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Abstract We present a new system for 3D head tracking and pose es-
timation in low-resolution, multi-view environments. Our approach con-
sists of a joint particle filter scheme, that combines head shape evaluation
with histograms of oriented gradients and pose estimation by means of ar-
tificial neural networks. The joint evaluation resolves previous problems
of automatic alignment and multi-sensor fusion and gains an automatic
system that is flexible against modifications in the available number of
cameras. We evaluate on the CLEAR07 dataset for multi-view head pose
estimation and achieve mean pose errors of 7.2◦ and 9.3◦ for pan and tilt
respectively, which improves accuracy compared to our previous work by
14.9% and 25.8%.

1 Introduction

The automatic visual analysis of human social interaction and individual behav-
ior strongly relies on the recognition of peoples’ gaze and its derived visual focus
of attention. No less than that, the observation of natural cooperation between
people can only be ensured if their environment provides unconstrained work
places and does not limit the scope of human actions to restraining sensors. Pri-
mary challenges hence originate from compromised sensor setups, as for example
camera captures with bad lighting, low resolution or, as in the case of tracking
gaze, the problem of rear and profile views of the people under study. Especially
the problem of non-frontal observations can however be tackled with camera
setups, that allow views from different angles. The low-resolution of far distant
face captures however, and the still necessary selection between rear and pos-
sibly frontal appearances, still put limitations on every perception. A common
approach to approximate gaze and the person’s overall attention is therefore
to use head orientation. Yet, most challenges also apply here besides the large
variety of head appearances, that different poses and hair styles provide.

Official evaluations of multi-view head pose estimation, and with such, a com-
mon dataset to compare international systems, was conducted with the CLEAR
evaluation workshop in 2006 and 2007. With them, several different approaches
to integrate multi-sensor information and enhancements of single-view pose clas-
sifiers to fit this new scenario were presented and still provide current state of
the art achievements.
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Figure 1. Example scene from the CLEAR 2007 dataset for head pose estimation. The
dataset provides four camera views from the room’s upper corners. From this distance,
facial details appear blurred and depending on the used camera view, the captured
head region happens to be as small as 20× 30 pixels and less.

Canton et al. [8] introduced color descriptors on 3D ellipsoidal shapes to
derive likely pose distributions. Although the use of skin color is often used as a
very strong feature in visual human-computer interaction tasks, the unrestricted
environment challenges its robustness by introducing rear views of people with
less or very short hair, whose hair color might even match the previously learned
skin color cluster. Furthermore, our own experiments showed, that depending on
lighting and background noise, the skin color segmentation is likely to happen
on background objects that surround the detected head region, which strongly
disbalances the color model of the person under study.

In [7], Ba et al. used a monocular pose classifier, consisting of texture and
color analysis, and fused the individual single-view estimates upon the percent-
age of detected skin color in the respective view’s head bounding box. Altough
the underlying classification scheme achieves a high accuracy on monocular sam-
ples, its disadvantages are the strong dependence on a robust skin color segmen-
tation in every view and the yet missing automatic 3D multi-view alignment.

Another work was presented by Lanz et al. in [12], in which a set of key
views of the target is used to compute corresponding color histograms of the
head and to generate new poses in between by interpolating from these pre-
acquired key models. The training however has to happen on the same video
sequence, as individual models have to be created that match the current color
distribution of the corresponding person. Furthermore, the groundtruth pose
angles during initialization are derived online, by applying frontal face template
matching with symmetry analysis to find the best view and hence the observed
rotation. With such, the model only allows to estimate in the scope of the initial
setup and strongly depends on a robust color description with enough key views
to interpolate over the complete set of possible pose angles.
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Very good results on the CLEAR07 dataset were achieved by Yan et al., who
presented in [10,11] a manifold learning algorithm, based on each individual’s set
of simplexes with propagated pose labels through the approximated submanifold.
The submanifolds of all subjects in the training set are synchronized and new
samples are classified by their median of the nearest neighbors in the manifolds’
reduced feature space. A sample hereby consists of the concatenated intensities
of cropped head image boxes over all camera views and, as above, does not yet
include the automatic head alignment but relies on predefined head bounding
boxes. Furthermore, the applied fusion on feature level, restricts the system to
cope with modified camera setups where new views are added or existing cameras
removed.

Considering above limitations and challenges, we now present a new fully-
automatic 3D head tracking and pose estimation approach for low-resolution,
multi-view environments. In a combined particle filter framework, we rate head
appearances with local shape descriptors and estimate pose angles with artifi-
cial neural networks. Monocular observation likelihoods are computed for state
projections into the respective camera views. The individual probability distribu-
tions are then merged by their joint product, which allows the overall system to
be flexible for increasing or decreasing the number of available cameras without
further retraining. Section 2 thereby describes our framework and both eval-
uations against pose and shape. Our results are presented in Section 3 where
we discuss our testing on the CLEAR07 dataset for head pose estimation and
put our experiments in contrast to our previous work. The conclusion in Sec-
tion 4 then summarizes this paper and gives a short overview of yet unaddressed
problems and future plans.

2 Head Tracking and Pose Estimation

We assume that the head’s shape can be represented by the quadruple s =
(x, y, z, rz), describing a 3D ellipsoid at position (x, y, z) ∈ IR3 with radiuses
of fixed proportions rx = ry = k · rz, and k, rz ∈ IR. The ellipse’s pose is
represented by θ = (θpan, θtilt), to describe rotations in horizontal (pan) and
vertical (tilt) direction. In-plane rotation does not influence the overall viewing
frustum, which is why we neglect it in this work. Hence, be Xt ∈ {s, θ} the head’s
state space at time t, then tracking the head’s configuration can be defined as
to follow the state evolution Xt|X1:t−1, from gathered observations Z1:t up to
now. A common Bayesian approach is to recursively calculate the state space
density p(Xt|Z1:t, X1:t−1), for letting its expectation value IE[Xt|Z1:t, X1:t−1] be
the state hypothesis. If we assume, that state evolution is a first order Markovian
process, i.e. letting the head’s configuration Xt only depend on its predecessor
and present measurement, such density is defined by:

p(Xt|Z1:t) =
p(Zt|Xt)p(Xt|Z1:t−1)

p(Zt|Z1:t−1)
(1)

with p(Xt|Z1:t−1) as the Chapman-Kolmogorov prediction
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p(Xt|Z1:t−1) =
∫
p(Xt|Xt−1)p(Xt−1|Z1:t−1)dXt−1 (2)

2.1 Sequential Monte Carlo Sampling

To cope with the non-linear and non-Gaussian nature of the problem, we ap-
proximate equation 1, by applying sequential Monte Carlo sampling by means
of a particle filter (PF) with sampling importance resampling (SIR) [9].

Following the law of large numbers, particle filters approximate a possibly
multimodal target function with a set of support points {Xi

t , i = 1, . . . , Ns} and
associated weights {ωi

t, i = 1, . . . , Ns}. The sum of Dirac functions over this set
of weighted samples then results in a discrete representation of the underlying
signal, in our case the state space’s probability distribution function (PDF):

p(Xt|Z1:t) ≈
Ns∑
i=1

ωi
t · δ(Xt −Xi

t) (3)

With this, a configuration hypothesis is easily obtained from the weighted
mean of the support set:

IE[Xt|Z1:t] =
Ns∑
i=1

ωi
t ·Xi

t (4)

To propagate state evolution, the set of particles is updated as soon as a new
measurement is available. New samples are drawn according to a predefined pro-
posal distribution Xt ∼ q(Xt|Xt−1, Z1:t), which suggests samples in interesting
regions of the state space. A corresponding weight update is then successively
calculated with:

ωi
t ∝ ωi

t−1

p(Zt|Xi
t)p(Xi

t |Xi
t−1)

q(Xi
t |Xi

t−1, Zt)
(5)

The SIR filter scheme is applied to cope with these updates but provides
two advantages: i) it sets the proposal function q(·) to the often applied and
implicitly available prior PDF p(Xt|Xi

t−1) and ii) instead of simply drawing new
samples and propagating their old weights over time, it resamples and replaces
the set of support points with every update step. This sets the particle priors
to a uniform distribution with ωi

t−1 = N−1
s and allows us to simplify equation 5

to a less complex reweighing scheme, which only depends on the observation
likelihoods:

ωi
t ∝ p(Zt|Xi

t) (6)

Resampling is usually done by drawing new samples from the current set
of support points with probabilities according to their corresponding weights.
These weights are then updated with respect to the given observation, as the
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particles’ respective state hypotheses are propagated along a known process mo-
tion model, including explicitly added noise, that is to cope with observation
variances. The applied motion model filters state evolution for that diffused par-
ticles do not persist to local maxima of observation likelihoods and less particles
become necessary for a matching approximation of the underlying signal. This is
especially useful for complex motion patterns in high dimensional state spaces.
However, since we only track the head’s 3D position and rotation along two axes,
we neglect state motion and only add Gaussian noise on top of the state vector.

2.2 Evaluating Pose Observations

To make use of the multi-view environment, our goal is to merge individual es-
timates from every camera in a combined framework, instead of applying a best
view selection beforehand that introduces a further error source. This can easily
be achieved with training the classifier to estimate pose angles with respect to
the particular camera’s line of sight. However, applying the same classifier on
different views, introduces rear captures of the tracked head, as well as large dis-
tances to the observing camera, depending on the trajectory of the person under
study. The trained system needs to cope with possibly low-resolution head cap-
tures and noise induced from different hair styles. It therefore has to show strong
generalization capabilities and should allow to measure its confidence along with
its given hypothesis. In [6], we showed that classifying artificial neural networks
(ANN) sufficed all these conditions. We trained two feed-forward networks with
three layers, to respectively estimate a PDF over a set of possible pose angles.
One network was applied for pan, another for tilt angle classification. The class
width was chosen to span over 10◦, hence leading to 36 output neurons for an es-
timate over −180◦−+180◦ horizontally, and 18 output neurons for −90◦−+90◦

in vertical direction. By using a Gaussian PDF as target output during training,
we implied uncertainty concerning neighbor angle classes. In our experiments
this has shown to enhance robustness when applying the same network on dif-
ferent camera views: unimodal estimates, that peaked over wrong angles, could
still provide enough support, if the actual class lied in the near neighborhood.
A joint PDF over all obtained network outputs hence still managed to average
its peak near the correct target angle.

We therefore applied this classifier in our current framework as follows: With
Zc

t the observation of camera c, be Zc
t (si

t) the cropped image patch, which is
obtained from projecting the 3D bounding box around state estimate Xi

t ’s ellip-
soid into camera view c. This 2D region is preprocessed, for that it is resampled
to a fixed size of 32 × 32 pixels in order to provide invariance to different head
sizes and observation distances. After resampling, the head region is grayscaled
and equalized in intensity to deliver a better contrast. The result is concatenated
with its 3× 3 Sobel magnitude response, to provide a vectorized feature vector
Υ (Zc

t (si
t)), consisting of the head intensity and edge appearances. The ANN then

estimates the posterior PDF over the set of relative angles θc
pan or θc

tilt, for hor-
izontal or vertical rotations. Since we consider both angles to be conditionally
independent, we can build a joint posterior with:
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ppose(θi,c|Υ (Zc
t (si

t))) = pann(θi,c
pan|Υ (Zc

t (si
t)))p

ann(θi,c
tilt|Υ (Zc

t (si
t))) (7)

If we assume a uniform distribution of training samples per pose class, then
following Bayes’ rule gains an observation evaluation, proportional to the ANNs’
estimated posterior:

ppose(Zc
t |Xi

t) = ppose(Zc
t |si

t, θ
c
t ) ∝ ppose(θi,c|Υ (Zc

t (si
t))) (8)

2.3 Evaluating Head Alignment with Local Shape Descriptors

The nature of the trained ANNs is to output pose likelihoods for any given
image patch along with strong generalization capabilities. This makes the esti-
mates only as reliable as the implicit head alignment, that is to crop 2D image
head regions consistent with used training samples. To gain a measurement for
the fitness of an aligned head region and with such, confidence in the ANN’s
estimates, we use local shape descriptors by means of histograms of oriented
gradients (HOG) as a second evaluation of a state hypothesis.

HOGs were presented by Dalal and Triggs in [1] and describe an appearance-
based approach to represent an object’s shape by merging local histograms of
its binned edge orientations into a joint feature vector. The histograms are com-
puted for non-overlapping subwindows of fixed size, to cover the object’s image
patch in total. The concatenation of histograms of neighboring subwindows then
gives the final description. In the original work, a support vector machine then
discriminatively detects learned objects.

We adopt the descriptor and directly rate possible head appearances against
a given head model by means of the l2 norm. An initial mean HOG representation
of heads is computed over a set of training samples. This model is then gradually
adapted online with sparse head detector hits from a custom-trained Haar-like
feature cascade using OpenCV’s implementation [2,3]. A general preprocessing
thereby happens similar to 2.2: a given image patch Zc

t (si
t) is resampled to a

fixed width and height, grayscaled and equalized for a better contrast. Its HOG
descriptor is then computed on its 3 × 3 Sobel filter response. We obtained
satisfactory results, by scaling image patches to 24 × 24 pixels, using 8 bins
for discretizing orientations into 45◦-wide segments and concatenating the final
descriptor over 3× 3 neighboring histograms.

With defining Γ (Zc
t (si

t)) to be the respective HOG descriptor of the image
patch corresponding to hypothesis si, and Γ̂ a mean shape model that we com-
puted upon training samples, a corresponding observation likelihood equates to
the similarity of the two vectors:

pshape(Zc
t |Xi

t) = pshape(Zc
t |si

t) = pshape(Γ (Zc
t (si

t))|Γ̂ ) ∝ λexp−λ|Γ (Zc
t (si

t))− Γ̂ |
(9)

The parameter λ defines how strong the fitness converges against zero and
was empirically set to 0.25.
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Figure 2. Histograms of oriented gradients for an exemplary head image patch. The
head region was grayscaled and resampled to fit a width and height of 24 × 24 pixels
(left). A division into 8 × 8 pixel sized subregions (middle) then defines the areas for
which individual histograms over the edge orientations are computed (right). Each line
in the right image, resembles an orientation bin in that local histogram. The brighter
the line, the stronger that edge orientation is supported.

2.4 Joining Multi-Sensor Observation Likelihoods

Using two or more cameras implies a set of multi-view sensor stream observa-
tions denoted by Zt = {Zc

t , c = 1, . . . , NC}, with pose and shape observations
Zc

t = {Υ (·), Γ (·)}. Both evaluations estimate likelihoods invariant to the used
camera view. To cope with multiple streams, a common acceptance in Bayesian
tracking is therefore to build the product density over the set of all single-view
likelihoods [12]. Considering that observations for pose and shape evaluations
are conditionally independent in every camera view, we can therefore build a
final joint observation PDF with:

p(Zt|Xi
t) =

NC∏
c=1

ppose(Zc
t |Xi

t)pshape(Zc
t |Xi

t) (10)

3 Experimental Validation

To allow a comparison with current state of the art systems, we evaluated our
approach on the CLEAR07 dataset for head pose estimation [5].

Provided are four camera views from a room’s upper corners with 640× 480
pixels at 15 frames per second. The dataset contains 15 different persons, whose
head poses were captured with a magnetic pose sensor [4] and who showed rota-
tions over the whole range of angle classes. We stayed consistent with training our
system on the same video subset, that was officially used during the workshop.
To directly distinguish between head detection and pose estimation tasks, man-
ually annotated head bounding boxes for every 5th frame in all camera views are
included in the dataset, which automatically lets us assess implied head tracking
and alignment. Evaluations only take place on these dedicated selected frames.

With each evaluation video, we initialized our system to randomly spread
particles in a spherical radius of 20 cm off the true head position in 3D. We
considered this to be a valid assumption for state-of-the-art body tracker and
as it showed, our particles converged very fast onto the real head nearby. Aside
from initialization, the remaining videos were processed fully automatic. With
this, the implicit tracking only showed a mean absolute difference of only 2 cm
compared to the annotated head centroids. As can be seen in Table 1, for the



8

Figure 3. Pan rotation over 7 seconds for the sequence depicted in Figure 1. Shown
is the groundtruth head rotation, estimates we gained with our previous system from
CLEAR07 [6] and results from this work. As can be seen, the previous system only esti-
mated the pan angle on every 5th frame, because only then annotated head bounding
boxes were available within the dataset. Our current implementation includes auto-
matic tracking and alignment, hence we achieve estimates on every frame.

individual camera views, this resulted in a mean difference of 3.6 pixels for the
projected 2D head box centers. Their width and height fit with a mean error of
4.0 and 3.9 pixels respectively.

Table 1. Mean and standard deviation of the distance of our hypotheses to the anno-
tated ground truth.

µ σ

3D head box centroid [cm] 2.0 0.7

2D head box centroid [px] 3.6 2.0

2D head box width [px] 4.0 3.0

2D head box height [px] 3.9 2.8

Considering head poses, we observed mean errors of 7.2◦ and 9.3◦ for pan
and tilt estimation. In CLEAR07, we presented a system that simply used the
included head box annotations directly, instead of providing a custom tracking
and alignment scheme [6]. Table 2 shows both systems’ results in contrast. The
overall decrease in error by 14.9% and 25.8% thereby emphasizes the advantages
of a joint position and orientation state filtering. With such, we experienced that
observation likelihoods were sometimes maximized by decreasing ellipse sizes, so
that projected 2D image patches concentrated on face regions instead of the
whole head with its hair and further background noise.

Furthermore, the joint tracking of both rotation angles in one state, mostly
helps to resolve ambiguities that e.g. arise with poses that show downwards
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Table 2. Results on head pose estimation, compared to our previous system.

µpan[◦] µtilt[
◦]

voit07 [6] 8.46 12.54

voit09 7.2 9.3

∆ 14.9% 25.8%

tilting. Here, views from above mostly depict hair in every view, which strongly
resembles rear or even profile shots where parts of the face are occluded from
long hairstyles. Smoothing the joint pose trajectory over time hereby restricts
unlikely and sudden rotations in either direction and removes ambiguities that
come along with them.

4 Conclusion

In this paper, we presented a new approach for tracking the head’s position
and rotation in a 3D environment with multiple low-resolution cameras. We
implemented a particle filter framework, that uses artificial neural networks for
pose estimation and head shape evaluations by means of histograms of oriented
gradients in a joint sampling importance resampling scheme.

We evaluated our implementation on the CLEAR07 multi-view subset for
head pose estimation and obtained 7.2◦ and 9.3◦ mean errors regarding pan and
tilt estimation. In contrast to our previous system we presented for CLEAR07 [6],
which respectively showed errors of 8.46◦ and 12.54◦, this approach jointly mod-
els the head’s position, size and orientation in single state hypotheses. Besides
the hereby gained full-automatic head tracking and alignment, both in 3D as
well as 2D camera views, this tight integration increased the overall accuracy by
14.9% and 25.8% in horizontal and vertical direction. A comparison to further
state of the art results on the same dataset can thereby be found in [5].

Still unaddressed problems in this work include the normalization of camera
view distortions and coping with in-plane rotations for a more robust recognition.
Since head appearances not only vary with respect to pose and person, but
also to the distance of the observing camera, observations from above result in
differences due to their high viewing angle the nearer a person gets. Yet other
enhancements can be found in using different shape models for individual pose
classes, hence obtaining a coarse estimate of head orientations implicitly from
the alignment observation, and successively applying neural networks for pose
refinement only.
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