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Abstract. We prove a general monotonicity result about Nash flows in
directed networks and use it for the design of truthful mechanisms in
the setting where each edge of the network is controlled by a different
selfish agent, who incurs costs when her edge is used. The costs for each
edge are assumed to be linear in the load on the edge. To compensate
for these costs, the agents impose tolls for the usage of edges. When
nonatomic selfish network users choose their paths through the network
independently and each user tries to minimize a weighted sum of her
latency and the toll she has to pay to the edges, a Nash flow is obtained.
Our monotonicity result implies that the load on an edge in this setting
can not increase when the toll on the edge is increased, so the assignment
of load to the edges by a Nash flow yields a monotone algorithm. By a
well-known result, the monotonicity of the algorithm then allows us to
design truthful mechanisms based on the load assignment by Nash flows.

Moreover, we consider a mechanism design setting with two-parameter
agents, which is a generalization of the case of one-parameter agents
considered by Archer and Tardos [1]. While the private data of an agent
in the one-parameter case consists of a single nonnegative real number
specifying the agent’s cost per unit of load assigned to her, the private
data of a two-parameter agent consists of a pair of nonnegative real
numbers, where the first one specifies the cost of the agent per unit load
as in the one-parameter case, and the second one specifies a fixed cost,
which the agent incurs independently of the load assignment.

We give a complete characterization of the set of output functions that
can be turned into truthful mechanisms for two-parameter agents. Namely,
we prove that an output function for the two-parameter setting can be
turned into a truthful mechanism if and only if the load assigned to every
agent is nonincreasing in the agent’s bid for her per unit cost and, for
almost all fixed bids for the agent’s per unit cost, the load assigned to
her is independent of the agent’s bid for her fixed cost. When the load
assigned to an agent is continuous in the agent’s bid for her per unit
cost, it must be completely independent of the agent’s bid for her fixed
cost. These results motivate our choice of linear cost functions without
fixed costs for the edges in the selfish routing setting, but the results also
seem to be interesting in the context of algorithmic mechanism design
themselves.
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1 Introduction

The emergence of the Internet as a new platform for distributed computing at
the end of the last century has greatly influenced the point of view of algorithm
designers. The machines participating on the Internet are controlled by different
users that are more likely to selfishly maximize their own profit rather than any
global objective. Hence, the old implicit assumption that an algorithm can make
definitive decisions that are always carried out by the machines can no longer
be taken for granted since lying and manipulating the system could increase
the profit of individual users. This possible introduction of false information
can lead to a severe loss of performance in classical optimization algorithms. A
common approach for dealing with this problem is to study algorithmic problems
using methods from the microeconomic field of mechanism design (also known
as implementation theory), which studies how privately known preferences of
several people can be aggregated towards a social choice. The resulting research
area is commonly termed algorithmic mechanism design.

The main idea in algorithmic mechanism design is to overcome the selfishness
of the individual users (called agents) by making it a (weakly) dominant strategy
for each agent to truthfully reveal her private information (called the agent’s
type). This is achieved by paying the agents according to a suitable payment
scheme. A mechanism is then defined as a pair M = (A, P) consisting of an
(optimization) algorithm A and a payment scheme P, and the profit of each agent
in the mechanism is given as the sum of the profit she makes from the solution of
the global optimization problem chosen by the algorithm and the payment she
receives. A mechanism is called truthful with dominant strategies (in the sequel
simply truthful) or strategyproof if truthtelling is a dominant strategy for every
agent, i.e., it maximizes the profit of the agent for every possible behavior of the
other agents. In a truthful mechanism, the rational agents can be assumed to give
correct information about their types, so the underlying optimization problem
can be solved on the correct data. Thus, the design of truthful mechanisms is
the central goal in algorithmic mechanism design. However, not every algorithm
admits a payment scheme such that the resulting mechanism is truthful. Hence,
the question “Which algorithms can be turned into truthful mechanisms?” is
one of the central questions in algorithmic game theory these days.

Selfish routing is another important research area in algorithmic game theory.
It is motivated by the study of routing in road networks or the Internet, where
the traffic is not controlled by a global authority but by many different selfish
users. Hence, the classical problem of network routing is considered from the
perspective of game theory, which gives rise to a wide range of interesting issues.
Different players are assumed to selfishly route traffic through a network in
an attempt to optimize their own objective functions (e.g., their own latency
or cost). However, as in the case of mechanism design, selfishness may lead to
outcomes that are suboptimal from a global perspective.



1.1 Previous Results

Mechanism design is a classical area of research with many results. It is a subfield
of noncooperative game theory [2] and microeconomics [3]. An introduction to
the subject can be found in Chapter 23 of [3]. An important result known as the
revelation principle (cf. [3], page 871) states that it imposes no loss of generality
to consider only mechanisms in which the agents’ strategies are to simply report
their type (though not necessarily in a truthful manner) as we implicitly assumed
in the introduction. Such mechanisms are called direct revelation mechanisms.
The systematic study of algorithmic problems in the context of mechanism design
was initiated by a seminal paper of Nisan and Ronen [4], who also introduced
the formal framework for algorithmic mechanism design presented above.

Archer and Tardos [1] considered the important case of algorithmic mecha-
nism design for one-parameter agents. In this setting, the type of each agent i is
a single nonnegative real number t;. Each feasible solution x of the global opti-
mization problem results in an amount of work w;(x) being assigned to agent 4,
who incurs a cost of t; - w;(x) for completing this amount of work. The profit of
agent ¢ is defined as the payment she receives from the mechanism minus her cost.
Archer and Tardos [1] showed that an algorithm A for an optimization problem
with one-parameter agents can be used in a truthful mechanism M = (A, P) if
and only if A is monotone.

Definition 1. An algorithm for an optimization problem with one-parameter
agents is called monotone if, for every agent, the amount of work assigned to it
does not increase if its bid increases. More formally, an algorithm is monotone
if, given two vectors b, b’ of length m = fagents that represent sets of m bids and
differ only in one component i, i.e., b; > b; and b; = b} for j # i, the amount
of work (the load) that agent i gets from the algorithm if the bid vector is b is
never higher than if the bid vector is b'.

A similar result for a weaker notion of truthfulness called truthfulness in
Bayesian Nash equilibrium was previously obtained by Myerson [5], who con-
sidered auctions of a single object as Bayesian games, where the players are the
bidders, and the private information of each bidder is a nonnegative real number
specifying the maximal price she would be willing to pay for the object.

The result of Archer and Tardos is a strong motivation for considering mono-
tone algorithms since it implies that every monotone algorithm for a problem
with one-parameter agents immediately yields a truthful mechanism. Using this
result, monotone algorithms (and, hence, truthful mechanisms) were designed
for several classical problems like scheduling related machines to minimize the
makespan, where the bid of a machine is the inverse of its speed [1, 6-9].

Archer and Tardos also considered the concept of voluntary participation
(also known as participation constraints or individual rationality constraints in
the mechanism design literature). A mechanism satisfies voluntary participation
if agents who bid truthfully never incur a net loss, which means that it makes
sense for the agents to participate in the mechanism without being forced to do



so. As proved in [1], a monotone algorithm admits a truthful payment scheme
satisfying voluntary participation if and only if, for every i and every fixed vector
of bids of all agents except 7, the integral of the work curve of agent i is finite.

Selfish routing and, more general, network games are active research areas
these days. A survey of these topics can be found in [10]. The book [11] gives a
good introduction to selfish routing. Much work on selfish routing and network
games in recent years has focused on quantifying the loss of efficiency due to
selfishness. The most common game-theoretic approach in this area is to consider
Nash equilibria [12], i.e., solutions of noncooperative games in which no player
has an incentive to unilaterally change her strategy. In nonatomic models of
selfish routing, where the traffic routed by the selfish network users is modeled
as a network flow, Nash equilibria are commonly referred to as Nash flows. To
measure the loss of efficiency caused by selfishness, Papadimitriou [13] introduced
the term price of anarchy for the ratio between the worst-case Nash equilibrium
and the globally optimal solution in game-like situations. Results concerning
the price of anarchy for network games can be found in [11,14-16]. Other work
related to this paper investigates how Nash equilibria in selfish routing can be
influenced by tolls on the network edges [14, 17-20]. Monotonicity results about
Nash flows have previously been obtained in [21].

Note that most of the given references concentrate on nonatomic models of
selfish routing as studied in this paper. A survey of results for a common atomic
model introduced by Koutsoupias and Papadimitriou [22] and a comparison to
the nonatomic case can be found in [23].

1.2 Our Results

We prove a general monotonicity result about Nash flows in directed networks,
which states that the Nash flow on an edge can not increase when the cost
of the edge to the network users is increased. This result generalizes a result of
Dafermos and Nagurney [21], who studied a model of selfish routing equivalent to
the one considered in this paper. However, the analysis in [21] crucially relies on
the so called strong monotonicity condition for the cost functions of the network,
which is a rather strong assumption. In particular, Dafermos and Nagurney [21]
only proved the monotonicity of Nash flows for the case of strictly increasing
cost functions on the network edges. We do not use the strong monotonicity
condition and our monotonicity result holds true in the more general setting of
nondecreasing cost functions.

We use our monotonicity result for the design of truthful mechanisms in a
setting with two classes of selfish agents. The first class consists of the owners of
the network edges. The owner of each edge incurs a cost when her edge is used,
and this cost is assumed to be linear in the load on the edge. To compensate
for these costs, the owner of an edge imposes a toll on her edge, which every
single user of the edge has to pay independently of the load on the edge. The
second class of selfish agents is given by the users of the network. Each selfish
user tries choose a path through the network that minimizes the (weighted) sum



of the user’s latency and the overall toll she has to pay to the edges. Our result
about Nash flows implies that, when considering the toll defined by each owner
of an edge as a bid for her privately known cost per unit load, the assignment
of load to the edges by a Nash flow yields a monotone algorithm. Hence, by the
monotonicity result of Archer and Tardos [1], this algorithm can be used in a
truthful mechanism. Thus, our result connects the research areas of mechanism
design and selfish routing, which are two of the main research topics in algorith-
mic game theory these days. Moreover, we show that our monotonicity result
about Nash flows can be extended to the more general setting of Nash equilibria
in nonatomic congestion games without modification in the proof. Hence, the
result may be used for the construction of further truthful mechanisms in this
more general setting in the future.

We present two truthful mechanisms for our selfish routing setting. The first
mechanism assumes strictly increasing latency functions, where the Nash flow
in a network is essentially unique. The second one is a randomized mechanism,
which is truthful in expectation and works in the more general setting where
the latency functions of the edges are only assumed to be nondecreasing. Both
mechanisms guarantee complete cooperation of both kinds of selfish agents (the
edges and the network users) with the mechanism in the sense that no agent has
an incentive to manipulate the mechanism.

Moreover, we show that, under some additional assumptions, it is possible
to enforce optimal tolls by making it a dominant strategy for each owner of an
edge to set her toll in such a way that the Nash flow induced by the tolls on the
edges has minimal total latency. We show how our selfish routing mechanism for
the case of strictly increasing cost functions can be modified to enforce optimal
tolls and give bounds on the payments to the edges in this mechanism.

We motivate the choice of linear cost functions for the edges by proving results
about mechanisms for the case of two-parameter agents. This setting generalizes
the one-parameter setting considered by Archer and Tardos by allowing a fixed
cost component. Namely, we consider the situation where the costs of an agent
are given as a constant per unit cost times the load assigned to the agent plus an
additional fixed cost, which the agent incurs independently of the load assign-
ment. These two real numbers defining an agent’s cost function are the agent’s
private data. This kind of cost functions would be desirable, e.g., when the edges
of the network in the selfish routing setting above are thought of as roads or links
of a telecommunication network, where a large part of the total cost of an edge
is given as the fixed cost for building and maintaining the road or link.

We show that, for almost all fixed bids for an agent’s per unit cost, the load
assigned to the agent in a truthful mechanism has to be independent of the
agent’s bid for her fixed cost. Moreover, when the load assigned to an agent
is continuous in the agent’s bid for her per unit cost, it must be completely
independent of the agent’s bid for her fixed cost, so the situation essentially
reduces to the one-parameter setting. Together with the monotonicity of the
load assigned to an agent in the agent’s bid for her per unit cost as in the
one-parameter setting our necessary condition for truthfulness turns out to be



sufficient as well, so we obtain a complete characterization of the set of output
functions that can be turned into truthful mechanisms for two-parameter agents.
Furthermore, this characterization implies that no truthful mechanism in the
two-parameter setting can satisfy voluntary participation. Hence, our results
imply that considering additional fixed costs for the edges in the selfish routing
setting does not allow the design of more general truthful mechanisms, but rather
prevents any truthful mechanism from satisfying voluntary participation. These
results motivate our choice of linear cost functions without fixed costs in the
selfish routing setting. Moreover, the results themselves are of theoretic interest
in algorithmic mechanism design.

This paper is organized as follows: Section 2 contains our monotonicity result
about Nash flows in directed networks. In Section 3, we show how this result can
be used in the context of algorithmic mechanism design and Section 4 contains
our results on enforcing optimal tolls. In Section 5, the monotonicity result is
extended to the more general setting of nonatomic congestion games. Section 6
contains our results about two-parameter agents, which motivate our choice of
linear cost functions without fixed costs for the edges in the selfish routing part.

2 The Monotonicity of Nash Flows

In the selfish routing part of this paper, we consider a directed network with a
continuous, nondecreasing cost function for every edge, which maps the amount
of flow on the edge (which we call the load on this edge) to a nonnegative real
number specifying the cost for transversing the edge. We consider a model of
selfish routing with infinitely splittable flow, i.e., the users of our network are
infinitesimally small, so the effect of a single users actions on the other users is
negligible. Each infinitely small user wants to travel from one of the sources in
the network to one of the sinks and is assumed to selfishly route her flow on
the cheapest path available to her given the load induced by the other users.
This setting has already been extensively studied [11,14-21]. As usual in the
literature, we assume the flow arising from the selfish behavior of the network
users to be a Nash flow, i.e., a flow in which no infinitesimally small user has an
incentive to unilaterally change her route.

We start the discussion by introducing our notation. We are given a directed
network G = (V, E) with vertex set V, edge set E, and K source-destination
pairs (s1,t1),...,(sk,tx) € V2. P; denotes the set of (simple) s;-t; paths and
is assumed to be nonempty for every i € {1,..., K}. We write P := U;P;.

A flow is a function F' : P — R>¢. For a fixed flow F, we denote the value of F'
at p € P by F),. Every flow F' induces a nonnegative load f, := Zpep:eEp F,>0
on every edge e € E, and we call the vector f = (f.)ecr the load vector of
F. We write F' for the restriction of ' to P; and denote the load produced by
commodity i on an edge e € E by f! := ZPePi:eeP Fp. Each commodity ¢ has
a finite and positive demand d; > 0, i.e., d; units of flow have to be sent from



source s; to destination ¢;. Since all demands are finite, we may assume without
loss of generality that Zfil di = 1. A flow F is feasible if 3 p F, = d; for all
i€ {l,...,K}. Aload vector f is feasible if it is the load vector of some feasible
flow F'. The set of all feasible flows will be denoted by D and can be considered
as a (compact) subset of RI7I.

Every edge e € F is given a nonnegative cost function c. : [0,1] 3 fo —
ce(fe) € Rx>p, which specifies the cost for using edge e when the load on e is
fe- We assume the cost functions ¢, to be continuous and nondecreasing and
denote the vector of all cost functions by ¢ = (¢.)cep. The cost of a path p €
P; to commodity 7 is the sum of the costs of the edges in the path, denoted
by ¢p(f) = D cep ce(fe). We write ¢(F) = (cp(f))pep to denote the vector of
all costs of paths p € P under the flow F. Similarly, we denote the vector of
costs of edges e € E when the load vector is f by ¢(f) = (ce(fe))ecr. We
call the triple (G, d, c) an instance. In what follows, we will always assume the
network G and the demand vector d to be fixed, so an instance is defined by
only the vector ¢ of cost functions.

Definition 2. A feasible flow F € D with load vector f is at Nash equilibrium
(oris a Nash flow) for costs ¢ if for alli € {1,..., K}, p1,p2 € P; with F,, >0,
and & € (0,F,,], we have c,, (f) < ¢py(f), where f is the load vector of the
feasible flow F defined by

B Fp*(s ifp:pl
F,=q¢F,+d6 ifp=p
F, else

Before we state results about the existence and uniqueness of Nash flows, we
note that an argument of Roughgarden [14] shows that Nash flows coincide with
flows at Wardrop equilibrium in our model:

Definition 3. A feasible flow F € D is a Wardrop equilibrium for costs ¢ if,
for every i € {1,..., K}, the following holds:

ep, (f) > p, (f) for p1,p2 € P; implies F,,, = 0.

We use the terms “Nash equilibrium” and “Nash flow” in the rest of this
paper, but we included the characterization given in Definition 3 since we use the
following result due to Smith [24], whose proof is based on this characterization:

Proposition 1. A feasible flow F is at Nash equilibrium for costs c¢ if and only
if its load vector f satisfies the variational inequality:

c(H)T-(f = f) >0 for all feasible load vectors f'

Here, c(f)T denotes the transpose of the vector c(f) of edge costs under the load
vector f, and “” denotes the usual product of a row vector and a column vector.



The following theorem guarantees the existence and essential uniqueness of
Nash flows in our model:

Theorem 1. ([14]) There exists a flow at Nash equilibrium for every vector c
of continuous, nondecreasing cost functions. Moreover, if F, F are flows at Nash
equilibrium for costs ¢ and f,f are the respective load vectors, then c.(f.) =
ce(fe) for each edge e. If, in addition, all cost functions c. are strictly increasing,
then fo. = f. for alle € E.

We now prove the main theorem of this section:

Theorem 2. Let ¢, ¢ be two vectors of continuous, nondecreasing cost functions,
and let f, f be load vectors of Nash flows for costs c and ¢, respectively. If ¢, <
Ceo for a fived edge eg € E, Ceo(fey) < Ceo(feo), and Ee = c for all e # eg, then
feo 2 feo'

Proof. By Proposition 1, f and f satisfy the variational inequality, so

o(NT(f =) 20
AN = D=0

for all feasible load vectors f’. Choosing f’ = f in the first inequality and f’ = f
in the second one and adding yields

@q>edﬁT«fﬂga

Now we set
€= Ceo(feo) - 660(-f€0)'

We then have € > 0 since ée,(fe,) < Ceo (fe,), S0 We obtain:

0> cﬂ—edﬂ -

(e
§;( ﬁO(ﬁ—@
2

() = utf)) (o= £+ nldn) el (e = o)

=€+5eo (feo )

>0

> ¢ (feg = Fu) + () = i) ) Ui = o)

>0

Z\;'(feo - f~eo)

>0

Thus, it follows that f., > f., as claimed. O



Note that we do not assume the cost functions to be strictly increasing in
Theorem 2. The result holds for all continuous, nondecreasing cost functions
even though the load vector of a Nash flow is not unique in this setting.

Also note that, in the case where all cost functions are strictly increasing,
the assumption G, (fe,) < Ceo(fe,) is not needed: If éey(fe,) = Cey(fe,), then
¢(f) = c(f) and it follows from the characterization given in Definition 3 that f
is also the load vector of a Nash flow for costs ¢. Hence, the uniqueness implies
that f = f and, in particular, feo = feo, 50 We obtain the following corollary:

Corollary 1. Let ¢, ¢ be two vectors of continuous, strictly increasing cost func-
tions, and let f, f be the unique load vectors of Nash flows for costs ¢ and ¢,
respectively. If ¢e, < ce, for a fived edge eq € E and ¢. = c. for all e # eg, then

feo 2 feo-

We now mention a special case of Theorem 2, where the costs of an edge are
given as a weighted sum of latencies and tolls. This special case will be used for
the design of truthful mechanisms in the next section. Namely, we are given a
nondecreasing, continuous latency function I, : [0,1] — R>(¢ and a nonnegative
toll 7. for every edge e € E. The vector of all tolls is denoted by 7 = (7¢)cck-
The cost function c. of edge e € F is given by c.(z) := l.(x) + a - 7, where
a > 0 is a constant factor describing the sensitivity of the agents to tolls. The
total latency on a path p € P; is denoted by I,(f) = ZeEp le(fe), and the total
toll on p is denoted by 7, = > . 7.. Using this model, Theorem 2 immediately
yields the following corollary:

ecp

Corollary 2. Let the costs be given as a (weighted) sum of latencies and tolls
as above, where the latency functions are continuous and nondecreasing. Let 7,7
be toll vectors such that Te, < Te, for a fized edge ey € E and 7. = 7. for all
e #eo. If f, f are load vectors of Nash flows for tolls T and 7, respectively, then

feo 2 feo-

Note that the assumption that a > 0, i.e., that the agents have a nonzero
sensitivity to tolls, is crucial here.

3 Application in Mechanism Design

We now show how Corollary 2 can be used in the context of algorithmic mecha-
nism design. We are given a multicommodity network with costs given by laten-
cies and tolls as at the end of the last section, where the latencies are assumed
to be continuous and nondecreasing. There are two kinds of selfish agents inter-
acting in this network: The owners of the edges and the users of the network.
The users want to travel through the network, and the latency function of each
edge specifies how long it takes them to traverse the edge. Every agent owning
an edge incurs costs when her edge is used. The toll on an edge of the network
specifies the amount of money that the owner of the edge asks from a network
user for traversing the edge, i.e., the tolls are payed by the network users to
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the owners of the edges to compensate them for the costs they incur due to the
usage of their edges.

Our goal is to design a mechanism that ensures a certain amount of cooper-
ation of both classes of selfish agents, e.g., to make sure that the owners of the
edges do not exploit the network users by setting the tolls too high. A mechanism
in this setting is a pair (A, P) consisting of an algorithm A, which determines
an assignment of load to the edges, and a payment scheme P, which specifies
the payments to the edges by the mechanism.

The costs that the owner of an edge e incurs are assumed to be linear in the
load on the edge, so they are of the form t. - g., where ¢, > 0 is a nonnegative
constant, and g, > 0 is the load on edge e € E. The constant t. specifying the
costs for the agent controlling edge e is only known to the agent herself. Since
we assume that every agent only controls a single edge in the network, we will
slightly abuse notation by identifying the agent controlling edge e € E with the
edge e itself.

The users traveling through the network are assumed to be infinitely small,
so the effect of a single users actions on the other users is negligible. Every
selfish user of commodity ¢ will choose a path p between her source vertex s;
and destination vertex ¢; minimizing her cost given by {,(g) + « - 7,. Thus, the
traffic pattern arising will be a Nash flow with respect to the given latencies and
the tolls defined by the edges. Note that the costs of an edge e for the network
users are different from the costs that the edge incurs due to its usage: The costs
that the edge incurs per unit load are given by the value t. known only to the
edge itself, whereas the costs that each user of edge e incurs on e are given by
le(ge) + o - T, i.e., by the weighted sum of the latency of e under the current
load and the toll on e.

The mechanism considers the toll 7, defined by edge e as a claimed value (a
bid) of edge e for t.. Based on these bids, the mechanism hands out a payment P,
to every edge e. These payments are used to motivate the edges to set the
tolls according to their true values t., which define the costs the edges have to
compensate for.

To see how we can use Corollary 2 for the design of a truthful mechanism,
we first assume the latencies to be strictly increasing, so that the load vector of
a Nash flow is uniquely determined by the latencies and tolls (cf. Theorem 1).
Under this assumption, the situation fits into the framework of mechanism design
with one-parameter agents: The agents are the edges, and the private value of
edge e € F is the constant ¢, defining its cost per unit flow/load on the edge. The
selfish behavior of the network users does not have to be considered anymore
since it is taken into account by assuming the multicommodity flow arising from
the given latency functions and the tolls defined by the edges to be a Nash
flow. The result obtained in Corollary 2 states that the load on an edge of the
network can not increase when the toll on the edge is increased, so the algorithm
described above, which just takes the Nash flow with the given latencies and the
tolls defined by the edges as the assignment of load to the edges, is a monotone
algorithm. Hence, as shown in [1], our mechanism will be truthful if and only
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if the total amount of money that an edge e € F receives when the toll vector
(bid vector) is 7 is given as

he(’rfe) + Te - fe(’rfefre) - /0 ) fe(’rfevu)du’

where the h,. are arbitrary functions, and fe(7—c,7.) = fo(7) denotes the load
on edge e in the Nash flow with the given latencies and the tolls 7. 7_. denotes
the vector of all tolls except for .. More generally, we define:

Definition 4. For any vectorv = (vy,...,v,) withn entries and k € {1,...,n},
we denote the (n — 1)-dimensional vector that consists of all entries of v except
Vg by v_g = (U1, ..., Vk—1, Vkt1,- -, Upn). Moreover, we write v = (vy,...,v,) =
(U,k, ’Uk).

In our situation, every edge e already gets 7. - fe(7—e,7e) units of money
from the users traveling on e via the tolls. Thus, the (additional) payment it has
to receive from the mechanism in order to obtain a truthful mechanism has to
be of the form P.(7_¢,7e) = he(T—c) — OT"‘ fe(7—¢,u)du. Hence, we obtain the
following result:

Theorem 3. If all latency functions are strictly increasing, the following is a
truthful mechanism:

1. Let every edge e € E set the toll T itself.

2. Let the selfish users of the network choose their paths themselves, so that a
Nash flow is obtained. The users pay the tolls on the edges directly to the
edges.

Consider the toll 7. set by edge e € E as a bid for the private value t. of e.
Hand out the payment Po(T—c,Te) = he(T—¢)— OTe fe(T—e,u)du to edge e € E,
where the he are arbitrary functions.

Bt

Note that Nash flows in the setting of Theorem 3 can be computed in poly-
nomial time via convex programming [25, 14].

Also note that truthfulness of a mechanism in our setting implies that the
tolls payed by the users of the network are as low as possible in the sense that
the payments of the users to every edge e € E are exactly equal to the costs of
e (but not any higher). Hence, a truthful mechanism ensures that the network
users are not exploited by the edges via too high tolls as mentioned at the
beginning of this section. In fact, the mechanism from Theorem 3 guarantees
complete cooperation of both classes of selfish agents with the mechanism in the
sense that no agent of either class has an incentive to change her strategy in
order to manipulate the mechanism: No user of the network has an incentive to
change her route since the flow generated in the mechanism is a Nash flow, and
no edge has an incentive to misreport her cost per unit load (via changing her
toll) since the mechanism is truthful.

When all latency functions are linear, the results of [15] imply that the total
cost Y cp(le(fe)fe + - Te - fe) (i.e., the average cost experienced by the users
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of the network) in a Nash flow F' with load vector f is at most % times that
of an optimal flow, i.e., of a feasible flow with minimal total cost (such a flow
exists since the set D of all feasible flows is compact and the function mapping
a feasible flow to its total cost is continuous). Hence, the total cost of the flow
produced by the mechanism from Theorem 3 is at most % times optimal in this
case. However, a simple example in [15] also shows that without the assumption
of linearity of the latencies the total cost of a Nash flow can not be bounded by
any constant factor times the minimal total cost.

We now consider voluntary participation. As proved in [1], a monotone algo-
rithm admits a truthful payment scheme satisfying voluntary participation if and
only if, for every e and every fixed vector of bids of all agents except e, the integral
of the work curve of agent e is finite, i.e., if fooo fe(T—e,u)du < 0o in our setting.
It is easy to see that the functions h. can be chosen such that the mechanism
from Theorem 3 has this property under one additional assumption. Namely, we
have to assume that, for each commodity 4, there exist (at least) two edge disjoint
s;-t; paths in the network G. Otherwise, all users of commodity ¢ are forced to
use the only existing s;-t; path, so the load on each edge e in this path is at least
d; no matter what the bid of the edge is, so fooo fe(T_e,u)du > fooo d;du = oo.
On the other hand, if there are two node disjoint s;-t; paths (say p} and p})
for every commodity i, all users of commodity i will use p} if the toll on an
edge e € p! gets too high, assuming that all other bids (and, thus, all other
tolls) are unchanged. Hence, we have [ f.(7_.,u)du < oo in this case, and the
choice he(T_¢) := fooo fe(T_e,u)du, ie., Po(T_c,Te) = f:.o fe(T_e,u)du, ensures
voluntary participation.

Theorem 4. The functions h. can be chosen such that the mechanism described
in Theorem 3 satisfies voluntary participation if and only if there exist two edge
disjoint s;-t; paths in G for every i = 1,..., K. In this case, we can choose

he(T—e) == [ fe(T—e, u)du.

In the case where the latencies are only assumed to be nondecreasing rather
than strictly increasing, there can exist Nash flows for a given toll vector that
induce different load vectors. This makes the problem of designing truthful mech-
anism that use Nash flows for the assignment of load to the edges more difficult.

However, when we assume that the mechanism can make the network users
choose their paths according to a certain Nash flow chosen in advance, the prob-
lem becomes essentially the same as in the case of a unique Nash flow. For
example, the mechanism can then choose the lexicographically smallest Nash
flow (with respect to some fixed ordering of the edges) among all Nash flows for
the given toll vector 7 with minimal total cost and make the network users use
the paths given by this Nash flow. Hence, under this assumption, we obtain a
truthful mechanism similar to the one from Theorem 3. However, this mecha-
nism does no longer have the nice and natural property that the users choose
their paths completely by themselves as in the mechanism from Theorem 3.
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When we do not assume that the mechanism can make the network users
choose their paths according to a certain Nash flow chosen in advance, the mech-
anism has to deal with the uncertainty about the load assignment resulting from
the selfish behavior of the network users. In order to motivate truthful bidding
by the edges, the mechanism needs at least some information about which of
the possible Nash flows will be obtained for a given toll vector since the Nash
flow determines the loads assigned to the edges and, thus, the edges’ costs.

In the rest of this section, we show how a randomized mechanism truthful in
expectation can be obtained in this setting under the assumption that there is
a commonly known probability distribution of the possible load vectors of Nash
flows for every toll vector 7. In our setting, we define randomized mechanisms
as follows:

Definition 5. A randomized mechanism is a pair M = (A, P), where A is a
randomized algorithm, which determines a (random) assignment of load to the
edges, and P is a randomized payment scheme, i.e., the payment P. to each
edge e € E is a random variable. A randomized mechanism is called truthful in
expectation if truthtelling maximizes the expected profit of every edge regardless
of what the other edges bid and it satisfies voluntary participation if the expected
profit of an edge bidding truthfully is always nonnegative.

Note that there is also a more restrictive definition of truthfulness for ran-
domized mechanisms, which requires truthtelling to maximize each agent’s profit,
regardless of the outcome of the algorithm’s random coin flips. Randomized
mechanisms that are truthful with respect to this more restrictive definition are
often referred to as universally truthful in the mechanism design literature [4,
26).

The characterization of truthful mechanisms for one-parameter agents by
Archer and Tardos implies the following for randomized mechanisms defined
as above: A randomized algorithm A can be used in a randomized truthful
in expectation mechanism if and only if the expected load on each edge is a
decreasing function of the edges bid/toll, for every fixed vector of bids/tolls of
the other edges. The payments must then be random variables whose expectation
is given by the same formula as in the deterministic case [1].

Given the probability distribution Pr, of the possible load vectors of Nash
flows for every nonnegative toll vector 7, we can design a randomized mechanism
as follows: We let every edge e € E set the toll 7, itself and let the network
users choose their paths completely by themselves as in the mechanism from
Theorem 3. Thus, when the toll vector defined by the edges is 7, every load
vector of a Nash flow for tolls 7 is obtained with the probability given by Pr..
Hence, we obtain a randomized algorithm for assigning the load to the edges.
We now denote the random variable that specifies the load on edge e € F when
the toll vector is 7 by f.(7). Corollary 2 then implies that the expected value of
fe(7) is decreasing in the toll/bid of e, so the randomized algorithm can be used
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in a randomized mechanism that is truthful in expectation. The payments to the
edges can be defined by the same formula as in the mechanism from Theorem 3,
but are now random variables since the values f.(7) are random variables. Thus,
we obtain the following result:

Theorem 5. Let all latency functions be continuous and nondecreasing and as-
sume that, for every nonnegative toll vector T,there is a commonly known prob-
ability distribution Pr. of the possible load vectors of Nash flows with respect to
the tolls T. Then the following randomized mechanism is truthful in expectation:

1. Let every edge e € E set the toll T itself.

2. Let the selfish users of the network choose their paths themselves, so that
every load vector of a Nash flow for tolls T is obtained with the probability
given by Pr., and let f.(7) denote the random variable that specifies the load
on edge e € E. The users pay the tolls on the edges directly to the edges.

3. Consider the toll T, set by edge e € E as a bid for the private value t. of
edge e.

4. Hand out the payment Po(T_¢,Te) = he(T_e)ffoTe fe(T—e,u)du to edge e € E,
where the he are arbitrary random variables.

This randomized mechanism ensures cooperation of both classes of selfish
agents with the mechanism in the same sense as the mechanism from Theorem 3
(assuming that each edge tries to maximize her expected profit).

Note that the mechanism does not use randomization to obtain truthfulness
or a lower total cost. Randomization is only used to deal with the problem of
uncertainty about the Nash flow and load assignment resulting from the selfish
behavior of the network users in the situation where the mechanism can not
simply enforce a certain Nash flow, but is only given probability distributions
over possible load vectors of Nash flows.

Also note that Theorem 5 holds for every possible choice of probability distri-
butions over load vectors of Nash flows, but, to the best of our knowledge, there
is so far no theory that answers the question which probability distributions are
“realistic” for a given network and its cost structure. In practice, the probability
distributions could, e.g., be obtained from statistical data about the behavior of
the selfish users in the network considered.

When considering voluntary participation, the definition of voluntary par-
ticipation for randomized mechanisms and the arguments preceding Theorem 4
immediately yield the following result:

Theorem 6. The random variables he defining the payments in the randomized
mechanism from Theorem 5 can be chosen such that the mechanism satisfies
voluntary participation if and only if there exist two edge disjoint s;-t; paths in
G foreveryi=1,..., K. In this case, we can choose ho(T_.) := fooo fe(T—e,u)du.
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4 Enforcing Optimal Tolls

In the last section, we specified the role of the mechanism as to avoid too high
tolls being set by the edges. In this section, we want to change the objective
of the mechanism as follows: The mechanism should now make sure that the
Nash flow arising from the tolls defined by the edges has a low total latency.
Here, we define the total latency of a feasible flow F' with load vector f as
> pep () EFp =3 cple(fe) fe and call I a latency optimal flow if it minimizes
the total latency among the set D of all feasible flows. Notice that there does
always exist a latency optimal flow since D is compact and the function mapping
a feasible flow to its total latency is continuous. Moreover, the total latency of
a feasible flow F' is exactly equal to the average latency that the network users
experience under F'.

We again assume the latency functions of the edges to be strictly increas-
ing and investigate the question to which extend it is possible to modify the
mechanism described in Theorem 3 in order to motivate the edges to set optimal
tolls. Here, we call a toll vector 7 optimal if the Nash flow induced by the given
latencies and the tolls 7 is a latency optimal flow. The existence of such tolls was
shown for example by Fleischer et. al. [19]. Moreover, the results in [19] imply
that such a toll vector can be computed in polynomial time.

Note that the goal here is not the design of a truthful mechanism, but we
want every agent e € E to bid exactly the value 79P*, where 7°P' is an optimal
toll vector. This requires a small change in the definition of voluntary partici-
pation. Namely, we now require that an agent e € E who bids 79P* does never
incur a net loss. This captures the basic idea behind the concept of voluntary
participation: An agent who behaves like the mechanism wants does not incur
a loss. Unfortunately, the following proposition shows that this is too much to
hope for:

Proposition 2. The payments in the mechanism described in Theorem 3 can
not be chosen such that an agent e € E bidding 2P never incurs a net loss.
Proof. An agent e € F bidding 7°P" receives 7P - fo(7_., 7P') units of money
from the network users through the tolls and her costs are t. - fe(7—c, TSPY).
Hence, the utility of such an agent is

Tgpt’fE(T—evTe ) e fe(T—e, (?pt)+P(T—ev7—ppt)
= (2P —te) - fe(T—e, Spt)+P (T, 7EP)

But this can never be nonnegative for all nonnegative values of t. and 7_. since
P.(T_e,7°PY) does not depend on t, and (7Pt — t.) - fu(T_e, 7OP) “=5° 00 as
long as fe(T_e, 7PY) > 0, which is always the case for large enough tolls on all
paths not containing edge e since, by our assumptions on G, there does exist at

least one path p € P containing e. O
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As a consequence, the question “How much do we need to pay to the edges to
enforce optimal tolls?” does not make sense in this setting: A mechanism where
an agent e bidding 72P! is not required to have nonnegative utility can always
keep the overall payment arbitrarily low by making the agents pay money to the
mechanism even if they behave as desired.

To escape the above impossibility result, we need an additional assumption in
our model. The fact which makes nonnegative utilities for “well-behaved” agents
impossible is that the true cost factor ¢, of an agent e € E can be arbitrarily
large. Hence, we now consider the model as before with the additional assumption
that the true costs are bounded. Namely, we assume that, for each e € E, there
exists a commonly known upper bound T, € R>¢ such that t. < T..

To make bidding 7Pt

Pt an optimal strategy for agent e we need to compare the
utility when e bids

°Pt with the utility when she bids an arbitrary value 7. > 0.

€

Definition 6. Given an optimal toll vector T7°Pt and a vector T_, of bids of all

agents except e, the function diff, : [0,T.] x R>o — R defined by
diff.(te,7e) = (Te —te) - fe(T—e,Te) — (Teopt —te) - fe(T—EaTeOpt)
1s called the utility difference function of agent e.

To make bidding 72P* a dominant strategy for agent e the payment P, (7_., 7oP")

to agent e when she bids 7SP' and the other agents bid 7_, must satisfy

P.(7_¢, TP%) > sup diffe (te, 7e)
(te aTe)e[OvTe] XRZO
Otherwise, there would exist a cost factor t, € [0, 7] and a bid 7. > 0 for agent e

such that the utility when e has type t. and bids 7, is strictly larger than when
she bids 75P' (assuming that e gets zero payment when she does not bid 7oPt).

In Section 3 we saw that, under the assumption that there exist (at least)
two edge disjoint s;-t; paths in the graph G for each commodity i, there exists
a threshold bid Tt (7_,) for every edge e € E and every vector 7_ of bids of

the other agents, i.e., we have f.(7_.,7.) = 0 for all 7, > 7th™*s(7_,). Using this

and the monotonicity of fe(7_¢, 7¢) in 7. proved in Corollary 2, we obtain

diff (e, 7e) = (Te = te) - fe(T-e,7e) = (TP = te) - fe(T—e, 7EP")
< Tethres(T—e) fe(T—¢,0) — (T:pt —te) - fe(T—evT:pt)
for all 7, > 0. Thus
sup diffe (te, 7e)
(te,7e)€[0,T] xR

< sup TethreS(TfE) “fe(T—¢,0) — (Teopt —te) - fe(TfeaTgpt)
te€[0,Te]

= Tghres(T—e) fe(T-¢,0) — (Tgpt —Te)- fe(T—estpt)
= Tghms(T—E) fe(T-e,0) + (T — eopt) ’ fe(T—stpt)



17

To guarantee that an agent e € E bidding 7°P' does not incur a net loss we
need to pay such an agent an amount at least as high as her maximal loss before
payments, which is given by

—(7OoPt — opt T, — opt opt
tgrer%g,);}] (Te ) fe(T—67 Te ) ( ) fe(T—e, T, )

Thus, choosing

P(TfeaTgpt)' Tthres(Tf) fe(T—¢,0) + (T — Opt) fe(T—e, gpt)
> (Te — 7% - fe(T—e, PY)

makes bidding 7P a dominant strategy for each agent e € E and guarantees a
nonnegative utility for agents e € E who bid 72P*. We obtain:

t

Theorem 7. Let the true costs of the agents be bounded, i.e., for each e € F,
there exists a commonly known upper bound T, € Rzo such that t. < T,, and
assume that there exist (at least) two edge disjoint s;-t; paths in the graph G for
each commodity i. Let 7°P' denote an optimal toll vector. Then bidding TP is
a dominant strategy for every agent e € E in the following mechanism (md an
agent e € E bidding T2P' does never incur a net loss:

1. Let every edge e € E set the toll T itself.

2. Let the selfish users of the network choose their paths themselves, so that a
Nash flow is obtained. The users pay the tolls on the edges directly to the
edges.

Consider the toll 7. set by edge e € E as a bid for the private value te of e.
4. Hand out the payment

P (TfevTOpt) shres(TfE) “fe(T—e,0) + (Tt — Topt) fe(T—e, eopt)

o

to every edge e € E with 7. = 7°P'. All other edges receive zero payment.

To conclude this section, we now want to show how the lower bound on the
payments in Theorem 7 can be weakened by slightly changing the model. In the
model used so far, only the edge owners can impose tolls on the usage of their
edges. However, it is a realistic assumption that the mechanism can also impose
(additional) tolls on edges, e.g., in the case where the mechanism is applied by
the government, which wants to optimize the traffic pattern on roads owned by
some private companies.

Given this additional possibility, a straightforward change in the mechanism
presented in Theorem 7 yields lower payments: If an edge e € E sets a toll 7, <
7P the mechanism defines an additional toll 7/ := 79P* — 7. > 0 on edge e,
so the total toll to be payed by the network users for traveling on edge e is
Te + 7, = 72P' in this case. With this modification to the mechanism, it is clear
that agent e is worse off when bidding any value 7, < 7P' than when she bids

7Pt since the load she receives (and, hence, her cost) is the same in both cases
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but she gets less money from the network users in the former case (under the
assumption that the network users do not care to whom they pay the tolls). As
a consequence, our lower bound on the payment an agent e € E has to receive
when bidding 72P' relaxes to

Pe(Tfe»Tgpt) > Tethres(Tfe) : fe(TvaT:pt) + (Te - fgpt) : fe(TfeaTgpt)

= (Tghres(T—e) + T — TSPt) ’ fe(T—ev T:pt)
and paying exactly this amount still guarantees a nonnegative utility for every
agent e who bids 72P*. We obtain:

Theorem 8. Suppose that the assumptions of Theorem 7 hold but the mech-
anism is allowed to impose (additional) tolls on edges. Then bidding TPt is a
dominant strategy for every agent e € FE in the following mechanism and an
agent e € E bidding TPt does never incur a net loss:

Let every edge e € E set the toll T, itself.

Consider the toll 7. set by edge e € E as a bid for the private value t. of e.
If 7. < 7P, define an additional toll T\ := TPt — 7, on edge e.

Let the selfish users of the network choose their paths themselves, so that a
Nash flow is obtained. The users pay the tolls T, directly to the edges and the
tolls T/ to the mechanism.

5. Hand out the payment

™ oo~

Pe(TfevTeopt) = (Tethres(Tfe) +Te — TeOpt) : fe(TfevTeopt)

to every edge e with 7, = TPt All other edges receive zero payment.

5 Extension to Nonatomic Congestion Games

In this section, we show that our monotonicity result about Nash flows can be
extended to the more general setting of Nash equilibria in nonatomic congestion
games.

Congestion games model situations in which several selfish users (or players)
share a finite number of resources. Each user can choose among different subsets
of the resources and her cost (or profit) depends on the choices of all users. The
selfish routing setting considered in the previous sections is a special case of
a congestion game. Here, the resources are the network edges and the sets of
resources that a certain class of users may choose correspond to paths between
the source-destination pair of the commodity representing this user class.

Congestion games represent an active research area these days. Atomic con-
gestion games with a finite number of discrete players each of which controls one
unit of unsplittable demand were introduced by Rosenthal [27], who showed that
every such game admits a pure-strategy Nash equilibrium. We study nonatomic
congestion games, in which infinitely many players interact and each player has a
negligible ability to affect the others. Nonatomic congestion games have recently
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been studied in [28-31]. They are a subclass of the class of nonatomic games
introduced by Schmeidler [32].

We consider the model of nonatomic congestion games studied in [30,31],
which is a nonatomic version of the congestion games defined by Rosenthal [27].
Our notations are chosen analogously to the selfish routing setting from the
previous sections.

We are given a finite set E of resources. Similar to the network edges in
the selfish routing setting, each resource e € E is given a nonnegative cost
function c. : [0,1] — Rx. The vector of all cost functions is again denoted by ¢ =
(ce)ecr and every cost function is assumed to be continuous and nondecreasing.
There are K classes of users or players sharing the resources. For each class i of
players, there is a finite set S; C 2F of subsets of E, which represents the strategy
set of the players of class i. An element of S; is called a strategy for player class
and we write S := U;5;. The continuum of players of class ¢ is represented by
the interval [0, d;] endowed with the Lebesgue measure. As in the selfish routing
part, we may assume without loss of generality that ZLK:1 d; = 1. For each
player class i, strategy S € S;, and resource e € E, there is an associated rate of
consumption rg . that specifies the amount of congestion caused on resource e
by players of class i selecting strategy S. The 5-tuple (E,¢,S,d,r) is called an
instance of the nonatomic congestion game.

A strategy distribution is a function F' : & — R>o and we denote the value
of F at S € S by Fg. Fs can be interpreted as the measure of the set of players
selecting strategy S in the strategy distribution F'. A strategy distribution F
is feasible if ) g g Fs = d; for all i € {1,...,K}. The congestion or load
induced by a strategy distribution F' on a resource e € E is denoted by f. =
Zfil ZSE&; rs,eFs and the vector f = (f.)cck is called the congestion vector or
load vector of F'. The cost incurred by the players of class i selecting strategy S €
S; is defined as the sum of the costs they incur on the resources in .S, denoted

by CS(f) = ZeeS TS,eCe(.fe)-

Nash equilibria in our model of nonatomic congestion games are defined sim-
ilarly to Nash/Wardrop equilibria in the selfish routing setting (cf. Definition 3):

Definition 7. A feasible strategy distribution F' is a Nash equilibrium for costs ¢
if, for every i € {1,..., K}, the following holds:

cs, (f) > es,(f) for S1,S2 € S; implies Fg, = 0.

The existence of Nash equilibria follows by straightforward generalizations
of techniques used to prove the existence of Nash flows in the selfish routing
setting.

The variational inequality characterization of Nash equilibria presented in
Proposition 1 is well-known to hold in our setting of nonatomic congestion games
(cf. for example [31]):
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Proposition 3. A feasible strategy distribution F' is a Nash equilibrium for
costs ¢ if and only if its load vector f satisfies the variational inequality:

c(H)T-(f = f) >0 for all feasible load vectors f'

Using Proposition 3, the proof of Theorem 2 immediately yields the analogous
result for our model of nonatomic congestion games:

Theorem 9. Let ¢, ¢ be two vectors of continuous, nondecreasing cost functions,
and let f, f be load vectors of Nash equilibria for costs ¢ and ¢, respectively. If
Cey < Cey for a fized resource eg € E, Cey(fey) < Ceo(fey), and ¢ = ce for all
e # ep, then fo, > fe,-

6 Truthful Mechanisms for Two-Parameter Agents

In this section, we prove our results on truthful mechanisms for two-parameter
agents, which also motivate our choice of cost functions in the selfish routing
part of this paper.

When thinking of the edges in the network as roads or lines of a telecommu-
nication network, one might certainly want to consider fixed costs for building
and maintaining the road or link. The owner of a link would incur these fixed
costs independently of the amount of traffic on the edge.

These considerations motivate to study the situation where the costs for an
edge are given as the load assigned to it times its private cost per unit load
plus some fixed cost, which occurs independently of the load assignment. This
fixed cost would then also be part of the edge’s private data. Thus, the situation
would now fit into the more general setting of two-parameter agents described
in the introduction. However, we show in this section that the load assigned to
any agent in a truthful mechanism for two-parameter agents has to be almost
independent of the agent’s bid for her fixed cost in the sense that, for almost
every fixed bid for the agent’s per unit cost, the load assigned to her has to be
independent of the agent’s bid for her fixed cost. Furthermore, when the load
assigned to an agent is continuous in the agent’s bid for her per unit cost, it must
be completely independent of the agent’s bid for her fixed cost. Thus, considering
additional fixed costs for the edges does not allow the design of more general
truthful mechanisms. This motivates our choice of cost functions without fixed
costs for the edges in the selfish routing setting.

Together with the monotonicity of the load assigned to an agent in the agent’s
bid for her per unit cost as in the one-parameter setting our necessary condi-
tion for truthfulness turns out to be sufficient as well, so we obtain a complete
characterization of the set of output functions that can be turned into truthful
mechanisms for two-parameter agents. This characterization also implies that
no truthful mechanism in the two-parameter setting can satisfy voluntary par-
ticipation, which provides another motivation for not considering fixed costs for
the edges in the selfish routing setting.
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We now formally introduce the setting of two-parameter agents. We consider
m agents indexed by the numbers 1, ..., m. Every agent ¢ has some private data,
which is known neither to the mechanism nor to the other agents. Everything
except the agents’ private data is public knowledge. Agent ¢’s private data is
a pair (g, 5;) of nonnegative real numbers, also called the agent’s true values.
Each agent reports a pair (a;, b;) € R2, of claimed values for her true values to
the mechanism. This pair (a;, b;) is also called the bid of agent i. Based on the
vectors a,b given by the bids of the agents, the mechanism’s output algorithm
computes an output o = o(a,b), where the output function o takes values in a
given allowable set O. Note that we do not assume the set O of possible outcomes
to be finite as is needed for the characterization of truthful mechanisms/social
choice functions by the weak monotonicity condition [33,34] in more general
settings. Each agent ¢ incurs a cost cost;(a, b) = cost;(o(a, b)), which depends on
her private data and the outcome chosen by the mechanism. To compensate the
agents for these costs, the mechanism makes a payment P;(a,b) to each agent 1,
which depends on the bids. The objective of every agent i is to maximize her
profit given by profit,(a, b) = P;(a,b) — cost;(a,b).

As mentioned earlier, we assume the cost functions of the agents to have
a special form. Namely, the outcome function o assigns an amount w;(a,b) =
w;(o(a, b)) of load or work to each agent i. The cost functions are given as
cost;(a,b) = oy - w;(a,b) + B;. That is, the private value «; measures agent i’s
cost per unit load and (; is the fixed cost she incurs independently of the load
assigned to her.

Our aim is to design truthful mechanisms, i.e., mechanisms for which truth-
telling is a (weakly) dominant strategy for every agent, which means that
profit, ((a—;, a;), (b—;, 5;)) > profit,((a—;, a;), (b—;, b;)) for all values of (a_;,b_;)
and (a;,b;). In this setting, a mechanism is a pair M = (o0, P) counsisting of an
output function o and a vector P of payment functions. An output function o is
said to admit a truthful payment scheme if there exists a vector P of payments
such that the mechanism M = (o0, P) is truthful.

We now prove our main result on two-parameter agents. Parts of the proof
are similar to the proof for the one-parameter monotonicity result of Archer and
Tardos given in [6].

Theorem 10. An output function o = o(a,b) admits a truthful payment scheme
if and only if, for every i and every pair (a—;,b_;) of vectors of bids of all agents
except i, the following holds:

1. For every fized value of b;, the load w;(a,b) = w;(o(a,b)) assigned to agent i
1§ monincreasing in a;.

2. For almost all values of a;, w;(a,b) is a constant function of b; (where “for
almost all” means “for all but a set of Lebesgue measure zero”).
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If these conditions hold, the truthful payments must be given as
Pi(ai, b;) = Pi(0,0) + a; - wi(ai, b;) — / w;(z, bi)dz,
0

which is independent of b; for almost all values of a;.

Proof. First assume that the output function o admits a truthful payment scheme,
i.e., there exist payments P such that the mechanism M = (0, P) is truthful. We
fix an agent ¢ and the other agents’ bids (a_;, b_;). Then, we can consider P; and
w; as functions of just agent 4’s bid (a;, b;). We define a function p; : R2>0 — R
by -
pi(@,y) == Pi(z,y) —z - wi(z,y) — v,

so p; (i, Bi) = Pi(au, Bi) — o~ w;(ay, B;) — B; is the profit of agent ¢ when bidding
her true values («;, 8;). Truthfulness of the mechanism is then equivalent to

p; (i, Bi) = Piai, bi) — i - wi(ai, bi) — B;
& pilai, Bi) > Pilai, bi) — a; - wi(ai, bi) — b;
—a; - wi(ag, by) + a; - wi(a;, by) — Bi + b;
& pilai, Bi) = pilai, bi) + (@ — a;) - (—wi(a;, b)) + (8; — bi) - (=1) (%)

for all ay;, B;, a;,b; > 0. In particular, choosing b; and f; to be equal in (x) yields
pi(ai, bi) > pi(ai, bs) + (a; — a;) - (—wi(ai, b))

for all ay;, a;, b; > 0. Hence, for every fixed b;, p,;(a;, b;) is a convex function of a;
and —w;(a;,b;) is a subgradient at a;. As standard results from analysis show,
this implies that, for every b;, p;(a;,b;) is a continuous function of a;, differen-
tiable almost everywhere, and equal to the integral of its derivative. Moreover,
we have g%i(ai’ b;) = —w;(a;, b;) whenever p, is differentiable with respect to a;.
Thus, p;(a;,b;) = p;(0,b;) — [3 wi(2, b;)dx and using the definition of p; this is
equivalent to

Pi(a;,b;) = Pi(0,b;) + a; - wi(a;, b;) — / w;(w, b;)dx ()
0

Moreover, since p;(a;, b;) is a convex function of a; for fixed b;, the partial deriva-

tive 85: (a;,b;) = —wi(a;, b;) is nondecreasing, so w;(a;,b;) is a nonincreasing

function of a; for all values b; > 0, which proves condition 1.

If we choose a; and «; to be equal in (x), we obtain
pi(as, Bi) > pi(ai, b)) + (Bi — b;) - (1)

for all 3;,a;,b; > 0. Thus, for every fixed a;, p,(a;,b;) is a convex function of b;
and —1 is a subgradient at b;. Again by results from analysis, this implies that, for
every a;, p;(a;, b;) is a continuous function of b;, differentiable almost everywhere,
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and equal to the integral of its derivative. Furthermore, we have g—if (a;, b)) = —1
whenever p, is differentiable with respect to b;. Hence, p;(a;, b;) = p;(a;,0) — b;
and we calculate

pi(ai, b)) = p;(a;,0) — b;
= P;(a;,0) — a; - wi(a;,0) — b;

= P;(0,0) + a; - wi(a;,0) / wi(z,0)dx — a; - wi(a;, 0) — b;
0

= P;(0,0) — / ’ wi(z,0)dx — by,
0
so using that p;(a;,b;) = Pi(a;,b;) — a; - wi(a;, b;) — b; we obtain
Pl(al,bz)—alwl(az,bl) :Pl(0,0)—/ U),L("E,O)d.’t
0

In particular, for a; = 0, we get P;(0,b;) = P;(0,0) for all b; > 0, so by (xx) the
payments are given by the formula in the claim. Plugging in we obtain

p;(ai,b;) = p;(0,b;) — /OM w;(x, b;)dx
= P;(0,b;) — b; — /Om wj(x, b;)dx
= P;(0,0) — b; — /Oai w;(x, b;)dx.
On the other hand, we have already seen that
p;(a;,b;) = P;i(0,0) — /Oai wi(x,0)dx — b;,

so we obtain

Qag

wi(z,0)dx = / 1 w;(x, b;)dx (s * )
0 0

for all a;, b;. Moreover, since w;(a;, b;) is nonincreasing in a; for every fixed value
of b;, we have

/ w;(x, b;)dx —/ ’ w;(x, b;)dx :/ ’ w;(z,b;)dx > (a; — a;) - wi(a;, b;)
0 0 a

i

for all a;,a; > 0, i.e., the function ¢ defined by ¢(a;) := [3 wi(z,b;)dx (which
is well-defined by equality (x * *)) is concave and w;(a;,b;) is a supergradient
of ¢ at a; for every b; > 0. Similar to the convex case, this implies that ¢ is
continuous, differentiable almost everywhere, and equal to the integral of its
derivative. Moreover, we have ¢'(a;) = w;(a;,b;) for every b; > 0 whenever ¢
is differentiable with respect to a;. Thus, for almost all a;, we can differentiate
equation (x x %) and obtain

w;(a;, 0) = w;(a;, b;)
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for all b; > 0, which proves condition 2 and completes the proof of the first
direction.

Now suppose that conditions 1. and 2. are satisfied for a given output func-
tion o. As before, we fix an agent i and the other agents’ bids (a—;,b—;) and
consider P; and w; as functions of just agent ¢’s bid (a;, b;). We claim that the
formula in the claim defines a truthful payment scheme for o. To prove this,
we have to show that inequality () is satisfied for all «;, G3;, a;, b; > 0, which is
equivalent to

pili, Bi) — Pilas, bi) + a; - wiag, b)) + B; >0

for all ai,ﬁi,ai,bi > 0.
Using that w;(_, b;) is nonincreasing for every b; by 1. and that [;" w;(z,b;)dx
is independent of b; by 2., we calculate

pi(i, Bi) — Pias, by) + a; - wiag, by) + B
= Pi(c, Bi) — a; - wi(ay, ;) — Bi — Pilai, bi) + o - wi(as, b)) + 6;
=Pi(0,0) + a; - wi(a, B;) — / 1 wi(z, Bi)dr — a; - wi(ay, Bi) — Bi
0

—731'(0, 0) —a; - wi(ai,bi) + / ” wi(x,bi)dx + ;- wi(ai, bl) + B;
0

= —a;) - wi(a;, b;) + / w;(z, b;)dx

623

Y

(v
(i —a;) - wi(ag, b;) + (a; — aq) - wi(ag, b;)
0

which completes the proof. a

When w;(a;, b;) is continuous in a; for fixed b;, we see that the function ¢ in
the proof is differentiable everywhere, so differentiating equation (x x %) yields
the independence of w;(a;, b;) of b; for every fixed value of a;. Hence, we obtain
the following corollary:

Corollary 3. An output function o(a,b) for which the load w;(a,b) assigned to
each agent i is continuous in a; for every fived a_;,b admits a truthful payment
scheme if and only if w;(a,b) is independent of b; and nonincreasing in a;. In
this case, the payments must be given as

P;(ai, b)) = P;(0,0) + a; - wi(as, b;) — / 1 w;(x, b;)d,
0

which is also independent of b;.

As a particular consequence of Theorem 10 there does not exist a mechanism
for two parameter agents which is strongly truthful, i.e., a mechanism in which
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truthtelling is the only dominant strategy for every agent: Whenever the true
per unit cost «; of an agent 7 is such that w;(«;, b;) (and, hence, also P;(«a;,b;))
is independent of b;, any bid of the form (v, b;) represents a dominant strategy
for agent 1.

Furthermore, Theorem 10 implies that the voluntary participation condition
can never be satisfied in a truthful mechanism for two-parameter agents: To
guarantee a nonnegative profit for every agent ¢ bidding truthfully, we must
have

profit, (v, Bi) = Pi(a, Bi) — ai - wila, Bi) — B; > 0

for all «;,8; > 0. But by Theorem 10, the value P;(c, 8;) — a; - wi(e, B;) is
independent of 3; for almost every «;, so the profit of agent 7 is unbounded from
below as 3; — oo for every such «;. Thus, without any a priori upper bound for
Bi, it is impossible to guarantee a nonnegative profit for agent ¢ when she bids
truthfully. Hence, we obtain:

Theorem 11. The voluntary participation condition can never be satisfied in a
truthful mechanism for two-parameter agents.

7 Directions for Further Work

Although our monotonicity result holds in the very general setting of nonatomic
congestion games presented in Section 5, a natural question is whether it can be
extended to even more general settings of selfish routing and congestion games.
For example, one could consider settings with nonseparable cost functions, i.e.,
models in which the cost of an edge or resource e is a function not only of the
load on e itself, but also of the load on other edges or resources. Alternatively,
one could allow different cost functions for different user classes. However, the
following example shows that the result from Theorem 2 becomes invalid in this
setting:

Ezample 1. Consider the multicommodity network in Fig. 1. There are two com-
modities with demands d; = ds = % The costs of the middle edge (u,v) differ
for the two commodities. The costs of (u,v) to the first commodity are indicated

in blue and the costs to the second commodity in red.

The flow in which commodity 1 sends all its flow on the path (s1,u,v,t;)
and commodity 2 sends % units of flow on the path (so,ts) and % on the
path (so,u,v,ts) is a Nash flow.

Now suppose that the cost function of the edge (s2,t2) is changed to 2z,
i.e., edge (s2,t2) becomes cheaper. Then the flow in which commodity 1 sends
all its flow on the path (s1,t;) and commodity 2 sends § units of flow on the
path (s2,t2) and % on the path (s2,u,v,ts) is a Nash flow. Hence, the load on

edge (s2,t2) is lower in the new Nash flow even though the edge became cheaper.
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Observe that the given Nash flows are not unique. In fact, the flow in which
commodity 1 sends all its flow on the path (s1,u,v,¢;) and commodity 2 sends
all its flow on the path (s9,%2) is also a Nash flow for costs 2z on edge (sa,t2),
and the load on edge (s2,t2) in this flow is higher than in the Nash flow given for
costs 2z + % on edge (s2,t2). Thus, a natural question for this setting is whether
there does always exist at least one Nash flow for the cheaper costs in which the
load on the edge is higher.

N

2:r+i

Fig. 1. A multicommodity network with different cost functions for different commodi-
ties

A different direction of research could be the design of further truthful mech-
anisms based on our monotonicity result for other congestion games than selfish
routing.
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