Skip to main content

Computational Aspects of Equilibria

  • Conference paper
Algorithmic Game Theory (SAGT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5814))

Included in the following conference series:

Abstract

Equilibria play a central role in game theory and economics. They characterize the possible outcomes in the interaction of rational, optimizing agents: In a game between rational players that want to optimize their payoffs, the only solutions in which no player has any incentive to switch his strategy are the Nash equilibria. Price equilibria in markets give the prices that allow the market to clear (demand matches supply) while the traders optimize their preferences (utilities). Fundamental theorems of Nash [34] and Arrow-Debreu [2] established the existence of the respective equilibria (under suitable conditions in the market case). The proofs in both cases use a fixed point theorem (relying ultimately on a compactness argument), and are non-constructive, i.e., do not yield an algorithm for constructing an equilibrium. We would clearly like to compute these predicted outcomes. This has led to extensive research since the 60’s in the game theory and mathematical economics literature, with the development of several methods for computation of equilibria, and more generally fixed points. More recently, equilibria problems have been studied intensively in the computer science community, from the point of view of modern computation theory. While we still do not know definitely whether equilibria can be computed in general efficiently or not, these investigations have led to a better understanding of the computational complexity of equilibria, the various issues involved, and the relationship with other open problems in computation. In this talk we will discuss some of these aspects and our current understanding of the relevant problems. We outline below the main points and explain some of the related issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allender, E., Bürgisser, P., Kjeldgaard-Pedersen, J., Miltersen, P.B.: On the complexity of numerical analysis. SIAM J. Computing 38(5), 1987–2006 (2009); Preliminary version in Proc. 21st IEEE Comp. Compl. Conf. (2006)

    Article  Google Scholar 

  2. Arrow, K.J., Debreu, G.: Existence of an equilibrium for a competitive economy. Econometrica 22, 265–290 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  3. Anderson, R.M.: “Almost” implies “Near”. Trans. Am. Math. Soc. 296, 229–237 (1986)

    Article  MATH  Google Scholar 

  4. Bertoni, A., Mauri, G., Sabadini, N.: A characterization of the class of functions computable in polynomial time on random access machines. Proc. ACM Symp. Th. of Comp., 168–176 (1981)

    Google Scholar 

  5. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, Heidelberg (1998)

    Google Scholar 

  6. Chaterjee, K., Doyen, L., Henzinger, T.: A survey of stochastic games with limsup and liminf objectives. In: Proc. 36th ICALP, Part II, pp. 1–15 (2009)

    Google Scholar 

  7. Chen, X., Deng, X., Teng, S.H.: Settling the complexity of computing two-player Nash equilibria. J. of ACM 56(3) (2009); Preliminary version in FOCS 2006

    Google Scholar 

  8. Chen, X., Teng, S.H., Valiant, P.: The approximation complexity of win-lose games. In: Proc. 18th ACM SODA (2007)

    Google Scholar 

  9. Cole, R., Fleischer, L.: Fast-converging tatonnement algorithms for one-time and ongoing market problems. In: Proc. 40th ACM STOC (2008)

    Google Scholar 

  10. Condon, A.: The complexity of stochastic games. Inf. & Comp. 96(2), 203–224 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Daskalakis, C., Goldberg, P., Papadimitriou, C.: The complexity of computing a Nash equilibrium. SIAM J. on Computing (2009); Preliminary version in STOC 2006

    Google Scholar 

  12. de Alfaro, L., Henzinger, T.A., Kupferman, O.: Concurrent reachability games. In: Proc. IEEE FOCS, pp. 564–575 (1998)

    Google Scholar 

  13. Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Intl. J. Game Theory 8, 109–113 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  14. Emerson, E.A., Jutla, C.: Tree automata, μ-calculus and determinacy. In: Proc. IEEE FOCS, pp. 368–377 (1991)

    Google Scholar 

  15. Etessami, K., Yannakakis, M.: On the complexity of Nash equilibria and other fixed points. Proc. IEEE FOCS (2007)

    Google Scholar 

  16. Etessami, K., Yannakakis, M.: Recursive Markov decision processes and recursive stochastic games. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 891–903. Springer, Heidelberg (2005)

    Google Scholar 

  17. Etessami, K., Yannakakis, M.: Efficient qualitative analysis of classes of recursive Markov decision processes and simple stochastic games. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 634–645. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Etessami, K., Yannakakis, M.: Recursive concurrent stochastic games. Logical Methods in Computer Science 4(4:7), 1–21 (2008); Preliminary version in: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 324–335. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Etessami, K., Yannakakis, M.: Manuscript (2009)

    Google Scholar 

  20. Fabrikant, A., Papadimitriou, C.H., Talwar, K.: The complexity of pure Nash equilibria. In: Proc. ACM STOC, pp. 604–612 (2004)

    Google Scholar 

  21. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  22. Gilboa, I., Zemel, E.: Nash and correlated equilibria: some complexity considerations. Games and Economic Behavior 1, 80–93 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  23. Harsanyi, J.C., Selten, R.: A General Theory of Equilibrium Selection in Games. MIT Press, Cambridge (1988)

    MATH  Google Scholar 

  24. Herings, P.J.-J.: A globally and universally stable price adjustment process. J. of Mathematical Economics 27(2), 163–193 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Herings, P.J.-J.: Universally converging adjustment processes - a unifying approach. J. of Mathematical Economics 38, 341–370 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hirsch, M.D., Papadimitriou, C.H., Vavasis, S.A.: Exponential lower bounds for finding Brower fixed points. J. Complexity 5, 379–416 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  27. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local search? J. Comp. Sys. Sci. 37, 79–100 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  28. Jurdzinski, M.: Deciding the winner in parity games is in UP∩coUP. Inf. Proc. Let. 68, 119–124 (1998)

    Article  MathSciNet  Google Scholar 

  29. Kuhn, H.W., MacKinnon, J.G.: Sandwich methods for finding fixed points. J. Opt. Th. Appl. 17, 189–204 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  30. van der Laan, G., Talman, A.J.J.: A convergent price adjustment process. Economics Letters 23, 119–123 (1987)

    Article  MathSciNet  Google Scholar 

  31. Lemke, C., Howson, J.: Equilibrium points of bimatrix games. J. SIAM, 413–423 (1964)

    Google Scholar 

  32. Lipton, R.J., Markakis, E., Mehta, A.: Playing large games using simple strategies. In: Proc. ACM Conf. Elec. Comm, pp. 36–41 (2003)

    Google Scholar 

  33. Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic Theory. Oxford Univ. Press, Oxford (1995)

    Google Scholar 

  34. Nash, J.: Non-cooperative games. Annals of Mathematics 54, 289–295 (1951)

    Article  MathSciNet  Google Scholar 

  35. Neyman, A., Sorin, S. (eds.): Stochastic Games and Applications. Kluwer, Dordrecht (2003)

    MATH  Google Scholar 

  36. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.: Algorithmic Game Theory. Cambridge Univ. Press, Cambridge (2007)

    MATH  Google Scholar 

  37. Papadimitriou, C.: On the complexity of the parity argument and other inefficient proofs of existence. J. Comput. Syst. Sci. 48(3), 498–532 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  38. Papadimitriou, C., Yannakakis, M.: An impossibility theorem for price adjustment mechanisms, manuscript (2009)

    Google Scholar 

  39. Puri, A.: Theory of hybrid systems and discrete event systems. PhD Thesis, UC Berkeley (1995)

    Google Scholar 

  40. Savani, R., von Stengel, B.: Hard to solve bimatrix games. Econometrica 74, 397–429 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  41. Scarf, H.: The approximation of fixed points of a continuous mapping. SIAM J. Appl. Math. 15, 1328–1343 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  42. Scarf, H.: The Computation of Economic Equilibria. Yale University Press (1973)

    Google Scholar 

  43. Shapley, L.S.: Stochastic games. Proc. Nat. Acad. Sci. 39, 1095–1100 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  44. Sikorski, K.: Optimal solution of nonlinear equations. Oxford Univ. Press, Oxford (2001)

    MATH  Google Scholar 

  45. Smale, S.: A convergent process of price adjustment and global Newton methods. J. of Mathematical Economics 3(2), 107–120 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  46. Spirakis, P.: Approximate equilibria for strategic two-person games. In: Proc. 1st Symp. Alg. Game Theory, pp. 5–21 (2008)

    Google Scholar 

  47. Tiwari, P.: A problem that is easier to solve on the unit-cost algebraic RAM. J. of Complexity, 393–397 (1992)

    Google Scholar 

  48. Uzawa, H.: Walras’ existence theorem and Brower’s fixpoint theorem. Econ. Stud. Quart. 13, 59–62 (1962)

    Google Scholar 

  49. Yannakakis, M.: The analysis of local search problems and their heuristics. In: Proc. STACS, pp. 298–311 (1990)

    Google Scholar 

  50. Yannakakis, M.: Computational complexity of local search. In: Aarts, E.H.L., Lenstra, J.K. (eds.) Local Search in Combinatorial Optimization. John Wiley, Chichester (1997)

    Google Scholar 

  51. Yannakakis, M.: Equilibria, fixed points, and complexity classes. Computeer Science Review 3(2), 71–86 (2009); Preliminary version in STACS 2008

    Article  MathSciNet  Google Scholar 

  52. Zwick, U., Paterson, M.S.: The complexity of mean payoff games on graphs. Theoretical Computer Science 158, 343–359 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yannakakis, M. (2009). Computational Aspects of Equilibria. In: Mavronicolas, M., Papadopoulou, V.G. (eds) Algorithmic Game Theory. SAGT 2009. Lecture Notes in Computer Science, vol 5814. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04645-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04645-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04644-5

  • Online ISBN: 978-3-642-04645-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics