Skip to main content

A Fast Joint Bioinspired Algorithm for Optic Flow and Two-Dimensional Disparity Estimation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5815))

Abstract

The faithful detection of the motion and of the distance of the objects in the visual scene is a desirable feature of any artificial vision system designed to operate in unknown environments characterized by conditions variable in time in an often unpredictable way. Here, we propose a distributed neuromorphic architecture, that, by sharing the computational resources to solve the stereo and the motion problems, produces fast and reliable estimates of optic flow and 2D disparity. The specific joint design approach allows us to obtain high performance at an affordable computational cost. The approach is validated with respect to the state-of-the-art algorithms and in real-world situations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M., Szeliski, R.: A database and evaluation methodology for optical flow. In: ICCV (2007)

    Google Scholar 

  2. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. of Computer Vision 47, 7–42 (2002)

    Article  MATH  Google Scholar 

  3. Tombari, F., Mattoccia, S., Di Stefano, L., Addimanda, E.: Classification and evaluation of cost aggregation methods for stereo correspondence. In: CVPR (2008)

    Google Scholar 

  4. Milner, A.D., Goodale, M.: The visual brain in action. Oxford Univ. Press, Oxford (1995)

    Google Scholar 

  5. Heeger, D.: Model for the extraction of image flow. JOSA 4(8), 1455–1471 (1987)

    Article  Google Scholar 

  6. Grzywacz, N., Yuille, A.: A model for the estimate of local image velocity by cells in the visual cortex. Proc. R. Soc. Lond. B 239, 129–161 (1990)

    Article  Google Scholar 

  7. Chen, Y., Qian, N.: A coarse-to-fine disparity energy model with both phase-shift and position-shift receptive field mechanisms. Neural Computation 16, 1545–1577 (2004)

    Article  MATH  Google Scholar 

  8. Fleet, D., Wagner, H., Heeger, D.: Neural encoding of binocular disparity: Energy models, position shifts and phase shifts. Vision Res. 36(12), 1839–1857 (1996)

    Article  Google Scholar 

  9. Bayerl, P., Neumann, H.: A fast biologically inspired algorithm for recurrent motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 246–260 (2007)

    Article  Google Scholar 

  10. Shimonomura, K., Kushima, T., Yagi, T.: Binocular robot vision emulating disparity computation in the primary visual cortex. Neural Networks 21(2-3), 331–340 (2008)

    Article  Google Scholar 

  11. Higgins, C., Shams, S.: A neuromorphic vision processor for spatial integration of optical flow. In: ICCNS 2001 (2001)

    Google Scholar 

  12. Dale, J., Johnston, A.: A real-time implementation of a neuromorphic optic-flow algorithm. Perception 31, 136 (2002)

    Google Scholar 

  13. Pouget, A., Dayan, P., Zemel, R.S.: Inference and computation with population codes. Ann. Rev Neurosci 26, 381–410 (2003)

    Article  Google Scholar 

  14. Adelson, E., Bergen, J.: The plenoptic and the elements of early vision. In: Landy, M., Movshon, J. (eds.) Computational Models of Visual Processing, pp. 3–20. MIT Press, Cambridge (1991)

    Google Scholar 

  15. Adelson, E., Bergen, J.: Spatiotemporal energy models for the perception of motion. JOSA 2, 284–321 (1985)

    Article  Google Scholar 

  16. Ohzawa, I., De Angelis, G., Freeman, R.: Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. Science 249, 1037–1041 (1990)

    Article  Google Scholar 

  17. Morgan, M.J., Castet, E.: The aperture problem in stereopsis. Vision Res. 37(19), 2737–2744 (1997)

    Article  Google Scholar 

  18. Serrano-Pedraza, I., Read, J.C.A.: Stereo vision requires an explicit encoding of vertical disparity. J.Vision 9(4), 1–12 (2009)

    Article  Google Scholar 

  19. Daugman, J.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. JOSA A/2, 1160–1169 (1985)

    Google Scholar 

  20. Nestares, O., Navarro, R., Portilla, J., Tabernero, A.: Efficient spatial-domain implementation of a multiscale image representation based on Gabor functions. J. of Electronic Imaging 7(1), 166–173 (1998)

    Article  Google Scholar 

  21. Pauwels, K., Hulle, M.V.: Optic flow from unstable sequences containing unconstrained scenes through local velocity constancy maximization. BMVC 1, 397–406 (2006)

    Google Scholar 

  22. Theimer, W., Mallot, H.: Phase-based binocular vergence control and depth reconstruction using active vision. CVGIP: Image Understanding 60(3), 343–358 (1994)

    Article  Google Scholar 

  23. Chessa, M., Solari, F., Sabatini, S.: A virtual reality simulator for active stereo vision systems. In: VISAPP (2009)

    Google Scholar 

  24. Barron, J., Fleet, D., Beauchemin, S.: Performance of optical flow techniques. Int. J. of Computer Vision 12, 43–77 (1994)

    Article  Google Scholar 

  25. Jenkin, M., Tsotsos, J.: Applying temporal constraints to the dynamic stereo problem. In: CVGIP, vol. 33, pp. 16–32 (1986)

    Google Scholar 

  26. Sabatini, S., Solari, F., Cavalleri, P., Bisio, G.: Phase-based binocular perception of motion in depth: Cortical-like operators and analog VLSI architectures. EURASIP Journal on Applied Signal Processing 7, 690–702 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chessa, M., Sabatini, S.P., Solari, F. (2009). A Fast Joint Bioinspired Algorithm for Optic Flow and Two-Dimensional Disparity Estimation. In: Fritz, M., Schiele, B., Piater, J.H. (eds) Computer Vision Systems. ICVS 2009. Lecture Notes in Computer Science, vol 5815. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04667-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04667-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04666-7

  • Online ISBN: 978-3-642-04667-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics