
ar
X

iv
:0

90
5.

38
85

v1
 [

cs
.G

T
]

 2
4

M
ay

 2
00

9

Swap Bribery

Edith Elkind

University of Southampton, UK and

Division of Mathematical Sciences,

Nanyang Technological University,

Singapore

Piotr Faliszewski∗

Department of Computer Science

AGH Univ. of Science and Technology

Kraków, Poland

Arkadii Slinko

Deptartment of Mathematics

University of Auckland

New Zealand

October 26, 2018

Abstract

In voting theory, bribery is a form of manipulative behavior in which an external actor (the
briber) offers to pay the voters to change their votes in order to get her preferred candidate
elected. We investigate a model of bribery where the price of each vote depends on the amount
of change that the voter is asked to implement. Specifically, in our model the briber can change
a voter’s preference list by paying for a sequence of swaps of consecutive candidates. Each swap
may have a different price; the price of a bribery is the sum of the prices of all swaps that it
involves. We prove complexity results for this model, which we call swap bribery, for a broad
class of election systems, including variants of approval and k-approval, Borda, Copeland, and
maximin.

1 Introduction

There is a range of situations in social choice where an external actor may alter some of the already
submitted votes, or the votes that the voters intend to submit. For example, a candidate can
attempt to change the voters’ preferences by running a campaign, which may be targeted at a
particular group of voters. A more extreme (and illegal) version of this strategy involves paying
voters to change their votes, or bribing election officials to get access to already submitted ballots in
order to modify them. Alternatively, one can assume that the submitted votes can be contaminated
with random mistakes, and a central authority should be allowed to correct the votes (preferably,
by changing them as little as possible) to reveal the true winner. Indeed, this scenario is, in fact,
one of the original motivations behind Dodgson’s voting rule. (See papers [15, 6] for a discussion
of this idea.)

All of these activities can be interpreted as changing the voters’ preferences subject to a budget
constraint, and can therefore be studied using the notion of bribery in elections introduced by

∗Supported by AGH University of Science and Technology Grant no. 11.11.120.777.

1

http://arxiv.org/abs/0905.3885v1

Faliszewski, Hemaspaandra, and Hemaspaandra [9]. In their model of bribery, we are given an
election (i.e., a set of candidates and a list of votes), a preferred candidate p, a price of each vote,
and a budget B. We ask if there is a way to pick a group of voters whose total price is at most B
so that via changing their votes we can make p a winner.

In the model of Faliszewski, Hemaspaandra, and Hemaspaandra [9] each voter may have a
different price, but this price is fixed and does not depend on the nature of the requested change:
upon paying a voter, the briber can modify her vote in any way. While there are natural scenarios
captured by this model, it fails to express the fact that voters may be more willing to make a
small change to their vote (e.g., swap their 2nd and 3rd most favorite candidates) than to change
it completely. To account for such settings, Faliszewski [8] proposed a new notion of bribery,
which he called nonuniform bribery. Under nonuniform bribery, a voter’s price may depend on the
nature of changes she is asked to implement. A similar notion called microbribery was considered
in [10]. However, none of these papers considers the standard model of elections, in which votes are
preference orders over the set of candidates. Specifically, Faliszewski [8] focused on the so-called
utility-based voting, while Faliszewski et al. [10] used the irrational voter model, in which voters’
preferences may contain cycles.

The goal of this paper is to study a notion of nonuniform bribery that can be used within the
standard model of elections. Our model, which we call swap bribery, is a direct specialization of
the notion of microbribery to the case of rational voters. In addition, it is also inspired by Dodgson
voting rule (see Fellows, Rosamond, and Slinko [11] for a related discussion). We use the name
“swap bribery” as it precisely captures the nature of our model. In swap bribery, the briber can
ask a voter to perform a sequence of swaps; each swap changes the relative order of two candidates
that are currently adjacent in this voter’s preference list. For example, if a voter prefers a to b and
b to c (we write this as a ≻ b ≻ c), she can be asked to swap a and b, then a and c, then b and c,
resulting in the vote c ≻ b ≻ a. Each swap has an associated price, and the total price is simply
the sum of the prices of individual swaps. When preferences are viewed as orderings, a swap of
adjacent candidates is a natural “atomic” operation on a vote. Moreover, one can transform any
vote into any other vote by a sequence of such swaps. Hence, attaching prices to such operations
provides a good model for nonuniform bribery in the standard setting.

We also study a special case of swap bribery, which we call shift bribery. Under this model
of bribery the only allowable swaps are the ones that involve the preferred candidate. Thus, in
effect, a shift bribery amounts to asking a voter to move the preferred candidate up by a certain
number of positions in her preference order. As argued above, bribery can be used to model a
legal approach to influencing elections, namely, campaigning: the “briber” simply invests money
into trying to convince a particular group of voters that one candidate is better than another.
The message and costs of the campaign can vary from one group of voters to another, which is
captured by different bribery prices. In this context, shift bribery corresponds to campaigning
for the preferred candidate (as opposed to discussing relative merits of other candidates), and is
therefore particularly appealing.

After introducing our model of bribery, we proceed to study it from the algorithmic perspective.
Our goal here is threefold. First, as argued above, despite its negative connotations, bribery may
correspond to perfectly legal and even desirable behavior, and therefore we are interested in devel-
oping efficient algorithms that a potential “briber” (that is, a campaign manager) can use. Second,
from a more technical perspective, we would like to pinpoint the source of computational hardness
in nonuniform bribery. Indeed, when the number of candidates is unbounded, the general bribery

2

of Faliszewski, Hemaspaandra, and Hemaspaandra [9] appears to be hard for all but the simplest
election systems. In contrast, there is a number of polynomial-time algorithms for nonuniform
bribery in non-standard models, such as utility-based voting or irrational voters. We would like to
know whether these easiness results are tied to the increased flexibility of pricing in nonuniform
bribery, or to the increased flexibility of the alternative voter models. The results of this paper,
most of which are NP-completeness results, suggest that the latter is true. Finally, our paper can
be viewed within the context of “computational hardness as a barrier against manipulation” line
of work, pioneered by Bartholdi, Tovey, and Trick [1]. While it has since been argued that NP-
hardness might not provide sufficient protection against dishonest behavior and that more robust
notions of hardness are needed (see, e.g., [20, 12, 18, 19]), identifying settings in which bribery is
NP-hard is a useful first step towards finding an election system that is truly resistant to dishonest
behavior.

This paper is organized as follows. After providing the necessary background in Section 2,
in Section 3 we formally define our model of bribery, and prove some general results about swap
bribery. Section 4 contains our results on bribery in approval voting. Then, in Section 5, we
consider other popular election rules, such as Borda, Copeland, and maximin. We conclude with
several directions for further research in Section 6. In Appendix A we give a discussion of swap
bribery for SP-AV, a recently introduced variant of approval voting [3].

2 Preliminaries

Elections. An election is a pair E = (C, V), where C = {c1, . . . , cm} is a set of candidates and
V = (v1, . . . , vn) is a list of voters. Each voter vi is represented via her preference order ≻i, which is
a strict linear order over the candidates in C.1 For example, given C = {c1, c2, c3} and V = (v1, v2),
we write c2 ≻2 c1 ≻2 c3 to denote that the second voter, v2, prefers c2 to c1 to c3. For any C ′ ⊆ C,
by writing C ′ in a preference order we mean listing all the elements of C ′ in an arbitrary but fixed

order. Similarly,
←−
C ′ means listing members of C ′ in the reverse of this fixed order.

An election system E maps an election E = (C, V) to a set W ⊆ C of winners. We assume the
nonunique-winner model: all members of E(E) are considered to be winning. All election systems
considered in this paper are point-based: they assign, via some algorithm, points to candidates,
and declare as winners the ones with most points. For an election E = (C, V), we denote by
scoreE(ci) the number of points that a candidate ci ∈ C receives in E according to a given election
system. Sometimes, to disambiguate, we will indicate in the superscript the particular election
system used. We will provide the definitions of the relevant election systems as we discuss them in
further sections.

Manipulation, Possible Winners, and Bribery. In this paper we take manipulation to mean
unweighted constructive coalitional manipulation as defined by Conitzer, Lang, and Sandholm [5].
That is, in E-manipulation we are given an election E = (C, V), a preferred candidate p, and a list
of “manipulative” voters V ′, and we ask if it is possible to set the preferences of voters in V ′ so
that p is an E-winner of (C, V ∪ V ′). In the E-possible-winner problem we are given an election
E = (C, V), where the voters’ preference are (possibly) partial, i.e., are given by partial orders over
C, and we ask if it is possible to complete the votes so that a given candidate p is an E-winner
of the resulting election. It is not hard to see that E-manipulation is a special case of E-possible-

1In the context of the possible-winner problem we also allow partial orders.

3

winner where some votes are completely specified and some (i.e., those of the manipulative voters)
are completely unspecified . The study of possible-winner problems was initiated by Konczak and
Lang [14] and then continued by multiple other authors (see, e.g., Walsh’s overview paper [16] and
the work of Xia and Conitzer [17]). Finally, in E-bribery [9], we are given an election E = (C, V),
a preferred candidate p, a list of voters’ prices and a nonnegative integer B, and we ask if it is
possible to modify votes at a cost of at most B so that p becomes an E-winner of the resulting
election. (More precisely, in [9] the term “bribery” is reserved for the case where all voters have
unit prices, while the more general setting described above is called $bribery.)

Computational Complexity. We assume familiarity with standard notions of computational
complexity such as the classes P and NP, NP-completeness, and (polynomial-time) many-one re-
ductions. Many of our hardness proofs rely on reductions from the NP-complete problem Exact
Cover by 3-Sets (X3C) [13].

Definition 2.1 ([13]). An instance (B,S) of Exact Cover by 3-Sets (X3C) is given by a
ground set B = {b1, . . . , b3K}, and a family S = {S1, . . . , SM} of subsets of B, where |Si| = 3 for
each i = 1, . . . ,M . It is a “yes”-instance if there is a subfamily S ′ ⊆ S, |S ′| = K, such that for
each bi ∈ B there is an Sj ∈ S

′ such that bi ∈ Sj, and a “no”-instance otherwise.

3 Swap Bribery

In any reasonable model of nonuniform bribery, one should be able to specify the price for getting
a given voter to submit any preference ordering (some of these orderings may be unacceptable
to the voter, in which case the corresponding price should be set to +∞). However, in elections
with m candidates, there are m! possible votes, so listing the prices of these votes explicitly is not
practical. Alternatively, one could specify the bribery prices via an oracle, i.e., via a polynomial-
time algorithm that, given a voter i and a preference order ≻, outputs the price for getting i to vote
according to ≻. However, without any restrictions on the oracle, even finding a cheapest way to
affect a given vote will require exponentially many queries, and providing appropriate restrictions
would be challenging.

We will now present a model of bribery that allows for easy specification of bribery prices,
and yet is expressive enough to capture many interesting scenarios. Our model is based on the
following idea. Intuitively, an atomic operation on a given vote is a swap of two consecutive
candidates. Moreover, one can transform any vote into any other vote by a sequence of such
steps. It is therefore natural to assume that the price for such transformation is reasonably well
approximated by the sum of the prices of individual swaps. We now proceed to formalize this
approach.

Let E = (C, V) be an election, where C = {c1, . . . , cm} and V = (v1, . . . vn). A swap-bribery
price function is a mapping π : C×C → N, which for any ordered pair of candidates (ci, cj) specifies
the price for changing a preference order ≻ from . . . ≻ ci ≻ cj ≻ . . . to . . . ≻ cj ≻ ci ≻ Let
(π1, . . . , πn) be a list of swap-bribery price functions. A unit swap is a triple (vk, ci, cj). A unit swap
is admissible if ci immediately precedes cj in vk’s preference order; its price is πk(ci, cj). Executing
an admissible unit swap (vk, ci, cj) means changing vk’s preference order from . . . ≻ ci ≻ cj ≻ . . .
to . . . ≻ cj ≻ ci ≻

Note that we do not allow swapping non-adjacent candidates in a single step (though, of course,
such a swap could be simulated by a sequence of swaps of adjacent candidates). Indeed, such a

4

swap would change these candidates’ order relative to all candidates that appear between them in
the vote.

Definition 3.1. Let E be an election system. In E-swap-bribery we are given an election E =
(C, V), where C = {c1, . . . , cm}, p = c1, V = (v1, . . . , vn), a list of voters’ swap-bribery price
functions (π1, . . . , πn), and a nonnegative integer B (the budget). We ask if there exists a sequence
(s1, . . . , st) of unit swaps such that (1) when executed in order, each unit swap is admissible at the
time of its execution, (2) executing s1, . . . , st ensures that p is a winner of the resulting E-election,
and (3) the sum of the prices of executing s1, . . . , st is at most B.

As argued above, swap bribery can be used to transform any vote into any other vote. It is
natural to ask if one can efficiently compute an optimal way of doing so. It turns out that the
answer to this question is “yes”.

Proposition 3.2. Given two votes v1 = ci1 ≻1 . . . ≻1 cim and v2 = cj1 ≻2 . . . ≻2 cjm , and a
swap-bribery price function π, one can compute in polynomial time the cheapest (with respect to π)
sequence of swaps converting v1 into v2.

Proof. Set I(v1, v2) = {(ci, cj) | ci ≻1 cj , cj ≻2 ci}; we say that a pair of candidates (ci, cj) ∈
I(v1, v2) is inverted. Clearly, to obtain v2 from v1, it is necessary to swap each inverted pair, so
the total cost of an optimal bribery is at least s =

∑

(ci,cj)∈I(v1,v2)
π(ci, cj). We will now argue that

one never needs to swap a pair not in I(v1, v2), or to swap a pair in I(v1, v2) more than once; this
implies that the cost of an optimal bribery is exactly s.

Our argument is by induction on the size of I(v1, v2). If |I(v1, v2)| = 0, then v1 = v2 and
the statement is obvious. Now, suppose that the statement has been proved for all v′1, v

′
2 with

|I(v′1, v
′
2)| < k, and consider a pair (v1, v2) with |I(v1, v2)| = k. We claim that there is a pair of

candidates (ci, cj) ∈ I(v1, v2) that is adjacent in v1. Indeed, suppose otherwise, and let (ci, cj) be
a pair in I(v1, v2) that is the closest in v1. By our assumption, there exists at least one c ∈ C such
that ci ≻1 c ≻1 cj , yet (ci, c) 6∈ I(v1, v2), (c, cj) 6∈ I(v1, v2). Hence, we have ci ≻2 c, c ≻2 cj , so by
transitivity of ≻2 we conclude ci ≻2 cj, a contradiction with (ci, cj) ∈ I(v1, v2). Hence, I(v1, v2)
always contains an adjacent pair (ci, cj). By swapping ci and cj , we obtain a vote v′1 that satisfies
|I(v′1, v2)| = k − 1. Note also that I(v′1, v2) = I(v1, v2) \ {(ci, cj)}, as the relative order of all
other candidates with respect to ci and cj did not change. Hence, we can now apply our inductive
hypothesis.

The argument above suggests a simple algorithm for converting v1 into v2: we can repeatedly
scan v1 for inverted pairs whose members are currently adjacent in v1, and swap the corresponding
candidates. The running rime of this algorithm is bounded by n|I(v1, v2)| = O(n3).

Proposition 3.2 shows how to optimally convert one vote into another using swaps. We can also
compute in polynomial time the cheapest way of transforming a collection of votes into any other
collection of votes of the same cardinality.

Proposition 3.3. Given a list of votes V = (v1, . . . , vn), a corresponding list of price functions
(π1, . . . , πn), and a multiset of votes V ′ = {v′1, . . . , v

′
n}, one can find in polynomial time an optimal

swap bribery that transforms V into V ′.

Proof. Let m′ be the number of distinct votes in V ′. We construct a flow network N with source
s, sink t, m vertices x1, . . . , xm and m′ vertices y1, . . . , ym′ . There are edges of capacity 1 and cost

5

0 from s to each xi, and edges of capacity +∞ and cost 0 from each yj to t. Furthermore, for
every pair (xi, yj) there is an edge from xi to yj that has capacity 1 and cost cij, where cij is the
cost of transforming vi into the lexicographically jth distinct element of V ′ using swap bribery;
the costs cij can be computed in polynomial time by Proposition 3.2. Clearly, an integer maximal
flow in this network has size m and corresponds to a bribery that results in the multiset of votes
V ′. Moreover, a minimum-cost maximal flow is always integer, and therefore corresponds to a
minimum-cost swap bribery that produces V ′. As a minimum-cost maximal flow in a network can
be computed in polynomial time, the result follows.

Recall that a voting rule is called anonymous if its outcome does not depend on the order
of votes in V . Typical voting rules are anonymous. For such rules, Proposition 3.3 suggests a
polynomial-time algorithm for finding an optimal swap bribery in the important special case where
the number of candidates is fixed.

Theorem 3.4. For any anonymous voting rule with a polynomial-time winner determination pro-
cedure, one can compute an optimal swap bribery in polynomial time if the number of candidates is
bounded by a constant.

Proof. Suppose that |C| ≤ k, where k is a given constant, and let n = |V |. There are at most k!
different votes, and hence at most nk! different multisets of votes of size n; as k is a constant, this
quantity is polynomial in n. For a given multiset of votes, we can determine if it results in our
preferred candidate p winning the election. For each such multiset, we can compute in polynomial
time the cost of an optimal swap bribery that transforms the input list of votes into this multiset
using Proposition 3.3. We can then pick the multiset that makes p a winner at the smallest possible
cost. Clearly, the entire procedure runs in polynomial time.

Observe that when |C| is constant, the number of different multisets of votes is polynomial in |V |,
but the number of different lists of votes may still be superpolynomial, which is why Proposition 3.3
is phrased in terms of multisets of votes rather than lists of votes.

The next result allows us to quickly derive swap-bribery hardness results from possible-winner
hardness results.

Theorem 3.5. Let E be an election system. E-possible-winner many-one reduces to E-swap-bribery.

Proof. The input to the E-possible-winner problem is an election E = (C, V), where the voters’
orders may be partial, and a candidate p ∈ C. We give a polynomial-time algorithm that transforms
an instance (C, V) of E-possible-winner problem into an instance of E-swap-bribery in which p can
become a winner via swap bribery of cost 0 if and only if votes in V can be completed in such a
way that p is a winner of a resulting election.

Our construction works as follows. First, for each (possibly) partial vote ≻k in V we compute
a complete vote ≻′

k that agrees with ≻k on each pair of candidates that are comparable under
≻k. This can easily be done via, e.g., topological sorting. For each vote ≻′

k we fix the following
price function πk. For each two candidates ci, cj ∈ C, if ci and cj are comparable under ≻k then
πk(ci, cj) = 1 and otherwise πk(ci, cj) = 0. We output an instance of swap bribery with budget
0, preferred candidate p and an election E′ which is identical to E except that each vote ≻k is
replaced by vote ≻′

k associated with price function πk.
Clearly, this reduction runs in polynomial time. We now prove its correctness. Let us fix

an index k and let us consider a vote ≻′
k and an arbitrary vote ≻′′

k. We claim that ≻′
k can be

6

transformed via swap bribery to equal ≻′′
k at cost 0 (given price function πk) if and only if ≻′′

k

agrees with ≻k on all pairs of candidates comparable under ≻k. By the proof of Proposition 3.2, a
swap bribery that transforms ≻′

k to ≻′′
k requires exactly swapping (in some order, each pair exactly

once) each pair of candidates ci, cj such that ci ≻
′
k cj and cj ≻

′′
k ci. Clearly, the cost of these swaps

is 0 if and only if ≻′′
k agrees with ≻k on all pairs of candidates comparable under ≻k. As a result,

there is a completion of the votes in E that makes p a winner if and only if there is a swap bribery
of cost 0 that makes p a winner in E′.

Since E-manipulation is a special case of E-possible-winner, we immediately obtain the following
corollary.

Corollary 3.6. Let E be an election system. E-manipulation many-one reduces to E-swap-bribery.

Shift bribery. In some settings, the briber may be unable to ask voters to make a swap that
does not involve the preferred candidate. For example, in an election campaign investing money to
support another candidate may be viewed as unethical. In such cases, the only operation available
to the briber is to ask a voter to move the preferred candidate up in her preference order. We will
refer to this type of bribery as shift bribery.

Fix an election E = (C, V) with C = {c1, . . . , cm}, p = c1, and a voter v ∈ V with a preference
order ≻. Suppose that p appears in the jth position in ≻. We say that a mapping ρ : N → N is a
shift-bribery price function for v if it satisfies (1) ρ(0) = 0; (2) ρ(i) ≤ ρ(i′) for i < i′ < j; and (3)
ρ(i) = +∞ for i ≥ j. We interpret ρ(i) as the price of moving p up by i positions in ≻.

Definition 3.7. Let E be an election system. In E-shift-bribery we are given an election E =
(C, V), where C = {c1, . . . , cm}, p = c1, and V = (v1, . . . , vn), a list of voters’ shift-bribery price
functions (ρ1, . . . , ρn), and a nonnegative integer B (the budget). We ask if there is a sequence
(k1, . . . , kn) of nonnegative integers such that

∑n
i=1 ρi(ki) ≤ B and bribing each voter vi to shift p

up by ki places ensures that p is a E-winner of the resulting election.

It is not hard to see that E-shift-bribery is a special case of E-swap-bribery.

Proposition 3.8. For any election system E, any election E = (C, V) given by C = {c1, . . . , cm},
p = c1, V = (v1, . . . , vn), and any list (ρ1, . . . , ρn) of shift-bribery price functions for V , we can
efficiently construct a list (π1, . . . , πn) of swap-bribery price functions for V so that the problem
of E-shift-bribery with respect to (ρ1, . . . , ρn) is equivalent to the problem of E-swap bribery with
respect to (π1, . . . , πn).

Proof. The general idea of the proof is as follows. We are given an election E = (C, V), a candidate
p = c1, and a shift-bribery price function πi for each voter vi. We keep the same budget in the
swap bribery problem. Now, we need to provide a swap bribery price function π′

i for each voter.
Let us fix a voter number i and let us renumber the candidates in C so that vi’s preference order is
ck ≻i ck−1 ≻i · · · ≻i c2 ≻i≻i p ≻i · · · . We construct π′

i by setting (1) π′
i(p, c2) = πi(1), (2) for each

ℓ, 3 ≤ ℓ ≤ k, setting π′
i(p, cℓ) = πi(ℓ)− πi(ℓ− 1), and (3) setting all the remaining prices of swaps

to exceed the bribery budget. A simple inductive proof shows that setting π′ in this way proves
the theorem.

The analogue of Theorem 3.5 does not seem to hold for shift bribery. Hence, unlike in the
case of swap bribery, it is of interest to explore the complexity of shift bribery even when the

7

corresponding possible-winner problem is known to be hard. Another natural question in this
context is whether there are election systems for which shift bribery is strictly easier than swap
bribery. As our subsequent results show, the answer to this question is “yes” (assuming P 6= NP).

4 Case Study: Approval Voting

In this section we present a nearly complete view of the complexity of swap bribery and shift bribery
in k-approval voting. The family of k-approval voting rules (for various values of k) is a simple but
interesting class of election systems, including such well-known systems as plurality and veto. In
k-approval, a voter assigns a point to each of the top k candidates on her preference list. Thus,
1-approval is simply the plurality rule and, for |C| = m, (m − 1)-approval is the veto rule, where
each voter votes against her least desirable candidate.

We start by showing that swap bribery is easy for both plurality and veto, but that it is hard
for almost all variants of k-approval with fixed k.

Theorem 4.1. Swap bribery for plurality (i.e., 1-approval) and for veto (i.e., (m− 1)-approval) is
in P. However, for each fixed k such that k ≥ 3, swap bribery for k-approval is NP-complete, even
if all swaps have costs in the set {0, 1, 2}.

Proof. We split the proof into three parts, regarding plurality, regarding veto, and regarding k-
approval for a fixed k, k ≥ 3.

Plurality. For each vote v and each candidate c it is easy to compute the minimum cost of replacing
the top candidate on v’s preference list with c (by the proof of Proposition 3.2 it is enough to keep
swapping c with the candidates preceding her until she is the top candidate). Then, to test whether
it is possible to make our preferred candidate a winner, it is sufficient to feed these “replacement”
costs together with the budget and the current votes to the polynomial-time nonuniform-bribery
algorithm of Faliszewski [8].

Veto. The case of veto is analogous to the case of plurality and we omit it.

k-approval, fixed k, k ≥ 3. It is easy to see that the problem is in NP as we can simply guess the
swaps to attempt, and by Proposition 3.2 there are only polynomially many swaps to guess. To
show NP-hardness, we give a reduction from X3C. We will first give a construction for 3-approval,
and then show how to modify it for larger values of k. Our input X3C instance is (B,S), where
B = {b1, . . . , b3K} and S = {S1, . . . , SM}. In our instance of bribery, let C = {p} ∪ B ∪D be the
set of candidates, where D = {d1, d2, . . . } is a set of polynomially many dummy candidates, and p
is the preferred candidate. For each Sj = {bi1 , bi2 , bi3} ∈ S, there is a voter vj who ranks bi1 , bi2 , bi3
first, followed by d3j , d3j+1, d3j+2, followed by the rest of the candidates in some order, with p being
the last in the list. The price function for this voter is given by πj(bi3 , d3j) = 1, πj(bik , d3j+ℓ) = 0
for k = 1, 2, 3, ℓ = 0, 1, 2, (k, ℓ) 6= (3, 0), and πj(c, c

′) = 2 for any other pair (c, c′) of candidates.
Now, if our budget for this voter is 0, we cannot change his or her vote at all. If we are willing to
spend 1, we can swap bi3 and d3j , and then continue to move d3j , d3j+1 and d3j+2 into the first 3
positions. Putting any candidate that was not in the top six into the top three will cost at least 2.

Let T be the largest number of points that any candidate gets from such voters. We add
polynomially many votes that ensure that all candidates b1, . . . , b3K have exactly T + 1 points,
while p has exactly T points. In doing so, we may utilize some fresh dummy candidates d9K+1, . . . ;
we ensure that each dummy candidate gets at most 1 point. Also, we require that p is listed last in

8

all votes that do not list him or her in the top three. The cost of swapping any pair of candidates
in these new votes is 2. Finally, we set our budget to be K.

Clearly, buying extra points for p is prohibitively expensive: p would have to be moved past
at least 3K − 2 > K candidates (we can assume that K ≥ 2). Hence, our only chance to make p
a winner is to take away one point from each of b1, . . . , b3K . As our budget is K, the only way of
doing this is to bribe K out of the first M voters in a way that corresponds to a set cover of S.

To adapt this construction for k-approval, k > 3, we modify all votes by adding k − 3 fresh
dummy candidates to the top of each vote, and make it prohibitively expensive to move those
candidates.

The above theorem does not address the issue of the complexity of swap bribery in 2-approval.
However, recently it was shown that the possible winner problem for 2-approval is NP-complete [2].
Thus, swap bribery for 2-approval also is NP-complete.

In contrast to Theorem 4.1, shift bribery for k-approval is easy for all values of k. Thus, shift
bribery can indeed be easier than swap bribery.

Theorem 4.2. Shift bribery for k-approval is in P for any k < m.

The idea of the proof is that in k-approval shift bribery the only reasonable action that the
briber has, per each voter, is to bribe that voter to move p up into kth position (or do nothing if
the voter already approves of p). With this observation at hand, one can apply techniques used in
the proof of Theorem 4.1.

Let us consider the NP-completeness part of Theorem 4.1. There we assume that both the
number of candidates and the number of voters are parts of the input (i.e., are not bounded by
any fixed constant). We have seen that the first requirement is necessary: by Theorem 3.4 swap
bribery becomes easy if the number of candidates is constant. It is therefore natural to ask if the
number of voters plays a similar role. It turns out that if k is bounded by a constant, swap bribery
is easy for each fixed number of voters.

Theorem 4.3. For each fixed k, swap bribery for k-approval is in P if the number of voters is
bounded by a constant.

Proof. Consider an election E = (C, V), where C = {c1, . . . , cm}, V = (v1, . . . , vn), a preferred
candidate p ∈ C, and a budget B. (Each voter, of course, also has a swap-bribery price function.)
Let C1, . . . , CT be the list of all k-element subsets of C; note that T =

(

m
k

)

= poly(m). For a given
vote v, we can compute the cost of moving the candidates from a given k-element subset Ct into top
k positions in v. Indeed, suppose that Ct = {ci1 , . . . , cik}, and ci1 is the first of these candidates to
appear in v, ci2 is second, etc. Then this cost is simply the cost of moving ci1 into the top position
by successively swapping it with all candidates that are above him, followed by moving ci2 into the
second position, etc. To see why this naive algorithm is optimal, note that it only swaps pairs that
are inverted in the sense of Proposition 3.2, i.e., ones that have to be swapped anyway.

We can now go over all lists of the form (Ci1 , . . . , Cin), ij ∈ {1, . . . , T} for j = 1, . . . , n, and
for each such list compute the cost of the optimal bribery that for j = 1, . . . , n transforms the jth
input vote into a vote that lists the candidates in Cij in the top k positions. There are at most
(

m
k

)n
= poly(m) such lists; we accept if at least one of them has cost at most B and bribing the

voters to implement it ensures p’s victory.

9

On the other hand, when k is unbounded, swap bribery becomes difficult even if there is just
one voter. To prove this result, we reduce from the NP-complete problem Balanced Biclique
(BB) (see [13])

Definition 4.4 ([13]). An instance of BB is given by a bipartite graph G = (U,W,E), where
|U | = |W | = N and E ⊆ U ×W , and a natural number K ≤ N . We ask if there are sets U ′ ⊆ U
and W ′ ⊆W such that |U ′| = |W ′| = K and (u,w) ∈ E for all u ∈ U ′, w ∈W ′.

Intuitively, the reason why swap bribery for k-approval is difficult for large values of k is that it
may be to the benefit of the briber to move around candidates that are ranked above our preferred
candidate. Doing so may allow him to then move p via swaps of lower cost.

Theorem 4.5. When k is a part of the input, swap bribery for k-approval is NP-complete even for
a single voter.

Proof. It is easy to see that our problem is in NP. We focus on the NP-hardness proof. We give a
reduction from BB (see Definition 4.4 above). Suppose that we are given an instance of BB with
U = {u1, . . . , uN}, W = {w1, . . . , wN}. Our election system will have 2N+1 candidates u1, . . . , uN ,
w1, . . . , wN , p, where p is the preferred candidate, and a single voter v with preference ordering
U ≻ W ≻ p. The price function is given by π(ui, uj) = 0, π(wi, wj) = 0 for all i, j = 1, . . . , N ,
π(wi, p) = 1, π(ui, p) = 0 for all i = 1, . . . , N , π(ui, wj) = 0 if (ui, wj) ∈ E and π(ui, wj) = N−K+1
otherwise. Finally, we set k = N + 1 and B = N −K.

Suppose that we have a “yes”-instance of BB, and let (U ′,W ′) be the corresponding witness.
Then we can first reorder U and W for free so that U \ U ′ ≻ U ′, W ′ ≻ W \W ′, then swap U ′

and W ′ (which is free, since (U ′,W ′) is a biclique in G), and, finally, move p past W \W ′ and U ′,
paying |W \W ′| = N −K = B.

Conversely, suppose that there is a successful bribery for v. Let U ′ be the set of candidates
from U that end up below p, and let W ′ be the set of candidates from W that end up above p after
the bribery. Observe that this means that we had to swap each pair (u,w) ∈ U ′ ×W ′, and hence
(u,w) ∈ E for all (u,w) ∈ U ′ ×W ′, as otherwise we would have exceeded our budget. We had
to pay 1 for swapping p with each of the candidates in W \W ′, so |W \W ′| ≤ N −K and hence
W ′ ≥ K. On the other hand, p ended up among the top N +1 candidates, so |W ′|+ |U \U ′| ≤ N ,
and hence |U ′| ≥ K. Pick U ′′ ⊆ U ′, W ′′ ⊆ W ′ so that |U ′′| = |W ′′| = K. The pair (U ′′,W ′′) is a
balanced biclique of the required size in G because we have started with a successful bribery.

Bribery in SP-AV. A related popular voting rule is approval voting (without the “k-” prefix),
where voters can approve of (give a point to) any number of candidates. Traditionally, this rule
is considered in the setting where the voters’ preferences are expressed as 0/1-vectors rather than
linear orders, and nonuniform bribery for approval has already been thoroughly studied [9, 8]. In
Section A we provide some discussion of swap bribery in SP-AV, a variant of approval recently
introduced by Brams and Sanver [3] and whose computational study was initiated by Erdélyi,
Nowak, and Rothe [7].

5 Further Voting Rules and Shift Bribery

In this section we consider election systems other than approval, starting with Borda. In a Borda
election with m candidates each voter assigns to each candidate c as many points as the number of

10

candidates that the voter ranks below c. The possible winner problem for Borda is NP-complete [17]
and thus, via Proposition 3.5 we have that Borda-swap-bribery is NP-complete. Thus, we will now
focus on Borda-shift bribery.

Theorem 5.1. Shift bribery for Borda is NP-complete.

Proof. Clearly, shift bribery for Borda is in NP. To show completeness, we reduce from X3C.
Let (B,S) be an instance of X3C where B = {b1, . . . , b3K} and S = {S1, . . . , SM} is a family of
3-subsets of B. Set C = B ∪ {p}, V = (v1, . . . , v2M+2). For each Si ∈ S voter vi has preference
order Si ≻i p ≻i B − Si. Voter vM+i has the same order, but reversed. Voters’ v2M+1 and v2M+2

preferences are B ≻2M+1 p and
←−
B ≻2M+2 p, respectively. Our goal is to ensure that p is a winner

via a bribery of cost at most K. The voters have the following shift-bribery price functions. For
each voter vi such that 1 ≤ i ≤ M , we set ρi(1) = ρi(2) = ρi(3) = 1. For each i such that
1 ≤ i ≤ M + 2 and for each applicable shift value k we set ρM+i(k) = K + 1. Thus, given that
our budget is K, the only voters that can be bribed are v1, . . . , vM . We claim that p can become a
winner of this election via a bribery of cost at most K if and only if (B,S) is a “yes”-instance.

It is easy to see that voters v1, . . . , v2M assign the same number of points to each candidate.
Let us call this number L. Voters v2M+1 and v2M+2 assign 0 points to p and 3K + 1 points to
each member of B. Thus, in total we have scoreE(p) = L and for each bi ∈ B we have scoreE(bi) =
L + 3K + 1. It is easy to see that if (B,S) is a “yes”-instance of X3C then bribing those voters
among v1, . . . vM that correspond to a cover to rank p first costs K and ensures p’s victory. This is
so, because there are exactly K voters to bribe and bribing them has the following effect: p’s score
increases by 3K (bribing each one of them increases p’s score by 3) and the score of each bi ∈ B
decreases by 1. In effect, all candidates tie as winners. The reverse direction holds via a simple
argument.

On the positive side, there exists a polynomial-time 2-approximation algorithm for Borda-shift-
bribery.

Theorem 5.2. There exists a polynomial time algorithm that, given an instance I of shift bribery
with a preferred candidate p, outputs a sequence of shifts that makes p a Borda winner, and whose
cost is at most 2c, where c is the cost of an optimal Borda-shift bribery for I.

Proof. Fix an instance I of Borda-shift bribery. Suppose that in I the optimal shift bribery has
cost c and moves p up by k positions in total.

It is easy to see that in I any bribery that shifts p up by at least 2k positions results in p being
a winner. This is so because in the optimal solution shifting p up by k positions increases p’s score
by k and decreases every other candidate’s score by at most k. Thus, altogether p gets at most 2k
points compared to each of the other candidates. We obtain the same effect by shifting p up by 2k
positions.

Now, suppose that we know k. Let B be the cheapest bribery that shifts p up by k positions.
This bribery can be computed by a dynamic programming algorithm as follows. For each i =
1, . . . , n and k′ = 1, . . . , k, let f(i, k′) be the cost of the cheapest shift bribery that moves p up
by k′ positions in the preferences of the first i voters. We have f(1, k′) = ρi(k

′) for k′ ≤ m − k1,
where k1 is the position of p in the first vote, and f(1, k′) = +∞ for k′ > m− k1. Further, we have
f(i+ 1, k′) = min{f(i, k′ − k′′) + ρi+1(k

′′) | k′′ = 1, . . . ,m− ki+1}, where ki+1 is the position of p
in the (i + 1)st vote. Obviously, the cost of B is given by f(n, k), and one can compute B itself
using standard techniques. Observe that the cost of B is at most c.

11

Now, B includes some j shifts, j ≤ k, that also appear in the optimal solution. Suppose that
we know the value of j. Let us imagine that we first execute these j shifts. After doing so, we
get an instance I ′ that still allows the remaining k − j shifts of the optimal solution. Thus, given
I ′, one can find k − j shifts that ensure p’s victory and so, by the observation in the previous
paragraph, any 2(k − j) shifts from I ′ suffice to make p a winner. Let I ′′ be the instance obtained
after executing B. Clearly, one can transform I ′ into I ′′ using k − j shifts. Therefore, in I ′′ any
bribery that shifts p by k − j positions results in p winning. Thus, after executing B, we pick the
cheapest bribery B′ that shifts p up by k − j positions. These k − j shifts cost at most c, because
there are the k − j unused shifts from the optimal solution, whose cost is at most c. As a result,
we ensure p’s victory via 2k − j shifts, and pay at most 2c.

Now, this algorithm of course assumes knowing k and j. When solving an arbitrary instance,
we do not know them, but we can try all combinations.

Quite interestingly, the randomized approximation algorithm of Caragiannis et al. [4] designed
to compute Dodgson scores can be used (with very minor changes only) to solve Borda-shift-
bribery. Caragiannis et al.’s algorithm takes as input an election (C, V) and a candidate p and
outputs an approximate number of shifts of p that guarantee that p is a Condorcet winner (i.e., the
algorithm returns the approximate Dodgson score of p). However, internally, for each candidate
c the algorithms simply stores a minimal number of times that p needs to pass c on some voter’s
preference list. The algorithm finds a sequence of shifts that guarantees that each candidate is
passed at least the required number of times (these numbers are selected in a way that ensures
that p is a Condorcet winner, but the correctness of the algorithm does not depend on this fact; we
can use arbitrary numbers instead). In terms of Borda, this means that the algorithm internally
specifies by how many points each candidate’s score should be decreased via shifting p. Thus, we
can use the algorithm of Caragiannis et al. to find an approximately optimal shift bribery that
guarantees that each candidate other than p has at most some prespecified number of points (we
should try all possible numbers of points; there are only polynomially many of them). If this
already makes p a winner then we have an approximate solution. If that does not yet make p a
winner then we simply need to shift p up until she is a winner and our approximate solution’s cost
is the cost computed by the randomized algorithm + the cost of this final shifting. (Technically,
the algorithm of Caragiannis et al. treats all shifts as having unit cost, but it can quite easily be
adapted to consider arbitrary prices.)

Nonetheless, our 2-approximation result is much stronger. The approximation ratio of the
algorithm of Caragiannis et al. [4] is logm, where m is the number of candidates. (However, for
the case of Dodgson, Caragiannis et al. [4] show that their result is optimal, assuming P 6= NP.)

We now turn to elections defined via considering majority contests between pairs of candidates.
Specifically, we consider maximin and Copelandα, where α is a rational number, 0 ≤ α ≤ 1. Given
an election E = (C, V) where C = {c1, . . . cm} and V = (v1, . . . vn), we define NE(ci, cj) = |{vk |
ci ≻k cj}|. Let α be a rational number such that 0 ≤ α ≤ 1. Copelandα score of a candidate
ci, score

α
E(ci), is defined as scoreαE(ci) = |{cj | NE(ci, cj) > NE(cj , ci)}| + α|{cj | NE(ci, cj) =

NE(cj , ci)}|. That is, ci’s score is the number of candidates that he or she defeats in head-to-head
majority contests plus α times the number of candidates with whom ci ties such contests. Maximin
score of a candidate ci, score

m
E (ci), is mini 6=j NE(ci, cj).

Theorem 5.3. Shift bribery is NP-complete for maximin and, for each rational α between 0 and
1, for Copelandα.

12

p t c B

p – L L+K L+K − 1
t L+ 2K – K 2L+ 2K
c L+K 2L+K – 2L+ 2K − 1
B L+K + 1 0 1 ≤ 2L+ 2K

Table 1: Results of head-to-head contexts between candidates in the election constructed in the
proof of Theorem 5.3. An entry in row a and column b is the value NE(a, b) −M (or its upper
bound). Entries regarding B give the value for each member of B.

Proof. Let us first consider Copeland voting. A close inspection of the proof that bribery is NP-
complete for each rational value of α, 0 ≤ α ≤ 1, given in [10] shows that that proof works, upon
specifying proper price functions for shift bribery as well.2 To avoid repetition, we skip the proof.

Let us now move to maximin. As usual, it is easy to see that the problem is in NP and we focus
an a reduction that shows its NP-completeness. We will reduce X3C to shift bribery for maximin.

Let (B,S) be an input instance of X3C where B = {b1, . . . , b3K} and S = {S1, . . . , SM}. Let L
be a nonnegative integer whose exact value we will specify later. We form an election E = (C, V),
where C = {p, t, c} ∪ B and where V contains 2(M + K + L) voters, v1, . . . v2(M+K+L). Voters
are divided into two main groups. Voters v1, . . . v2M implement the structure of our input X3C
problem and the remaining voters create appropriate padding, so that the scores of the candidates
in C require the briber to solve the X3C instance we reduce from.

For each nonnegative integer i, 1 ≤ i ≤ M , voter vi has preference order t ≻i Si ≻i p ≻i

B − Si ≻i c and voter vM+i has preference order that is the reverse of vi’s. Thus, N(C,(v1,...,v2M))

is a constant function that equals M for each pair of candidates. We set the remaining 2K + 2L
candidates as follows:

1. There are L voters with preference order p ≻ c ≻ t ≻ B.

2. There are K − 1 voters with preference order t ≻ p ≻ c ≻ B.

3. There is a single voter with preference order t ≻ B ≻ p ≻ c.

4. There are L+K voters with preferernce order c ≻ t ≻ B ≻ p.

We set the budget B = K. For each vi, 1 ≤ i ≤ M , vi’s shift-bribery function is such that
πi(0) = 0 and πi(1) = πi(2) = πi(3) = πi(4) = 1. For each of the remaining voters we set shift-
bribery prices that do not allow to change their votes at cost K or lower. That is, within the
budget, the briber can only choose to shift p by 1, 2, 3, or 4 positions forward on the preference
lists of some voters among v1, . . . , vM . The cost of such a bribery is equal to the number of those
voters that the briber chooses to affect. We claim that it is possible to ensure that p is a winner
via such a bribery if and only if (B,S) is a “yes”-instance of X3C.

We will first show that if it is possible to ensure p’s victory via a shift bribrery of cost at most K
then (B,S) is a “yes”-instance. Table 1 shows the values of NE(·, ·)−M for each pair of candidates
in C. The table contains entries “minus M ,” because voters v1, . . . , v2M contribute M points to

2In essence, we need to use the same trick as, e.g., in the proof of Theorem 5.1. That is, we set the shift-bribery

prices so that shifting p by one position was as useful as shifting it to the top of a voter’s ranking.

13

each candidate’s score. All the candidates in B ⊂ C have similar scores and so both the column
and the row labeled B applies to each candidate in B. The value that lies at the intersection of
this row and this column, cell (B,B) so to say, should be interpreted as an inequality that holds for
each bi, bj ∈ B. That is, for each bi, bj ∈ B we have NE(bi, bj)−M ≤ 2L+ 2K.

We set L = K (though, we encourage the reader to think of L as “a large value”). Via
trivial calculation, we see that the candidates have the following scores: scoremE (p) = M + L,
scoremE (t) = M +K, scoremE (c) = M +K + L, and for each bi ∈ B, score

m
E (bi) ≤ M . Thus, before

any bribery attempts, c is the winner of the election. Also, since the only votes that we can affect
via shift bribrery are v1, . . . , vM , it is impossible to lower c’s score. Thus, via inspection of the
entries in the p-row of Table 1 it is easy to see that to ensure p’s victory in the election, we have
to increase NE(p, t) by at least K and increase each of NE(p, bi) by at least 1. However, this is
possible only if we choose to shift-bribe exactly K voters among v1, . . . , vM to rank p first (so that
NE(p, t) increases by K) and if those voters correspond to a cover of B (so that each NE(p, bi)
increases by exactly 1). Thus, if it is possible to ensure p’s victory via a shift bribery of cost at
most K, then (B,S) is a “yes”-instance of X3C. It is easy to see that the other direction of the
reduction holds as well and so the proof is complete.

It is interesting to compare the results of this section with those of [10], which shows that for
irrational voters microbribery for Copeland0 and for Copeland1 is in P. In fact, we can also show
that microbribery for the case of irrational voters is also in P for Borda and maximin (though we
omit these results due to limited space and our focus on rational voters).

This is a further (meta)-argument that perhaps the main source of hardness in many election
problems stems from the necessity of dealing with preference orders rather than from the design of
particular election systems.

6 Conclusions

We have introduced a notion of swap bribery and its cousin shift bribery, and analyzed their
complexity in several well-known election systems such as plurality, k-approval, Borda, Copeland,
and maximin. It turns out that, in sharp contrast to the easiness results for microbribery [10] and
nonuniform bribery in utility-based systems [8], swap bribery is NP-hard for many of these systems.
This is quite surprising as our swap bribery is essentially the microbribery model adapted to the
rational-voter setting.

Our work leads to several open problems. First, it would be useful to identify natural special
cases of our setting for which one can find an optimal swap bribery in polynomial time. Another
approach to tackling computational hardness is constructing effective approximation algorithms
for swap bribery and shift bribery. Theorem 5.2 makes the first step in this direction; designing
approximation algorithms for other voting rules and for swap bribery is a topic for future research.

References

[1] J. Bartholdi, III, C. Tovey, and M. Trick. The computational difficulty of manipulating an
election. Social Choice and Welfare, 6(3):227–241, 1989.

[2] N. Betzler. Personal communication. May, 2009.

14

[3] S. Brams and R. Sanver. Critical strategies under approval voting: Who gets ruled in and
ruled out. Electoral Studies, 25(2):287–305, 2006.

[4] I. Caragiannis, J. A. Covey, M. Feldman, C. M. Homan, C. Kaklamanis, N. Karanikolas,
A. D. Procaccia, J. S. Rosenschein. On the approximability of Dodgson and Young elections.
In Proceedings of SODA-09, 2009.

[5] V. Conitzer, T. Sandholm, and J. Lang. When are elections with few candidates hard to
manipulate? Journal of the ACM, 54(3):Article 14, 2007.

[6] E. Elkind, P. Faliszewski, and A. Slinko. On distance rationalizability of some voting rules. In
Proceedings of TARK-09. 2009. To appear.

[7] G. Erdélyi, M. Nowak, and J. Rothe. Sincere-strategy preference-based approval voting broadly
resists control. In Proceedings of MFCS-08, 2008.

[8] P. Faliszewski. Nonuniform bribery (short paper). In Proceedings of AAMAS-08, 2008.

[9] P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra. The complexity of bribery in elec-
tions. In Proceedings of AAAI-06, 2006.

[10] P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Llull and Copeland vot-
ing computationally resist bribery and constructive control. Journal of Artificial Intelligence
Research, 2009. To appear.

[11] M. Fellows, F. Rosamond, and A. Slinko. Sensing god’s will is fixed parameter tractable.
Technical Report N.561, Dept. of Mathematics. The University of Auckland, July 2008.

[12] E. Friedgut, G. Kalai, and N. Nisan. Elections can be manipulated often. In Proceedings of
FOCS-08, 2008.

[13] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, 1979.

[14] K. Konczak and J. Lang. Voting procedures with incomplete preferences. In Proceedins of
the Multidisciplinary IJCAI-05 Worshop on Advances in Preference Handling, pages 124–129,
July/August 2005.

[15] T. Meskanen and H. Nurmi. Closeness counts in social choice. In M. Braham and F. Steffen,
editors, Power, Freedom, and Voting. Springer-Verlag, 2008.

[16] T. Walsh. Uncertainty in preference elicitation and aggregation. In Proceedings of AAAI-07,
2007.

[17] L. Xia and V. Conitzer. Determining possible and necessary winners under common voting
rules given partial orders. In Proceedings of AAAI-08, 2008.

[18] L. Xia and V. Conitzer. Generalized scoring rules and the frequency of coalitional manipula-
bility. In Proceedings of EC-08, 2008.

[19] L. Xia and V. Conitzer. A sufficient condition for voting rules to be frequently manipulable.
In Proceedings of EC-08, 2008.

15

[20] M. Zuckerman, A. Procaccia, and J. Rosenschein. Algorithms for the coalitional manipulation
problem. Artificial Intelligence, 173(2):392–412, 2008.

A Swap Bribery in SP-AV

In this section we consider variant of approval voting recently introduced by Brams and Sanver [3]
called sincere-strategy preference-based approval voting (SP-AV). In SP-AV each voter vi, in effect,
provides a preference order and an integer ℓi, 1 ≤ ℓi ≤ m−1, indicating how many of her top-ranked
candidates she approves of. Erdélyi, Nowak, and Rothe [7] initiated computational study of SP-AV
by considering control in SP-AV.

In defining bribery for SP-AV, it is natural to allow the briber to ask the voters both to swap
adjacent candidates (as in swap bribery) and to change the number of candidates they approve
of. We formalize this idea as follows. A mixed bribery problem for SP-AV is given by an election
E = (C, V), |V | = n, with a preferred candidate p, a budget B, a list (π1, . . . , πn) of swap bribery
price functions, and a list (σ1, . . . , σn) of approval threshold price functions, where σi : Z → N

satisfies σ(0) = 0. We interpret σi(k) as the price for changing the number of candidates that the
ith voter approves of by k; note that we allow k < 0.

Theorems 4.1 and 4.5 immediately imply that mixed bribery is hard even if the briber is not
allowed to change the approval thresholds, i.e. σi(k) = +∞ for all vi ∈ V , k ∈ Z, as long as either
(1) ℓi ≥ 3 for all vi ∈ V or (2) ℓi = n/2 + 1 for at least one vi ∈ V . Interestingly, it is also hard if
the briber is only allowed to change the approval thresholds and even if the corresponding prices
are linear.

Theorem A.1. Mixed bribery for SP-AV is NP-complete even if πi(cj , ck) = +∞ for all vi ∈ V
and all cj , ck ∈ C and σi(k) = |k| for all vi ∈ V .

Proof. It is easy to see that the problem is in NP. To show NP-completeness we now give a reduction
from X3C. Let (B,S) be our input instance, where B = {b1, . . . , b3K} and S = {S1, . . . , SM}. Let
T = {t1, . . . , tM} be a set of padding candidates. We form an SP-AV election E = (C, V), where
C = B∪T ∪{p, e} and with M+2K+2 voters (v1, . . . vM+2K+2). The first M voters correspond to
the sets in S. For each i, 1 ≤ i ≤M , vi has preference order ti ≻i Si ≻i p ≻i B−Si ≻i T −{ti} ≻i e
and approves only of the topmost candidate, i.e., ℓi = 1. The remaining voters report the following
preference orders and approval counts:

1. K + 1 voters report e ≻ B ≻ T ≻ p and approve only of the topmost candidate, e,

2. 1 voter reports p ≻ B ≻ T ≻ e and approves only of the topmost candidate, p,

3. K voters report B ≻ T ≻ e ≻ p and approve of all the members of B.

For each of the voters we use price function π that does not allow any swaps, and a price function
σ such that for each integer k, σ(k) = |k| (here |k| means the absolute value of k).

We claim that p can become a winner of this election via mixed bribery of cost at most B = 3K
if and only if (B,S) is a “yes”-instance of X3C. Via a routine calculation we see that in this election
candidates have the following scores:

1. scoreE(p) = 1,

16

2. scoreE(e) = K + 1,

3. scoreE(bi) = K,

4. scoreE(ti) = 1.

Due to SP-AV rules (every voter has to approve of at least one candidate and no voter can approve
of all candidates), it is easy to see that it is impossible to decrease e’s score via mixed bribery.
Thus, the only way to ensure that p is a winner is to increase p’s score by K without increasing
the score of any of the bi’s by more than 1. The only way to increase p’s score is via bribing some
of the voters v1, . . . vM . However, bribing them to increase p’s score costs 3 for each of the voters.
Thus, a bribery that increases p’s score by K has to include bribing K of the voters v1, . . . vM to
increase their approval counts by 3. If such a bribery is to ensure p’s victory, those bribed voters
in v1, . . . vM have to correspond to a cover of B via sets from S because increasing p’s score by 1
via bribing some voter vi, 1 ≤ i ≤ M , also means that the score of all members of Si increases by
1. Thus, if it is possible to ensure p’s victory via count bribery then (B,S) is a “yes”-instance. On
the other hand, it is easy to see that if (B,S) is a “yes”-instance then it is possible to ensure p’s
victory via a mixed bribery of cost at most 3K.

17

	Introduction
	Preliminaries
	Swap Bribery
	Case Study: Approval Voting
	Further Voting Rules and Shift Bribery
	Conclusions
	Swap Bribery in SP-AV

