ∈ PR(EV) we have

R ∗ (P ; Q) ⊆ (R ∗ P) ; (R ∗Q) .

This means that the two properties of Theorem 6.1 hold if→ is a strict-order.
But in fact, in a sense also the reverse implication holds. To formulate it we need
a further notion.

Definition 6.2 We call → weakly acyclic if for all events e, f ,

e→+ f →+ e ⇒ f = e ,

and weakly transitive if

e→ f → g ⇒ (e = g ∨ e→ g) .

Weak acyclicity means that→ may at most have immediate self-loops (which
cannot be “detected” by the ; operator, since it is defined in terms of distinct
events only).

Theorem 6.3 Let [e] be again the single-event program{{e}}.

1. If R ∗ [e] ⊆ R ; [e] ; R is valid for all power invariants R and events e then
→ is weakly acyclic.

2. If R ∗ (P ; Q) ⊆ (R ∗ P) ; (R ∗ Q) is valid for all power invariants R and
programs P, Q then → is weakly transitive.

Proof of Part 2.
Assume events p, q, r with q → r and r → p but q 6→ p. This implies q 6= r and
r 6= p. Assume now p 6= q and set P =df [p], Q =df [q] and R =df []∪ [r]. Then
P ;Q = [p, q] and R∗ (P ;Q) = [p, q]∪ [r, p, q]. Moreover, R∗P = [p]∪ [r, p] and
R ∗Q = [q] ∪ [r, q], hence (R ∗ P) ; (R ∗Q) = [p, q] contradicting the assumed
property. Therefore we must have p← q. ⊓⊔

We abstract this into the following

Definition 6.4 A CKA S with invariants is ∗-distributive if all invariants r and
all a, b ∈ S satisfy

r ∗ (a ; b) ≤ (r ∗ a) ; (r ∗ b) .

We still have to prove Part 1. Rather than doing this directly we investigate
a slightly more general property which is equivalent to an interesting property
of traces more general than single-event ones.

Definition 6.5 A trace tp is convex if for all events p, q ∈ tp and arbitrary
event f we have

p→+ f →+ q ⇒ f ∈ tp .

A convex trace can be considered as “closed” under dependence.
For the following lemma we introduce the auxiliary function dep(tp) =df

{q | ∃ p ∈ tp : q →+ p} on traces tp. Hence dep(tp) consists of all events on which
some event of tp depends. Then we have

Lemma 6.6 Let tp be a trace and assume that R ∗ {tp} ⊆ R ; {tp} ; R holds for
all power invariants R.

1. Dependence between a trace and any event outside occurs at most in one
direction, i.e., for any event f 6∈ tp we have

tp ∩ dep({f}) = ∅ ∨ {f} ∩ dep(tp) = ∅ .

2. As a consequence, tp is convex.

Proof. 1. Set R =df P({f}). By assumption the trace tr = {f} ∈ R can be
split as tr = tr ′ ; tr ′′ such that tr ∗ tp = tr ′ ; tp ; tr ′′.
Case 1: tr ′ = {f} ∧ tr ′′ = ∅. Hence tr ∗ tp = {f} ; tp. This implies {f} ∩
dep(tp) = ∅.
Case 2: tr ′ = ∅ ∧ tr ′′ = {f}. Hence tr ∗ tp = tp ; {f}. This implies tp ∩
dep({f}) = ∅.

2. Suppose f 6∈ tp. The premise p →+ f implies p ∈ tp ∩ dep({f}) while
f →+ q implies f ∈ {f} ∩ dep(tp). In particular, both sets are non-empty,
contradicting Part 1. ⊓⊔

The case of singleton traces is covered as follows:

Lemma 6.7 All traces {e} are convex iff → is weakly acyclic.

Proof. (⇒) Assume e →+ f →+ e. Then by the assumed convexity of {e} we
get f ∈ {e}, i.e., f = e.
(⇐) Assume p →+ f →+ q for p, q ∈ {e}, i.e., e →+ f →+ e. Then by the
assumed weak acyclicity f = e, i.e., f ∈ {e}. ⊓⊔

We now want to show that also the reverse of Lemma 6.6 holds.

Lemma 6.8 Let tp be convex. Then for all power invariants R the formula
R ∗ {tp} ⊆ R ; {tp} ; R is valid.

Proof. Consider some tr ∈ R. We need to show {tr} ∗ {tp} ⊆ R ; {tp} ; R. The
claim holds vacuously if tp ∩ tr 6= ∅. Hence assume that tp ∩ tr = ∅ and set

tr ′ =df tr ∩ dep(tp) , tr ′′ =df tr − dep(tp) .

In particular, tp ∩ tr ′ = ∅. From Lemma 6.3 of [10] we know

tr ′′ ∩ dep(tp) = tr ′′ ∩ dep(tr ′) = ∅ .

If we can show that also tp∩dep(tr ′) = ∅ we have {tr}∗{tp} = {tr ′} ;{tp} ;{tr ′′}
and are done. Therefore, suppose p ∈ tp ∩ dep(tr ′), say p→+ r for some r ∈ tr ′.
By definition of tr ′ there is a q ∈ tp with r →+ q. Since tp is assumed to be
convex, this implies r ∈ tp, a contradiction to r ∈ tr ′ and tp ∩ tr ′ = ∅. ⊓⊔

Next, we consider general programs.

Definition 6.9 A program is convex if all its traces are.

Lemma 6.10 P is convex iff it satisfies for all power invariants R

R ∗ P ⊆ R ; P ; R .

Proof. (⇒) Immediate from the definition and Lemma 6.8.
(⇐) Consider traces tp ∈ P and tr ∈ R. We need to show {tr}∗{tp} ⊆ R;{tp};R.
The claim holds vacuously if tp∩tr 6= ∅. Hence let tp∩tr = ∅. By the assumption
there are traces tp′ ∈ P and tr ′, tr ′′ ∈ tr with tp′∩ tr ′ = tp′∩ tr ′′ = tr ′∩ tr ′′ = ∅
and tr ′ 6← tp′ ∧ tp′ 6← tr ′′ ∧ tr ′ 6← tr ′′ such that tp ∪ tr = tr ′ ∪ tp′ ∪ tr ′′. But by
disjointness this implies tp′ = tp and we are done. ⊓⊔

These results motivate the following abstraction.

Definition 6.11 An element a of a CKA with invariants is called convex iff for
all invariants r we have r ∗ a ≤ r ; a ; r.

By b ; c ≤ b ∗ c, commutativity of ∗ and idempotence of invariants (The-
orem 5.6) this inequation strengthens to an equality. This means that convex
elements behave like “atoms” w.r.t. sequentialisation. Convexity will be impor-
tant for one of the rules presented in the next section.

7 A Simplified Rely/Guarantee-Calculus

In [13] Jones has presented a calculus that considers properties of the environ-
ment on which a program wants to rely and the ones it, in turn, guarantees for the

environment. The basis of this calculus are quintuples of the form P R {{Q}}S G

which express that after a pre-history modelled by program P the program Q

when run in concurrent composition with a program satisfying the invariant R

will achieve overall history S and guarantee invariant G. In general CKAs these
quintuples can be formalised by

a r {{b}} s g ⇔df a {{r ∗ b}} s ∧ b guar g .

when r and g are invariants. They are based on the following Hoare triples:

c {{d}} e ⇔df c ; d ≤ e .

In [10] it is shown that all the standard rules for Hoare triples also hold for this
abstract version.

However, in the setting of the present paper the following type of quadruples
with an invariant r works just as well:

a r {{b}} s ⇔df a {{r ∗ b}} s .

If information about the events of a program b is needed (the rôle of g in
the original quintuples of the Jones calculus is, to a certain extent, to carry this
information), one can use the smallest invariant ι b containing b, since b guar ι b.

We give the simplified versions of the original rely/guarantee-properties; the
proofs result in a straightforward way from the ones shown in [10] by omitting
the guarantee parts.

For concurrent composition we obtain

Theorem 7.1 For invariants r, r′,

a r {{b}} s ∧ a′ r′ {{b′}} s′ ∧ b′ ≤ r ∧ b ≤ r′ ⇒
(a ⊓ a′) (r ⊓ r′) {{b ∗ b′}} (s ⊓ s′) .

For sequential composition one has

Theorem 7.2 Let, for CKA elements a, b, denote a⊓b their meet (which exists,
since CKAs are quantales). For invariants r, r′,

a r {{b}} s ∧ s r′ {{b′}} s′ ⇒ a (r ⊓ r′) {{b ; b′}} s′

provided b ; b′ is protected from r ⊓ r′, i.e.,

(r ⊓ r′) ∗ (b ; b′) ≤ (r ∗ b) ; (r′ ∗ b′) .

The protectedness assumption holds in particular if the underlying CKA is
∗-distributive, since r ⊓ r′ is again an invariant and hence

(r ⊓ r′) ∗ (b ; b′) ≤ ((r ⊓ r′) ∗ b) ; (r ⊓ r′) ∗ b′) ≤ (r ∗ b) ; (r′ ∗ b′) .

Next we give rules for 1, union and convex programs.

Theorem 7.3

1. a r {{1}} s ⇔ a {{r}} s.
2. a r {{b + b′}} s ⇔ a r {{b}} s ∧ a r {{b′}} s.
3. If b is convex then a r {{b}} s ⇔ a {{r ; b ; r}} s.

Part 3 has only been given for concrete single-event programs in [10]; therefore
we give a quick proof for the abstract form here:

a r {{b}} s ⇔ a ; (r ∗ b) ⊆ s ⇔ a ; (r ; b ; r) ⊆ s ⇔ a {{r ; b ; r}} s . ⊓⊔

8 Event-Based Algebras

The definition of a CKA does not mention the dependence relation anymore.
However, in the next section, when we establish a sufficient condition for pro-
tectedness, we shall need it, even at the level of single events. Therefore we now
give algebraic characterisations of traces and events.

Throughout this section we assume a CKA S with 1 6= 0. A subatom is an
element a such that b ≤ a ⇒ b = 0 ∨ b = a. A subatom different from 0 is
called an atom.

Definition 8.1 An element t ∈ S is called a trace if it is a subatom and join-
prime, i.e., if

∀ a ∈ S : a ≤ t ⇒ a = 0 ∨ a = t ,

∀T ⊆ S : T 6= ∅ ∧ t ≤ ⊔ T ⇒ ∃ a ∈ T : t ≤ a .

The set of all traces is denoted by TR(S). For b in S the set of traces of b is

TR(b) =df {a ∈ TR(S) | a ≤ b} .

By this definition 0 is a trace. The traces different from 0 would be called
atoms in lattice theory (e.g. [3]). Admitting also 0 as a trace saves a number of
case distinctions. It is immediate that every trace a is +-irreducible, i.e.,

a = b + c ⇒ b = a ∨ c = a .

Moreover, if a is a trace and b ≤ a then b is a trace again. In particular, if a ∗ b

is a trace then by Lemma 4.6(3) also a ; b is a trace.
In our concrete model the abstract traces different from 0 correspond to

singleton programs.

Definition 8.2 In a CKA S we define a relation ⊑ by

a ⊑ b ⇔df ∃ c : b = a ∗ c .

To investigate its properties we need

Definition 8.3 A subset E ⊆ S is well behaved if the following conditions hold
(for a, b, c ∈ E):

(a) 1 ∈ E.
(b) E ∗ E ⊆ E.
(c) ∗ is cancellative on E, i.e., a ∗ b 6= 0 ∧ a ∗ b = a ∗ c ⇒ b = c.
(d) 1 is ∗-irreducible in E, i.e., 1 = a ∗ b ⇒ a = 1 ∨ b = 1.

Lemma 8.4

1. ⊑ is a preorder, i.e., reflexive and transitive.

Assume now that E ⊆ S is well behaved. Then we have the following additional
properties.

2. ⊑ is antisymmetric on E.
3. 1 is the ⊑-least element of E.
4. If 0 ∈ E then it is the ⊑-greatest element of E.

Proof. 1. Reflexivity follows by choosing c = 1 in the definition of ⊑.
For transitivity assume a ⊑ b and b ⊑ c, say b = a ∗ d and c = b ∗ e. Then
c = (a ∗ d) ∗ e = a ∗ (d ∗ e).

2. Assume a ⊑ b and b ⊑ a. If a = 0 then b = 0 follows form the definition of
a ⊑ b, since 0 is an annihilator for ∗ . Otherwise let b = a ∗ c and a = b ∗ d.
Then a ∗ 1 = a = b ∗ d = a ∗ c ∗ d, hence 1 = c ∗ d by cancellativity. Now,
irreducibility of 1 implies c = 1 ∨ d = 1 and hence c = 1 = d, showing a = b.

3. and (4) are straightforward from the definition of ⊑, neutrality of 1 and
annihilation of 0. ⊓⊔

In our concrete model, the set E of singleton programs is well behaved and
the relation ⊑ is isomorphic to the subset relation on concrete traces.

Assume now that E is well behaved and hence ⊑ is a partial order on E. The
supremum of a subset D ⊆ E w.r.t. ⊑, if existent, is denoted by ©∗ D.

Lemma 8.5 If 0 ∈ D ⊆ E then 0 =©∗ D.

This is immediate from the definition of ⊑ and suprema.

Definition 8.6 Assume that E is well behaved. Then e ∈ E is called an E-event
if it is subatomic and join-prime w.r.t. ⊑, i.e., if

∀ d ∈ E : d ⊑ e ⇒ d = 1 ∨ d = e ,

∀D ⊆ E : D 6= ∅ ∧ ©∗ D exists ⇒ (t ⊑ ©∗ D ⇒ ∃ d ∈ D : t ⊑ d) .

By this definition 1 is an E-event, as is 0 if 0 ∈ E. The E-events different
from 0, 1 are atoms w.r.t. ⊑ in E. Clearly, every E-event a is ∗-irreducible in E:

a = b ∗ c ⇒ b = a ∨ c = a .

To put things into perspective, we note that the order ⊑ corresponds to the
well-known divisibility order on the natural numbers and E-events play the same
rôle as the prime numbers.

Definition 8.7 A CKA S is event-based if the following properties hold:
(a) 1 is a trace.
(b) Every element is the supremum of its traces, i.e., for all a ∈ S we have

a = ⊔TR(a).
(c) The set TR(S) of traces is well behaved. By EV (S) we denote the set of

TR(S)-events and call them the events of S. The set of events of trace t is

EV (t) =df {e ∈ EV (S) | e ⊑ t} .

(d) The set TR(S) of traces is a complete lattice w.r.t. ⊑ and every trace is
the supremum of its events, i.e., for all t ∈ TR(S) we have t =©∗ EV (t).

(e) For all events e we have e ∗ e = 0 and hence e ; e = 0.

For an arbitrary a ∈ S we then set EV (a) =df

⋃
t∈TR(a) EV (t).

Hence our concrete model of programs forms an event-based CKA. Event-
based CKAs are quite similar to the feature algebras developed in [12] for the
description of product families.

The definition of an event-based CKA S immediately yields

Lemma 8.8

1. EV (0) = EV (S).
2. EV (1) = {1}.
3. For traces a, b with a ∗ b 6= 0 we have EV (a ∗ b) = EV (a)∪EV (b) and hence

a ∗ b =©∗ {a, b}.

8.1 Abstract Dependence and Protection

In this section we define an abstract counterpart to the dependence relation and
use it to give an intuitive sufficient criterion for protectedness. For it we need an
abstract formulation of the dependence relation.

Definition 8.9 We call element a sequentially independent of element b, in signs
a 6← b, if a ∗ b ≤ a ; b.

The following properties are shown by straightforward calculation and, in the
last case, by Theorem 5.6:

Lemma 8.10

1. 0 6← a and a 6← 0.
2. 1 6← a and a 6← 1.
3. a 6← c ∧ b 6← c ⇒ (a + b) 6← c.
4. a 6← b ∧ a 6← c ⇒ a 6← (b + c).
5. If r is an invariant then r 6← r.

Part 5 shows that for general programs this notion behaves in an unexpected
way. However, in our concrete model it works fine for singleton programs:

{tp} 6← {tq} ⇔ ∀ p ∈ tp, q ∈ tq : ¬(p← q) .

In particular, [p] 6← [q] ⇔ ¬(p← q). This motivates the following

Definition 8.11 In an event-based CKA we define the dependence relation be-
tween events e, f by

e→ f ⇔df ¬(f 6← e) ⇔ f ; e 6= f ∗ e .

We denote the converse of→ by← . We say that the algebra respects dependence
if e← f ⇒ e ; f = 0.

Lemma 8.12 Consider traces tp, tq of an event-based CKA that respects depen-
dence.

1. If p→ q for some p ∈ EV (tp) and q ∈ EV (tq) then tp ; tq = 0.
2. If tp ∗ tq 6= 0 then

tp 6← tq ⇔ ∀ p ∈ EV (tp), q ∈ EV (tq) : p 6← q .

Proof. 1. By additivity of ; we have tp ; tq =©∗ {u ;v |u ∈ EV (tp), v ∈ EV (tq)}
and the claim follows from Lemma 8.5.

2. (⇐) Immediate from event-basedness and additivity of ∗ and ; .
(⇒) By Part 1 we have p ; q 6= 0 for all p ∈ EV (tp) and q ∈ EV (tq).
Since TR(S) is assumed to be well behaved, also p ∗ q is a trace, and from
p ; q ≤ p ∗ q it follows that p ; q = p ∗ q. ⊓⊔

With these prerequisites it is now possible to completely replay the proof of
Theorem 6.1 in the abstract setting of event-based CKAs; we omit the details.

9 Related Work and Outlook

Our basic model and its algebraic abstraction by CKAs reflect a non-interleaving
view of concurrency and hence rather falls into the class of partial-order models
for true concurrency, which is also shown by the discussion after Theorem 6.1.
Nevertheless, as detailed in [10], there are certain connections to interleaving-
based process algebras such as ACP, CCS, CSP, mCRL2 and the π-calculus.
Moreover, [10] provides a discussion of the relation of our approach to some to
the more prominent representatives of partial order-semantics.

Recently, Prisacariu has proposed synchronous Kleene algebra (SKA) [21].
Conceptually, it seems to be an interesting special case of ours, useful when com-
munication between threads is synchronised. Semantically, Prisacariu’s model is
based on languages formed by strings of sets of letters; e.g., a, b, cad, eb is a string.
The letters in each set model actions that are executed in parallel. Besides the
usual regular operations, an operation of synchronous parallel composition on
strings is defined similarly to a zip in functional programming, and lifted to a

complex product at the language level. It is shown that the language models
are the free algebras in the class of SKAs. At the axiomatic level, parallel com-
position interacts with sequential composition via an equational strengthening
of the exchange law (4). Our model cannot satisfy such an equational form of
the exchange law, because our sequential and concurrent compositions have the
same unit, and the exchange equation would make the compositions identical.
CKAs are more general also in that they cover also asynchronous models and
interleaving semantics. An additional minor difference is that the axiomatisation
of SKAs is purely based on Kozen’s first-order axiomatisation[14, 15], and not
on quantales. Hence it can be fully treated with first-order theorem provers.

Although CKA is not a direct abstraction of the familiar concurrency calculi,
we envisage that many of them can be mapped into our basic model of programs
and its abstraction CKA. A first experiment along these lines is a trace model
of a core subset of the π-calculus in [11]. Moreover, the study [9] shows how
to apply the trace model in a unified description of the various phenomena
arising in concurrent programs operating on shared/private and weakly/strongly
consistent memory, communicating in a synchronised or buffered way, and using
dynamic/nested and disposed/collected resources. Further studies will concern
the elaboration of these ideas.

Acknowledgement We are grateful for valuable comments by J. Desharnais,
H.-H. Dang, R. Glück, W. Guttmann, P. Höfner, P. O’Hearn, H. Yang and by
the anonymous referees of RelMiCS/AKA09.

References

1. R. Back, J. von Wright: Refinement calculus — a systematic introduction. Springer
1998

2. J. Benabou: Introduction to bicategories. In: Reports of the Midwest Category
Seminar. Lecture Notes in Math. 47. Springer 1967, 1-77

3. Birkhoff, G. Lattice Theory, 3rd ed. Amer. Math. Soc. 1967
4. E. Cohen: Separation and reduction. In: R. Backhouse, J. Oliveira (eds.): Mathe-

matics of Program Construction (MPC’00). LNCS 1837. Springer 2000, 45–59
5. J. Conway: Regular Algebra and Finite Machines. Chapman&Hall 1971
6. J. Desharnais, B. Möller, G. Struth: Kleene Algebra with domain. Trans. Compu-

tational Logic 7, 798–833 (2006)
7. M. Erné, J. Koslowski, A. Melton, G. E. Strecker: A primer on Galois connections.

In: Proc. 1991 Summer Conference on General Topology and Applications in Honor
of Mary Ellen Rudin and Her Work. Annals of the New York Academy of Sciences
704, 103–125 (1993)

8. C.A.R. Hoare: An axiomatic basis for computer programming. Commun. ACM.
12, 576–585 (1969)

9. C.A.R. Hoare: Unifying models of execution history. Manuscript, June 2009
10. C.A.R. Hoare, B. Möller, G. Struth, I. Wehrman: Concurrent Kleene Algebra. In

M. Bravetti, G. Zavattaro (eds.): CONCUR 2009 — Concurrency Theory. LNCS
5710. Springer 2009, 399–414

11. C.A.R. Hoare, I. Wehrman, P. O’Hearn: Graphical models of separation logic. Proc.
Marktoberdorf Summer School 2008 (forthcoming)

12. P. Höfner, R. Khedri, B. Möller: Feature algebra. In J. Misra, T. Nipkow, E. Sek-
erinski (eds): Formal Methods (FM 2006). LNCS 4085. Springer 2006, 300–315

13. C. Jones: Development methods for computer programs including a notion of inter-
ference. PhD Thesis, University of Oxford. Programming Research Group, Tech-
nical Monograph 25, 1981

14. D. Kozen: A completeness theorem for Kleene algebras and the algebra of regular
events. Information and Computation 110, 366–390 (1994)

15. D. Kozen: Kleene algebra with tests. Trans. Programming Languages and Systems
19, 427–443 (1997)

16. S. Mac Lane: Categories for the working mathematician (2nd ed.). Springer 1998
17. W. McCune: Prover9 and Mace4. http://www.prover9.org/ (accessed March 1,

2009)
18. C. Morgan: Programming from Specifications. Prentice Hall 1990
19. C. Mulvey: &. Rendiconti del Circolo Matematico di Palermo 12, 99–104 (1986)
20. P. O’Hearn: Resources, concurrency, and local reasoning. Theor. Comput. Sci. 375,

271–307 (2007)
21. C. Prisacariu: Extending Kleene lgebra with synchrony — technicalities. University

of Oslo, Department of Informatics, Research Report No. 376, October 2008
22. D. Sangiorgi, D. Walker: The π-calculus — A theory of mobile processes. Cam-

bridge University Press 2001

A Axiom Systems

For ease of reference we summarise the algebraic structures employed in the
paper.

1. A semiring is a structure (S, +, 0, ·, 1) such that (S, +, 0) is a commutative
monoid, (S, ·, 1) is a monoid, multiplication distributes over addition in both
arguments and 0 is a left and right annihilator with respect to multiplication
(a · 0 = 0 = 0 · a). A semiring is idempotent if its addition is.

2. A quantale [19] or standard Kleene algebra [5] is an idempotent semiring
that is a complete lattice under the natural order and in which composition
distributes over arbitrary suprema. The infimum and the supremum of a
subset T are denoted by ⊓ T and ⊔ T , respectively. Their binary variants
are x ⊓ y and x ⊔ y (the latter coinciding with x + y).

3. A concurrent Kleene algebra (CKA) is a structure (S,+, 0,∗, ; , 1) such that
(S, +, 0, ∗, 1) and (S, +, 0, ; , 1) are quantales linked by the exchange axiom

(a ∗ b) ; (c ∗ d) ≤ (b ; c) ∗ (a ; d) .

4. A CKA with invariants (S, +, 0, ∗, ; , 1, ι) consists of a CKA (S, +, 0, ∗, ; , 1)
and a closure operator ι : S → S that additionally satisfies, for all a, b ∈ S,

1 ≤ ι a , ι (a ∗ b) ≤ ι (a + b) .

An invariant is an element a ∈ S with ι a = a.
5. A rely/guarantee-CKA [10] is a pair (S, I) such that S is a CKA and I ⊆ I(S)

is a set of invariants, i.e. of elements r satisfying r = r∗, such that 1 ∈ I and
for all r, r′ ∈ I also r ⊓ r′ ∈ I and r ∗ r′ ∈ I. Moreover, all r ∈ I and a, b ∈ S

have to satisfy
r ∗ (a ; b) ≤ (r ∗ a) ; (r ∗ b) .

