
Hardware Supported Flexible Monitoring:

Early Results⋆

Antonia Zhai, Guojin He, and Mats P.E. Heimdahl

University of Minnesota

zhai@cs.umn.edu

guojinhe@cs.umn.edu

heimdahl@cs.umn.edu

Abstract. Monitoring of software’s execution is crucial in numerous
software development tasks. Current monitoring efforts generally require
extensive instrumentation of the software or dedicated hardware test
rig designed to provide visibility into the software. To fully understand
software’s behavior, the production software must be studied in its pro-
duction environment. To address this fundamental software engineering
challenges, we propose a compiler and hardware supported framework
for monitoring and observation of software-intensive systems.
We place three fundamental requirements on our monitoring framework.
The monitoring must be non-intrusive, low-overhead, and predictable so
that the software is not unduly disturbed. The framework must also
allow low-level monitoring and be highly flexible so we can accommodate
a broad range of crucial monitoring activities.
The general idea behind our work is that to make dramatic progress in
non-intrusive, predictable, and fine-grained monitoring, we must change
how software is compiled and how hardware is designed; a software-
monitoring framework covering the development of monitors, through
compilation, and down to the hardware is essential. To achieve our goals,
we have pursued an approach leveraging the rapid emergence of multi-
core processor architectures to achieve a non-intrusive, predictable, fine-
grained, and highly flexible general purpose monitoring framework.
In this report we describe our initial steps in this direction and provide
some preliminary performance results achieved with this new multi-core
architecture. We use separate cores for the execution of the application
to be monitored and the monitors. We augment each core with identical
programmable extraction logic that can observe an application executing
on the core as its program state changes.

1 Introduction

Monitoring of software’s execution is crucial in numerous software development
tasks. For example, test oracles monitor an application’s execution (the outputs

⋆ This work has been partially supported by NASA Ames Research Center Cooperative
Agreement NNA06CB21A, NASA IV&V Facility Contract NNG-05CB16C, and the
L-3 Titan Group.



and typically part of the application’s internal state), test adequacy coverage
analysis tools must determine what portion of an application have been executed
(and possibly how those parts of the application were reached), run-time security
and safety monitors in critical systems must determine if security and safety
policies are maintained by the application, and—of course—all other run time
verification tasks envisioned in the Run-Time Verification series of workshops.
These monitoring tasks generally require three crucial properties. First, to ensure
that the performance of the monitored software is not degraded to a point where
the monitoring is simply infeasible, the monitoring must incur low overhead.
Second, since monitors are likely to change during the lifetime of the monitored
software (for example, if safety and security policies change) or—in the case of
test oracles and coverage measurement tools—will be removed entirely at some
point, we must have predictable behavior, in terms of both functional behavior
and performance, so that we can predict the impact of changed or removed
monitors. Finally, to enable access to internal program state information (crucial
information in all testing, and safety and security monitoring), we must have fine-

grained monitoring where both the state information in the monitored program
as well as the program point where the monitoring takes place can be selected
to suit the task at hand.

Several communities have addressed the monitoring problem from various an-
gles. For instance, test oracles are developed largely ad hoc and rely on intrusive
software instrumentation of the software under study [?]; runtime verification
generally relies on software instrumentation with high overhead [?], and most of
the dedicated hardware solutions are targeted towards the monitoring for nar-
row properties [?,?,?,?,?,?,?]. Unfortunately, these approaches are fragmented,
largely ad-hoc, and address narrow aspects of the monitoring problem (such as
efficient implementation of monitorspropagation [?,?,?,?,?,?,?]).

These monitoring efforts typically require extensive instrumentation of the
software and/or execution of the software in a dedicated hardware test-rig or
emulator. Under such conditions the software’s behavior is not the same as it
would be in its intended target environment. To fully understand software’s
behavior—in particular embedded software’s behavior—the production software
must be studied in its production environment.

To alleviate the problems with overhead and predictability of instrumentation
for monitoring purposes, we have pursued an approach leveraging the rapid emer-
gence of multi-core processor architectures [?,?,?,?,?] to achieve a non-intrusive,
predictable, fine-grained, and highly flexible general purpose monitoring frame-
work through monitoring-aware compilers coupled with novel architectural en-

hancements to the multi-core architectures.

In this report we describe our initial steps in this direction and provide some
preliminary performance results achieved with this new multi-core architecture.
We use separate cores for the execution of the application to be monitored and
the monitors. We augment each core with identical programmable extraction

logic that can observe an application executing on the core as its program state
changes. If a state change that needs to be monitored occurs, the extraction



logic will pack the state change into a message and send it to one of the mon-

itor cores for verification. In this architecture, one or more cores can be used
to monitor and potentially share the workload, while introducing little or no
intrusion to the software being monitored. If and when the monitors are no
longer needed, the processor capacity previously occupied by the monitors can
be reclaimed and allocated to production software without affecting the software
originally being monitored. The communication between cores can be achieved
either through a dedicated or an existing on-chip interconnection network de-
pending on the need for predictable behavior. In the work presented here, we use
an existing interconnection network and provide performance data for two mon-
itoring problems—tracking memory problems such as memory leaks and taint
analysis—that thoroughly stress the ability to efficiently extract data from an
application and communicate that data to a monitor.

Although our work on a monitoring aware compilers and multi-core architec-
ture is far from complete, the initial steps and performance evaluation presented
in this report illustrate the potential for this approach as we attempt to make
run-time verification and monitoring in the production environment standard
practice.

The remainder of the paper is organized as follows. We provide the motivation
for our work in Section 2 and an overview of our compiler and architecturally
supported vision in Section 3. We present the details of the Ex-Mon architecture
in Section 4; illustrate the effectiveness of the proposed architecture with two
case studies in Section 5. Finally in Sections 6, we discuss the implications of
our results and point to future directions.

2 Motivation and Problem Overview

Monitoring of the execution of a software system plays a central role in numerous
software development activities. Monitoring is prevalent in testing (e.g., test or-
acles and test coverage tools), debugging (e.g., breakpoints and watch variables),
run-time verification, safety and security monitors and interlocks, etc. Unfortu-
nately, the performance penalties (both in terms of cost and predictability of the
executions) are significant obstacles to effective use in the software development
process. The motivation for our work in compiler and hardware architecture sup-
port for monitoring have been from problems and opportunities in primarily two
areas: (1) the cost and difficulty of thoroughly testing embedded critical applica-
tions and (2) the opportunities for monitoring offered by model-based software
development.

Software Testing: A test oracle must monitor both the outputs from an applica-
tion as well as internal state information since the fault finding can be severely
affected by which and how many data items are being observed by the oracle.
Thus, instrumentation of the application is generally required to collect test in-
formation in log-files or provide it to on-line oracles. Either way, the overhead
associated with the data collection can be large enough to delay projects for



months. In practice, we have with our industrial collaborators seen that deter-
mining that a small modification has not “broken” an embedded subsystem by
simply rerunning its test suite can take weeks. If additional modifications are
needed, the delays add up and quickly lead to costly schedule delays. Accelerated
testing through hardware support could provide orders of magnitude speedup of
this process.

A worse situation can emerge when one attempts to measure how well a test
suite has covered an application as judged by some test-adequacy criterion. Of
particular interest in our previous work has been the Modified Condition and
Decision Coverage (MC/DC) criterion [?] used in the avionics industry and re-
quired in a standard such as DO-178B [?]. For the most critical applications,
MC/DC has to be demonstrated on the object code (as opposed on the source
code) and extensive instrumentation of the code is needed to establish this cov-
erage. Unfortunately, current approaches relying on instrumentation leads to
such performance degradation and increase in code size that only portions of
the application can be instrumented at any time; the full test suite is run to
establish coverage of the instrumented part of the application, another part is
instrumented, the test suite rerun, repeat. The problem is so severe that simply
establishing coverage can be comparable in cost to test development. In addi-
tion, all testing will have to be repeated without the instrumentation since there
are no guarantees that the instrumentation did not change the behavior of the
application under test. Clearly, low-overhead and predictable monitoring would
be hugely beneficial.

Opportunities in Model-Based Development: In model-based development, the
development effort is centered around a formal description of the proposed soft-
ware system. There are currently numerous commercial tools that attempt to
provide these capabilities—commercial tools are, for example, CADE from Es-
terel Technologies [?], Statemate from i-Logix [?], and Simulink and Stateflow
from The Mathworks Inc. [?,?].

Note here that this process leaves us with several development artifacts that
are in an executable form; first, the source code that will be used to control the
system under development (typically C or C++ code); second, the formal (or
semi-formal) models from which the source code was derived (in our application
domain, most likely Simulink and Stateflow models); third, collections of for-
malized required properties of the software derived for verification and testing
purposes (generally captured as synchronous observers expressed in the modeling
language or as temporal logic formulas for model checking). Currently, after the
source code has been developed and tested, the model and property artifacts are
used only for maintenance and documentation purposes. In our work, we envision
these artifacts to see additional use as monitors after software deployment.

As a concrete example, consider a recent project where we in collabora-
tion with Rockwell Collins Inc. developed a formal model for the mode logic
of a Flight Guidance System [?]. In the project, the system requirements were
provided as informal “shall” statements. These requirements were relatively ma-
ture and well-understood. We then created a model using Simulink from Math-



works [?]; the model when completed consisted of about 4,500 Simulink blocks.
Throughout creation of the model, we continually used the execution capabili-
ties of Simulink to execute the model and informally confirm that it behaved as
we expected. In the formal verification phase, we manually translated the shall
statements into formal properties stated over the Simulink model in CTL and
the NuSMV model checker [?] was then used to confirm whether the property
held over the model or not. The effort resulted in 300+ CTL properties based
on the informal requirements.

In a production setting, after the Simulink model has been adequately val-
idated, it would be used as a basis for the manual design and implementation
of the production software (here the development was governed by a standard
for airborne software—DO-178B [?]—that takes a highly skeptical view of code
generation). If we could execute the original Simulink model as a synchronous
observer next to the production software, we could conceivably detect poten-
tial design or implementation faults as well as possible hardware faults (single
bit upsets, stuck at faults, etc.) that might affect the execution of the produc-
tion software; this would be a highly valuable monitoring capability that would
complement the fault detection of failures in the sensors, actuators, and the en-
vironment outlined in the previous section. In addition, if the requirements on
the system were formalized as declarative properties (such as the CTL properties
discussed above), these properties could be deployed as additional monitors used
to detect both possible faults in the original model as well as additional design,
implementation, and hardware faults affecting the correct operation of the soft-
ware. Given appropriate support for efficient monitoring, we hypothesize that
such monitors working in concert will provide a highly effective fault detection
scheme for the embedded application of interest in our proposed effort.

3 Monitoring Overview

A program execution monitor observes the internal states of an application and
verifies that a set of properties defined over the application are satisfied. Note
here that access to fine-grained internal application state information is essential
for our target monitoring tasks, for example, a test oracle monitor will most often
need access to many internal variables and a test adequacy coverage monitor
might need to know about all branch decisions as well as the conditions guarding
the branches (as in the case of MC/DC).

To perform the monitoring activities, a subset of the internal state of the
application is exposed to the monitor through some form of communication.
The implementation of the monitor can be viewed as a collection of monitor-

ing routines. For example, the monitor might be a test oracle monitoring for a
large number of required functions or invariants, each implemented as a sepa-
rate monitoring routine. At runtime, upon receiving a state update the monitor
invokes the subset of the of monitor routines that are affected; monitoring rou-
tines not affected by the state change need not be evaluated. The monitor is



responsible for keeping track of the persistent state information needed to verify
the properties of interest.

Monitoring routines can be invoked in two distinct ways: explicit and im-

plicit invocation. Monitoring routines with explicit invocation are invoked when
the execution of the application under study reaches a certain program point.
Typical examples are monitoring routines performing pre- and post- condition
checking that must be invoked at the entry and exit of a function. A monitoring
routine with implicit invocation is invoked when an application state component
of interest to the monitoring routine changes. A typical example would be a mon-
itoring routine checking a program invariant; such a routine needs to be notified
anytime any state variable covered by the invariant—possibly through aliases—
is changed. In summary, there are four key steps when performing monitoring:
(1) extracting the state information in the application needed by the monitor;
(2) communicating this state information to the monitor; (3) updating the state
in the monitor; and (4) dispatching the set of monitoring routines in response
to the state change in a timely fashion.

The simplest way to monitor the execution of an application is to inte-
grate the set of monitoring routines with the application through instrumen-
tation [?,?]. This way, the application state is completely visible to the monitor,
thus no explicit state extraction and communication is needed. The monitor
maintains its own state in the same address space as the application. In this
scenario, dispatching explicit monitor routines is straightforward—calls to the
appropriate monitor routines can be insert as instrumentation in the original
program. To dispatch the appropriate implicit monitoring routines, all instruc-
tions that can generate a state change of interests must be instrumented. At
runtime, all relevant state changes must be examined, and the proper monitor
routine dispatched. If instrumented instructions occur often, this can be a source
for significant performance overhead.

As an example to illustrate our points, consider a simplified memory bug
detection monitor that observes heap accesses and determines whether or not
the following rules are violated by an application when accessing the memory:
(i) no read to uninitialized memory locations; (ii) only allocated memory can
be accessed; (iii) all allocated memory must be freed eventually; (iv) parameters
to calls to the free function must be allocated memory addresses and be the
return values of previous malloc function calls. In the case of explicit software
instrumentation, all access to heap memory as well as calls to malloc and free

must be instrumented [?,?,?,?]; separate shadow memory must be maintained to
keep track of the allocation and initialization history. The performance impact of
this implementation is significant, previous work has reported a 20x slowdown,
even with aggressive optimizations [?].

One way to mitigate the performance degradation is to migrate the monitor
to a separate processor [?,?]. This will allow the monitor and the application
to execute in parallel and—if the monitor can keep up with the application—
the performance penalties are now limited to the overhead associated with ex-
traction and communication of state information and competition for shared



resources. Unfortunately, the state extraction and communication overhead can
be significant, and the instrumentation needed to extract the information from
the application leads to—for our purposes—unacceptable perturbation of the
application.

Recently, there have been proposals for hardware support for a variety of
monitoring activities; in particular to support fine-grained monitoring. Never-
theless, most of these proposals support one narrow type of monitor, such as
monitoring memory bugs [?,?] or taint analysis [?,?,?,?,?,?]. These solutions
can provide extremely low overhead monitoring, but they are all targeted to
specific monitoring tasks and allow little or no customization.

The techniques briefly discussed above (heavy instrumentation, distribution
of monitors to separate processors, and hardware supported special purpose
monitoring) cover three corners in the design space of software monitoring. When
considering a monitoring task, we must consider within this design space the
particular need for flexibility, performance, and predictability. For example, when
considering continual monitoring for memory access violations the performance
overhead is of utmost importance, but the need for flexibility in monitoring is
not there (a special purpose monitoring task); dedicated hardware support might
be the right solution. When using monitors as oracles during unit testing, the
need for flexibility in the monitoring task is imperative since we are likely to
use monitors for diverse tasks, for example, a functional test oracle or a test
adequacy measurement tool. In this case, arbitrary monitors that can be easily
modified and replaced are required; an inflexible hardware solution would not
work, flexible monitors based on instrumentation would be far more suitable (if
the performance penalty is acceptable). The particular challenges of our target
monitoring tasks (discussed in Section 2) require us to somehow achieve the best
characteristics from the previously suggested techniques while largely eliminating
their weaknesses.

Given the observations on monitoring above, it has become clear that to suc-
cessfully enable effective monitoring we must pursue an architecture and compiler

enhanced approach to software monitoring. The architectural and compiler sup-
port is essential to provide the performance and throughput needed for realistic
applications, and all monitors much be software based to allow for the flexibil-
ity we need for a diverse collection of monitoring activities. To achieve these
breakthroughs, we must re-consider the four steps in monitoring.

Figure 1 shows an overview of our proposed monitoring framework that or-
chestrates the compiler as well as the architectural support to generate and
enhance software execution monitors. As mentioned above, at run time there
are four steps in monitoring: (1) extract the desired information from the core
executing the application, (2) forward it to the monitor core, (3) update the
monitor core state with the new information, and (4) dispatch the appropriate
monitoring routine(s). All four steps must be supported with hardware to pro-
vide the performance needed. In particular, hardware support for information
extraction is essential since our aim is to avoid instrumenting the application
program with special instructions. To this effect, we integrate an extraction logic



Application 
w/ Annotation
Monitor 

Original
Compiler

Extraction Logic
Compiler

Monitor 
Compiler

Instrumentation
Compiler

Monitor Aware Compiler System

Extraction

Logic

interconnection network

P P P P

App. 1 App. 2Mon. 1 Mon. 2

Architectural support for execution monitoring

– Flexible extraction logic extracts information needed by the monitor routines
– Underlying communication mechanism forward information to the monitor
– Effective monitor dispatching support invokes the desired monitor routines.

Compilation support for monitor generation

– Identify the set of activities that invoke the monitor routines
– Generate three outputs: (i) the application executable (instrumented hardware

support for extraction logic is unavailable); (ii) the monitor executable; and (iii)
extraction logic configuration if hardware support is available.

– Update the monitor as the application is optimized;

Fig. 1. Overview of our proposed hardware/compiler monitoring infrastructure.

onto each core, and have the monitor configure the extraction logic with an
event-of-interest list when the program is loaded. This extraction logic is capa-
ble of capturing a variety of instruction-level events. For example, the extraction
logic can invoke monitors at specific program points; thus, it must be aware of
the program counter. If we are monitoring for changes of a variable x and x is a
register resident value, the event list would include the set of instructions that
modify this value. On the other hand, if x is a memory-resident value, the event
list would include the instructions that modify the memory location where x re-
sides. Once such events are detected, information about the event are forwarded
to the monitor. A similar approach is employed to monitor for other memory
related events as well as for function invocations.

The monitor-aware compiler takes as inputs the application and the mon-
itoring routines annotated with the state information in an application A of
interest to the monitor and the program points in A where explicit monitor rou-
tines will be invoked. From this input, the monitor aware compiler creates three
new artifacts: (1) the application executable, (2) the monitor executables, and
(3) a list of instruction-level events that must be extracted from the application
execution. Note: our goal is that monitored application executable shall contain
no additional instrumentation as compared to a non-monitored equivalent.

The monitor executable will contain two parts: a list of monitor routines and
a dispatching routine that determines which monitor routines should be invoked
when we observe a certain event. The monitor-aware compiler is also responsible
for generating the list of instruction-level events that must be extracted and



forwarded from the executing application to the monitor; this information will
be used to configure the extraction logic for each core.

There is a risk that the on-chip and off-chip shared resources, such as the
communication bandwidth, could become an issue even in our framework and
the application being monitored might have to be stalled for the extraction
logic to forward its information. In addition, should the execution time for the
monitor be excessive, the application might have to be stalled for the monitor
to keep up. One way to reduce the cost of state communication is to reduce
the amount of state information transferred. This can be achieved with both
hardware and software support. In this work, we propose compiler analysis to
identify the minimal set of state information that require communication, and
then only communicate this set. We also propose hardware techniques to avoid
the transfer of duplicate state and compress the transferred states. For example,
there is no need to transfer state information that has not changed; this is a
fairly common occurrence when, for example, a piece of control software runs
at a rate 5 to 10 times faster than the sensors sampling the environment—we
will only see changes to certain state variables in the control software every 5-10
execution cycles. Furthermore, parallelization of the monitors is also possible in
this framework

4 Support for Execution States Extraction

In a multi-core environment, efficiently using one core to monitor the behav-
iors of the software executing of another requires hardware support. One of the
key functionality of such hardware support is to selectively extract information
needed by the monitoring core from the monitored core. To avoid stalling the
monitored application, information extraction must operate at the speed of the
processor. In our previous work, we proposed a programmable extraction logic for
this purpose, we refer to the architectural support as Ex-Mon [?]. The extraction

logic can be programmed with the set of instructions whose runtime behaviors
are of interests to the monitor. E.g., the extraction logic can be programmed
with a set of instruction addresses; and the results of these instructions will
be forwarded. The extraction logic monitors the earliest entries of the reorder
buffer. When an instruction commits, the extraction logic decides whether the
results of the instruction is of interest to the monitor; and packs and forwards
the necessary information if it is. The monitor software explicitly manages the
extraction logic by initiating and updating it at runtime.

Forwarded information is written to a dedicated area of the shared memory,
referred to as the communication queue. The communication queue is a circular
buffer, with the head points to the next available slot for the extraction logic to
write to; and the tail points to the next element to be consumed by the monitor.
The head is updated by the extraction logic; and the tail is updated by the
monitor. When the queue is full, the monitored program must be stalled, which
is a major cause for performance degradation in monitoring.



Although the extraction logic allows programmers to specify events of inter-
ests, traffic for some monitor activities can still be excessive. Thus, optimization
opportunities to reduce communication traffic must be explored. Consider a
monitor that is interested in detecting accesses through dangling pointers. Once
a certain memory location is proven to be allocated, all future accesses to this
location do not need further verification, until the state of this memory location
is changed by system calls to realloc and free. Consider a loop containing an
instruction that sweep through array elements. Once we know the first element
accessed, the access pattern is predictable until the end of the loop is reached. To
take advantage of these opportinities, we propose hardware and software support
to reduce communication traffic.

Eliminating redundant forwarding with hardware support: An auxiliary
structure, the local filter, is introduced to reduce communication costs. The local
filter uses a small fully associative cache to store recently forwarded items. If
an input address matches an entry in this filter, the instruction will not be
forwarded. The local filter is initially empty and is updated by the extraction

logic, which is in turn managed by the monitoring software. This is achieved by
adding two extra bits in the extraction logic indicating whether the instruction
forwarded should create an entry in the filter, clear the filter or have no effect.

Eliminating redundant forwarding with compiler support: The hardware-
based solutions although efficient, is fundamentally limited by the lack of global
program information. Compiler can help by only forwarding values that (i) are
actually needed by the monitor; and (ii) are difficult for the monitor to derived.

The compiler first identify program state changes that do not affect the
verification routines and stop forwarding them. The irrelevant state elimination
problem can be formulated as a simple dataflow analysis, where the compiler
simply mark all values used in the monitor routines as relevant, and perform a
backward analysis to mark all instructions these values depend on. When the
algorithm terminates, all unmarked instructions are irrelevant, and should be
eliminated.

Communicating values from the monitored core to the monitor can be costly,
and is sometimes more expensive than computing the forwarded value locally
on the monitor. To identify and explore these opportunities, the compiler must
identify a set of communications so that the cost of communication and compu-
tation at the monitor is minimized. This optimization can also be formulated as
a backward analysis that identified dependent instructions. The backward search
terminates when the cost for computing all dependent instructions exceeds the
cost of reading from the communication queue.

5 Evaluation with Case Studies

To evaluate the effectiveness and efficiency of architecture and compiler support
for execution monitoring, we will illustrate how the Ex-Mon can be utilized to
detect memory bugs and track taint propagation.



In the proposed infrastructure, monitor software contains (i) a set of mon-
itoring routines, (ii) a dispatching routine that activates the appropriate mon-
itoring routines, and (iii) routines to initiate and update the extraction table.
The dispatching routine invokes the desired monitoring routines for every in-
coming event. Monitoring routines not only verify whether the incoming event
violates any correctness specification, but also update the states that are needed
for future verifications. The monitor program must maintain sufficient states to
verify all specifications. Ideally, to implement an efficient monitoring system,
only the minimal amount of events are extracted and forwarded to construct the
states. It is worth pointing out that as the number and types of events increase,
the efficiency of the dispatching routine can become important. Currently, the
monitor compiler is under development, and the monitor programs used in this
paper are developed manually.

We evaluate the proposed support for software execution monitoring using
the Simics [?] simulation environment, a full system simulation platform. We
augment the simulator with the Wisconsin GEMS [?] infrastructure for a de-
tailed memory hierarchy simulation. We simulate a multicore system with 8
cores, where each core has its own private L1 instruction and data cache, while
sharing a unified L2 cache. The private L1 caches are 64KB in size and 4-way
set-associative, with 64Bytes cache lines and 3-cycle access latency. The L2 cache
is 8MB in size and 4-way set-associative, with 64Bytes cache lines and 6-cycle ac-
cess latency. The main memory is 8GB in size with 160-cycle access latency. The
extraction table has 1K entries and the local filter has 32 entries. We simulate
the SPECINT 2006 benchmarks with the ref input set. For a reasonable simu-
lation time, we simulated one billion instructions after skipping the initialization
phase of the benchmark.

In this paper, we evaluate the performance overhead of two execution mon-
itor: memory-bug detection and taint propagation, using SPECINT 2006 [?]
benchmark suite. We manually developed both monitoring softwares. The mem-
ory bug detection monitor detects a set of well-known memory bugs, including
double free, memory leak, dangling pointer, and uninitialized load dynamically.
The taint propagation monitor tracks flow of information and signals an error
if tainted data takes control of program execution. In our implementation, both
monitors simply log error states when faults are detected, and reported the faults
at the end of the execution.

5.1 Verifying Memory Bugs

Memory bugs include memory leak, dangling pointers, loads to uninitialized
memory locations and double free. In the rest of this section, we will first pro-
vide a brief description of the monitoring software; and then show how the
monitor program works with the proposed hardware supports; and finally show
the performance of monitoring software with hardware support.

The dispatching routine for memory bug detection is a loop with a switch-
case statement. It invokes the appropriate monitor routines when an event is
observed in the communication queue. A special event, EXIT, corresponds to



0

0.5

1

1.5

2

2.5

3

3.5

w/o filter

with filter

program 

execu!on !me

slowdown

(a) Memory bug detection.

0

2

4

6

8

10

12

14

16

w/o local filter

with local filter

program 

execu"on "me

slowdown

(b) Taint propagation.

Fig. 2. Execution time slowdowns due to monitoring for memory bugs and taint prop-
agation.

the termination of the monitored program, will lead to the termination of the
dispatching routine.

For memory bugs detection, the forwarded information is the commit of
memory access instructions that accesses the heap, and all instructions related
to calls of memory management functions, such as malloc, free, realloc and
calloc. The extraction table is thus initiated with instructions that setup and
invoke memory management routines; and a memory range that correspond to
the heap space.

At runtime, the monitoring software parses incoming events and maintains
allocation information for each and every memory block. Based on the allocation
information, the monitor is able to verify whether a memory error has occurred.
For example, when a memory location is read, the monitor software checks if the
location has been allocated and initialized. If not allocated, the load is through
a dangling pointer; if allocated, but not initialized, the load is an uninitialized
read. When the monitored application has completed, the commit of one epi-
logue instructions will match an entry in the extraction table, and trigger the
monitoring program to detect memory leakage bugs.

In memory bug detection, we can use the local filter to reduce communication.
In this case, all heap references are entered to the local filter to avoid repeated



forwarding. Commits of call instructions to memory management functions will
clear the local filter, since these functions can change the memory allocation.

Results At runtime, the monitor program consumes data from the communi-

cation queue in a FIFO order. In some portion of execution, the workload of
the monitoring program is higher than that of the monitored program, and thus
packets in the communications queue cannot be processed in a timely manner.
When the communication queue is full, the execution of the monitored pro-
gram must be stalled, and performance degrades. This is the main performance
penalty evaluated in our work, as shown in Figure 2(a). For a 32K communi-
cation queue, the performance overhead is 110% on average. However, for some
benchmarks, such as 403.gcc, the performance overhead is negligible, while for
some other benchmarks, such as 446.hmmer the performance overhead is nearly
200%. Utilizing the local filter to reduce the number of forwarded through the
communication queue has a significant performance impact, as shown by the
with local filter bars in Figure 2(a). With a 32-entry local filter, all bench-
marks are able to benefit significantly—on average, we are able to achieve 20%
performance improvement.

5.2 Tracking Taint Propagation

Taint propagation is the foundation for building many security-enhancing soft-
ware monitors. In taint propagation, each data item, i.e., every memory location
and register, is tagged with a taint tag indicating whether the value stored is
tainted or not. At runtime, the taint tags are propagated by the instructions that
manipulate these data. For example, we can mark all data from unsafe sources,
such as the internet, as tainted, and then keep track of taint propagation to
ensure that unsafe data do not take control of the program.

From the perspective of taint propagation, two types of instructions requires
monitoring: data movement instructions (load/store, mov,etc) that propagate
taint status of the source operand to its destination; and an arithmetic instruc-
tion that taint the destination operant if any of its sources is tainted. Since
these two types of instructions contribute to a significant potion of dynamic
execution, taint propagation creates a burden on the communication capability
between the monitoring core and the monitor. At runtime, the monitor parses
incoming events and maintains taint information for each and every memory
and register. Based on the allocation information, the monitor is able to keep
track of taint information. In taint tracking, we can use the local filter to reduce
communication.

Results The workload of the monitor is almost always higher than that of the
monitored program, and thus the application stalls often, causing performance
degradation. This is the main performance penalty evaluated in our work, as
shown in Figure 2(b). With a 32K communication queue, the performance over-
head is 8x on average. For some benchmarks, such as 456.hmmer and 464.h264,



the overhead is as high as 10-13x. These benchmarks have larger percentage of
data-moving and arithmetic instructions, and thus impose heavy workload on
communication and taint tracking. 429.mcf, on the other hand, only incurs an
13% overhead. This is because 429.mcf has low IPC due to cache misses, thus
stalls caused by monitoring is relatively small.

Utilizing the local filter to reduce the number of data items forwarded through
the communication queue has a significant performance impact, as shown by
the with local filter bars in Figure 2(b). With a 32-entry local filter, all
benchmarks are able to benefit significantly—on average, we are able to achieve
20% performance improvement. For 403.gcc, the performance improvement is
as much as 46%.

6 Conclusions

Our central hypothesis is that by leveraging the rapid emergence of multi-core
processor architectures, we can achieve a non-intrusive, predictable, fine-grained,
and highly flexible general purpose monitoring framework through monitoring-

aware compilers coupled with novel architectural enhancements to the multi-core
architectures.

In this paper we describe our initial steps in this direction and provide some
preliminary performance results achieved with this new multi-core architecture.
We use separate cores for the execution of the application to be monitored and
the monitors. We augment each core with identical programmable extraction
logic that can observe an application executing on the core as its program state
changes. We experimented our hardware support with two well-known monitors:
memory bug detection and taint propagation, and found that with adequate
hardware support, performance penalty can be reduced significantly compare to
instrumentation-based approaches.


