DMaC': Distributed Monitoring and Checking

Wenchao Zhou Oleg Sokolsky Boon Thau Loo Insup Lee

Department of Computer and Information Science, University of Pennsylvania,
3330 Walnut Street, Philadelphia, PA 19104-6389
{wenchaoz, sokolsky,boonloo,lee}@cis.upenn.edu

Abstract. We consider monitoring and checking formally specified prop-
erties in a network. We are addressing the problem of deploying the
checkers on different network nodes that provide correct and efficient
checking. We present the DMaC' system that builds upon two bodies of
work: the Monitoring and Checking (MaC) framework, which provides
means to monitor and check running systems against formally specified
requirements, and declarative networking, a declarative domain-specific
approach for specifying and implementing distributed network protocols.
DMaC uses a declarative networking system for both specifying network
protocols and performing checker execution. High-level properties are
automatically translated from safety property specifications in the MaC
framework into declarative networking queries and integrated into the
rest of the network for monitoring the safety properties. We evaluate
the flexibility and efficiency of DMaC using simple but realistic network
protocols and their properties.

1 Introduction

In recent years, we have witnessed a proliferation of new overlay networks that
use the existing Internet to enable deployable network evolution and introduce
new services. Concurrently, new Internet architectures and policy mechanisms
have been proposed to address challenges related to route oscillation and slow
convergence of Inter-domain routing.

Within the networking community, there is a growing interest in formal tools
and programming frameworks that can facilitate the design, implementation, and
verification of new protocols. One of the most commonly proposed approaches
is based on runtime verification [12,17], which provides debugging platforms for
verifying properties of protocols at runtime. This approach typically works by
providing programming hooks that enable developers to check properties of an
executing distributed system at runtime.

Existing approaches are often platform dependent and hard to be general-
ized. The runtime checks are tightly coupled with the implementation and, as
a result, cannot be easily reused across different execution environments, or be
used to compare different implementations of the same protocol written in dif-
ferent programming languages. Moreover, given that the properties are specified
at the implementation level, formal reasoning and analysis are not possible.

To address the above shortcomings, we present DMaC, a distributed mon-
itoring and checking platform. DMaC builds upon two bodies of work: (1) the
Monitoring and Checking (MaC) framework [11], which provides means to mon-
itor and check running systems against formally specified requirements, and (2)
declarative networking [14,13], a declarative domain-specific approach for spec-
ifying and implementing distributed network protocols.

The original MaC framework was designed conceptually as centralized moni-
toring systems. DMaC achieves the distributed capability via the use of declara-
tive networking, where network protocols are specified using a declarative logic-
based query language called Network Datalog (NDlog). In prior work, it has been
shown that traditional routing protocols can be specified in a few lines of declar-
ative code [14], and complex protocols require orders of magnitude less code [13]
compared to traditional imperative implementations. The compact and high-
level specification enables rapid prototype development, ease of customization,
optimizability, and potentiality for protocol verification.

In DMaC, the safety properties of a distributed system are first specified
using a platform independent formal specification language called MEDL. These
property specifications are then compiled into declarative networking code for ex-
ecution. Since declarative networks utilize a distributed query engine to execute
its protocols, these checks can be expressed as distributed monitoring queries in
NDlog. This paper makes the following three contributions:

e DMaC platform: The system allows us to specify desired properties of
protocols independent of their implementation and abstract away the physical
distribution, generate run-time checkers for the properties and deploy them
across the network, seamlessly integrated within the NDlog engine.

e Formal specifications to declarative networks: We show that formal
specifications can be automatically compiled to distributed queries. Moreover,
given the query-based approach used in declarative networks, we illustrate
the potential of applying existing database query optimizations in DMaC for
efficient plan generation and dynamic reoptimization.

e Implementation and evaluation: We have performed evaluation of DMaC
on several representative examples deployed over a cluster. Results demon-
strate feasibility of the approach, in terms of both performance overhead due
to monitoring queries, and functionality of the property language.

2 Background

2.1 Declarative Networking

Declarative query languages such as Network Datalog (NDlog) are a natural and
compact way to implement a variety of routing protocols and overlay networks.
For example, some traditional routing protocols can be expressed in a few lines
of code [14], and the Chord DHT in 47 lines of code [13]. When compiled and
executed, these declarative networks perform efficiently relative to imperative
implementations, while achieving orders of magnitude reduction in code size.

The compact specifications enable ease of customization and adaptation, where
protocols can be adaptively selected and composed based on policies and the
changing network environment.

A NDlog program is a distributed variant of Datalog which consists of a set
of declarative rules. Each rule has the formp :- q1, g2, ..., gn., which can be
read informally as “q1 and q2 and ... and gn implies p”. Here, p is the head of the
rule, and q1, g2,...,qn is a list of literals that constitute the body of the rule. Literals
are either predicates with attributes (which are bound to variables or constants
by the query), or boolean expressions that involve function symbols (including
arithmetic) applied to attributes. In Datalog, rule predicates can be defined
with other predicates in a cyclic fashion to express recursion. The order in which
the rules are presented in a program is semantically immaterial; likewise, the
order of predicates appearing in a rule is not semantically meaningful. Commas
are interpreted as logical conjunctions (AND). The names of predicates, function
symbols, and constants begin with a lowercase letter, while variable names begin
with an uppercase letter.

As a running example throughout the paper, the following four NDlog rules
implement the path Vector protocol that computes the shortest paths between all
pairs of nodes in a network.

materialize(link,keys(1,2),infinity).
materialize(path,keys(3),infinity).
materialize(bestCost,keys(1,2),infinity).
materialize(route,keys(1,2),infinity).

pl path(@S,D,P,C) :- 1ink(@S,D,C),P=f_initPath(S,D).

p2 path(@s,D,P1,C1+C2) :- 1link(@S,Z,C1), route(@Z,D,P,C2),
f_member0f (S,P)=false, P1=f_concat(S,P).

p3 bestCost (@S,D,MIN<C>) :- path(eS,D,C,P).

p4 route(@S,D,P,C) :- path(@S,D,P,C), bestCost(@S,D,C).

In NDlog, each predicate contains a location specifier, which is expressed with
@ symbol followed by an attribute. This attribute is used to denote the source
location of each corresponding tuple. For instance, all 1ink, path and route tuples
are stored based on the es address field.

The above NDlog program is executed as distributed stream computations
in a recursive fashion. Rule p1 takes 1ink(@S,D,C) tuples, and computes all the
single-hop paths path(@S,D,P,C) where the user-defined function f_initPath ini-
tializes the path vector as P=[S,D].

In rule p2, multi-hop paths are computed. Informally, it means that if there is
a link between s and z with cost €1, and the route between Z and D is P with cost
€2, then there is a path between S and Z with cost C1+C2. Additional predicates
are used for computing the path vector: the built-in function f member0f is used
to drop any paths with loops; if no loop is found, a new path P1 (from S to D via
intermediate node z) is created by function f_concat.

In rule p3, the bestCost is defined as the minimum cost among all paths.
Finally, rule p4 is a local Datalog rule used to compute the shortest path with
the lowest cost based on the local bestCost table.

Declarative networking also incorporates the support of soft-state derivations
which are commonly used in networks. In the soft state storage model, all data
(input and derivations) have an explicit “time to live” (TTL) or lifetime, and all
tuples must be explicitly reinserted with their latest values and a new TTL or
they are deleted. To support this feature, an additional language feature is added
to the NDlog language, in the form of a materialize keyword at the beginning
of each NDlog program that specifies the TTLs of predicates. For example, the
definition materialize(link,keys(1,2),10) specifies that the 1ink table has its
primary key set to the first and second attributes (denoted by keys(1,2))!, and
each 1link tuple has a lifetime of 10 seconds. If the TTL is set to infinity, the
predicate will be treated as hard-state.

The soft-state storage semantics are as follows. When a tuple is derived,
if there exists another tuple with the same primary key but differs on other
attributes, an update occurs, in which the new tuple replaces the previous one.
On the other hand, if the two tuples are identical, a refresh occurs, in which the
TTL of the existing tuple is extended. For a given predicate, in the absence of
any materialize declaration, it is treated as an event predicate with zero lifetime.
Since events are not stored, they are primarily used to trigger rules periodically
or in response to network events.

Soft-state tuples are deleted upon expiration. In contrast, hard-state tuples
are deleted via cascaded deletions. For instance, when existing links are deleted,
the deletions have to be cascaded, resulting in deletions of previously derived path
tuples, and updates to bestPath tuples. The NDlog language also generates events
when table insertions and deletions occur. For instance, 1ink_ins and link del
are generated whenever link tuples are inserted and deleted respectively.

2.2 Runtime Monitoring and Checking

MaC Overview. Continuous monitoring and verification of the run-time be-
havior of a system can improve our confidence about the system by ensuring that
the current execution is consistent with its requirements at run time [9, 18, 6, 15,
19, 7). We have developed a Monitoring and Checking (MaC) framework for run-
time monitoring of software systems [11], which allows us to specify high-level
properties, implement checkers for these properties, extract relevant low-level
information from the system execution and abstract these low-level observations
to match the level of the property specification.

The MaC framework includes two languages: MEDL and PEDL. The Meta-
Event Definition Language (MEDL) is used to express properties. Its formal

! Tables are maintained in P2 following the set semantic, where primary keys are the
unique identifications of the tuples stored in a table. Upon receiving a tuple with
the identical primary key as an existing tuple, the table will be updated by replacing
the old tuple with the more recent one.

semantics are similar to the semantics of a past-time linear-time temporal logic.
It can be used to express a large subset of safety properties of systems, includ-
ing timing properties. We use events and conditions to capture and reason about
temporal behavior and data behavior of the target program execution; events are
abstract representations of time progress and conditions are abstract representa-
tions of data. Primitive Event Definition Language (PEDL) describes primitive
high-level events and conditions used in MEDL properties in terms of system
objects. PEDL defines what information is sent from the filter to the event rec-
ognizer, and how it is transformed into events used in high-level specification by
the event recognizer. Unlike MEDL, PEDL depends on the target system, since
it has to refer to observations made directly on the system.

The framework includes two main phases: static phase and dynamic phase.
During the static phase, i.e., before a target program is executed, properties are
specified in MEDL, along with the respective PEDL mapping. Then, also in the
static phase, run-time components such as a filter, an event recognizer, and a
run-time checker are generated. During the dynamic phase, the target program,
instrumented with the observation filter, is executed while being monitored and
checked with respect to the properties. The filter tracks changes of monitored
objects and sends observations to the event recognizer. The event recognizer per-
forms the abstraction of low-level observations into high-level events according
to the supplied mapping. Recognized events are sent to the run-time checker.
Although the event recognizer can be incorporated into the checker, we separate
them to clearly distinguish high-level properties, independent of a particular im-
plementation, from low-level information extraction, which by necessity applies
to a given implementation. A run-time checker determines whether or not the
current execution history satisfies the properties. Checking is performed incre-
mentally, without storing unnecessary history information.

We have implemented a prototype of the MaC for Java programs, called
Java-MaC [10]. Java-MaC targets Java bytecode, providing automatic instru-
mentation of the target program and automatic generation of the checker, event
recognizer, and filter. Although the existing implementation can be easily ex-
tended to monitor other kinds of target systems by providing a different filter,
it is difficult to apply it to distributed systems.

MEDL Specification Language. The language MEDL is built around a two-
sorted logic that describes events and conditions. In this paper, we use a para-
metric variant of MEDL described in [23], but without explicit quantification.
We present MEDL syntax and semantics using examples. For the formal presen-
tation, we refer the reader to [10, 23].

In MEDL, events are instantaneous observations. Primitive events are re-
ceived from the monitored system, while composite events are derived in the
checker. Events can carry attributes that give additional information about the
occurrence. For example, event route(s, d, p) is observed when the node s enters
the route to the node d into its routing table, and the route follows the path
p, and these three values are supplied as attributes of the event. In addition,

each event has the timestamp of its occurrence, interpreted by the checker clock.
Unlike events, conditions have durations: once a condition becomes true, it is
true continuously until it becomes false. Primitive conditions are defined within
the monitored system, which notifies the checker about changes to the condition
value. Conditions can be parametrized by attributes of events that are used in
the definition of a condition, as described below.

Primitive events are defined using the import declaration: import event e(X)
specifies that event e can observed directly from the monitored system and that
every occurrence of e carries attributes X = (x1,...,2%). A conjunction of two
events e(X) = e1(X1) A ez(Xs) is an event that occurs when both e; and ey
occur simultaneously. We require that var(X) C var(X;) Uvar(X;)?; that is,
attributes of the composite event can come only from the events and conditions
used in its definition. For example, event e(x,y) = e1(p,z) A ea(z,y,2) occurs
at time t only if both e; and es occur at time ¢, such that the last attribute of
e9 is the constant 2 and the common attribute z has the same value in both
occurrences. Disjunction of events is defined similarly.

Given a condition ¢, event (e when ¢) occurs if e occurs while the condition ¢
is true. As an example, consider e.(z1,x2) = e(x1) when c[z1, z2]. Let conditions
c[1,1], ¢[1,2], and ¢[2, 1] be true and c[1, 3] be false. When event e(1) occurs, it
will cause simultaneous occurrences of events e.(1,1) and e.(1,2).

Each condition c[X] is associated with two events, start. and end., both of
which have X as attributes. Event start. occurs when ¢ becomes true, while
end. occurs with it becoming false. A primitive condition c¢[z1,...,x,] repre-
sents the directly observed state of the monitored system. Whenever a ground
instance ¢(p1,...,pn) changes its value, the checker receives an occurrence of
start.(p1,...,pn) or end.(p1,...,pn), corresponding to the new value of the
ground condition, from the event recognizer.

Conjunction, disjunction, and negation of conditions are defined in the ex-
pected way. Any two events e;(X;), e1(X;) define a condition [e1, e3), which is
parametrized with var(X;)Uvar(Xz). This condition is true if there has been an
occurrence of e; in the past and, since then, there has been no occurrence of es
with matching attributes. A time-bounded variant of this expression, [e1, e2) <,
means that the condition becomes false ¢ time units after the occurrence of ey if

es does not arrive within these ¢ time units.

MEDL also uses auxiliary variables that allow us to store additional history
information. Predicates over auxiliary variables can be used to define new con-
ditions. Semantically, auxiliary variables are similar to conditions, except that
a ground instance of an auxiliary variable evaluates to a numerical rather than
boolean value. Auxiliary variables are updated in response to events in guarded
commands of the kind e(X.) — {v[X,]:=expr(X.)}, where var(X,) C var(X,)
and ezpr is an arithmetic expression over X,.

Protocol Safety Property

Specification Specification
l -F—_——— _4 \
| PEDL | _

NDlog Rules ’
v [] !
Event |
Recognizer Planner
@ @ @ @ NDlog Rules

Fig. 1. Architectural Overview of DMaC

3 DMaC Architecture

Figure 1 shows the architecture of DMaC. In the above figure, the monitored
network is specified using NDlog as a collection of rules. The system can be used
for monitoring existing legacy networks (where the network state is exposed as
distributed tables that one can query over), or declarative networks themselves.
The latter provides more opportunity for fine-grained analysis, since the proto-
col and monitoring queries themselves are based on the same declarative query
language.

Separately, safety properties of the protocols are described in MEDL. The
MEDL specifications are location-agnostic. PEDL scripts are then used to spec-
ify the distributed nature of the monitored property, in the form of an event
recognizer that takes as input the events that arrive at a node, and a locationer
that determines the locations where generated events from MEDL are to be sent.
MEDL properties are translated into NDlog rules without location information.
The planner module then utilizes the PEDL specifications in combination with
query optimization techniques to decide on the allocation of the generated rules
and annotate the NDlog rules with location information. The generated NDlog
rules are then deployed in the network as monitoring queries.

3.1 Example Network Property: Route Persistence

To illustrate the use of DMaC, we consider the route persistence property [16],
which tracks the duration that each computed route persists without changing.
We will introduce more complex examples in Section 3.3.

In the normal situation, we expect routes, once established, to be stable for
some time before changing again. Therefore, upon each route update message,

2 var(X) are the variables in X

we raise persistenceAlarm when changes occur too quickly (e.g., less than 10
seconds) after the previous update. In the context of deployed network protocols,
rapid changes to computed routes could be a symptom of more serious issues,
such as the lack of convergence in the protocol.

import event rtMsg(s,d, p)

var routeStored][s, d], timeStored[s, d]

event mnewRoute(s,d,p) rtMsg(s, d, p) when routeStored|[s,d] # p
event persistenceAlarm(s,d) = newRoute(s, d, p) when

time(newRoute(s,d,p)) — timeStored[s, d] < 10

newRoute(s, d, p) — {routeStored’ s, d] := p;
timeStored’[s, d] := time(newRoute(s,d, p); }

The above MEDL program uses the time (newRoute) construct to denote the
time of the newRoute event. All events have an associated timestamp. To avoid
clock synchronization issues, DMaC takes the convention that events are as-
signed a receiver-based timestamp, and this timestamp is retrievable via the
time construct above. The translation of MEDL into NDlog is as follows:

sml newRoute(@S,D,P,T) :- rtMsg(@S,D,P), routeStored(@S,D,P1),
P1!'=P, T:=f_now().
sm2 routeStored(@S,D,P) :- newRoute(@S,D,P,T).
sm3 timeStored(@S,D,T) :- newRoute(@S,D,P,T).
sm4 persistenceAlarm(@S,D) :- timeStored(@S,D,T1),
newRoute(@S,D,P,T), T-T1<10.

In the above program, f now is a user-defined function that returns the cur-
rent local time of the node where the rule is triggered. In order to check the
property over the path vector protocol, we need to connect the two sets of ND-
log rules, specifying how the imported event rtMsg is produced by the protocol
specification. For this, we add the following PEDL statement:

export event rtMsg: rtMsg(@S,D,P) :- route(@S,D,P,C).

This statement serves several purposes. First, it specifies that rtMsg origi-
nates from changes to the route table of node S in the protocol specification
and, second, the rtMsg event is raised at the same node, S, where the route table
is stored. Finally, it projects away irrelevant attributes of the table, in this case,
C. PEDL rules can also be used to insert additional attributes into the high-
level event. For example, if rtMsg was to be processed at a node different from
S, we may choose to insert the origination timestamp as an additional attribute
of rtMsg in order to support the reasoning about propagation delay in property
specifications.

The PEDL script also contains another statement:

export persistenceAlarm(@S,D)

1
PEDL | MEDL

Locationer : var routeStored[s,d];
| var timeStored(s,d];

export persistenceAlarm(@S,D) =
persistenceAlarm(s,d);

A

event newRoute(s,d,p) = route(s,d,p) when
routeStored[s,d] != p;

Event Recognizer

alarm persistenceAlarm(s,d) =
newRoute(s,d,p) when
time(route(s,d,p)) - timeStored(s,d] < 10;

event route(s,d,p) = route(@5,D,P,C); ||

T

|
|
Filter : newRoute(s,d,p) -> routeStored'[s,d] := p;
|
|
|

timeStored'[s,d] := time(newRoute(s,d,p));

»{ import route(@S,D,P,C);

Safety property
for Persistence

Fig. 2. MEDL and PEDL specifications for the Persistence Alarm

which specifies that persistenceAlarm event is exported - that is, it can be used
in other MEDL properties and also in other network protocols. For exported
events, we specify the location where the event is raised.

From the locations assigned to the imported and exported events, the planner
module decides on the deployment of MEDL rules to network nodes. In this
simple example, where both exported and imported events are local to the node
S, it is clear that the checker should also be located at S. In more complicated
cases, intermediate results of MEDL evaluation may be placed at different nodes.
We use known techniques from query optimization to compute this placement.
More details are given in Section 4.3.

3.2 MEDL Extensions for Sliding Window Event Correlation

In practice, several monitoring scenarios in the networking domain require the
ability to reason about event occurrences that arrive within a given time window.
We provide an example in Section 3.3 but briefly outline language extensions to
MEDL in order to support such correlation:

First, to make reasoning about event correlation easier, we also define a
time-bounded conjunction of events e; A<; ex and e; A<t ea. This event occurs
if occurrences of e; and ey are separated by less (respectively, no more) than ¢
time units. Note that e; A<; eo can be expressed as es A end([e1,e2)<t) V1 A
end([e2, e1)<¢).

Second, we define time-based and count-based sliding windows for a given
event e(X). Window [e(X)]<; contains all event occurrences of e such that for
any two occurrences in the window, the difference between their timestamps
does not exceed t. A similar definition is made for strict inequality. Window
[e(X)]xn contains n last occurrences of e, if the execution trace has more than
n occurrences, and all occurrences of e otherwise. The role of sliding windows is
to allow us to use aggregations of event attributes in the definition of events and
conditions. We use functions such as minimum, maximum, sum, average, etc. to

define aggregations. For example, condition c[x] = maxy[e(z,p)]<s > 10 asserts
the maximum value of the attribute p in the events that occurred in the last 5
time units should be larger than 10. Note that this expression effectively defines
a separate sliding window for each value of x encountered so far.

3.3 Other Examples

We consider additional network properties to illustrate the flexibility of DMaC,
as well as demonstrate intuitively the translation of MEDL into NDlog. The ex-
amples are representative of typical queries that involve aggregation and event
correlation. Other examples unrelated to network routing (e.g. ensuring the cor-
rectness of distributed hash table routing, multicast trees, etc) are also possible
within our framework.

Data Plane Monitoring. In the previous example, we considered a property
that, when violated, indicates a problem with the control plane of the network.
Here, we consider a property that indicates a problem with the data plane, that
is, the transmission of packets over established routes. Often, sudden changes in
the flow rate of data across the network indicate a problem with the network.
We define flow rate as the average number of packages that are transmitted in
a period of time (for example, during the last 60 seconds). We raise flowAlarm
when the flow rate between two nodes exceeds a threshold (say 100KB). In order
to calculate flow rate, we use the new sliding window feature of MEDL.

import event package(s, d, size)
event rateAlarm(s,d) = start(3_,, [package(s,d, size)]lso > 100000)

As the result of the translation to NDlog, we obtain the following rules:

materialize (package,keys(1,2),60).
ctl packageSum(@S,D,SUM<Size>) :- package(@S,D,Size).
ct2 rateAlarm(@S,D) :- packageSum_ins(@S,D,Sum), Sum>100000.

Distributed Time-based Event Correlation. Often, it is necessary to cor-
relate events that are raised by different nodes in the network. In particular,
simultaneous problems in the control and data planes of the network often indi-
cate an attack on the network. In this example, we consider a set of gateways,
each of which is responsible for the health of a set of sensor nodes. The gateways
need to correlate persistence (pAlarms) and rate alarms (rAlarms) sent from dif-
ferent nodes. We revisit this example in Section 4.3 to motivate our approach to
location assignment for MEDL rules. The property utilizes the node-to-gateway
mapping as an imported condition, allowing the mapping to change dynamically.

import condition gateway(s, m)

event gatewayAlarm(m,z) = persistenceAlarm(s, z) A<s rateAlarm(z, d)
when gateway(s, m)

alarm attackAlarm(m) = start(#[gatewayAlarm(m, z)|ze00 > 4)

The translation to NDlog is as follows:

materialize(gateway,keys(1),infinity).
materialize(pAlarms,keys(1,2),5).
materialize(rAlarms,keys(1,2),5).
materialize(gatewayAlarm,keys(1,2),3600).

cml pAlarms(@M,S,D) :- persistenceAlarm(@S,D,Stat), gateway(@S,M).
cm2 rAlarms(@M,S,D) :- flowAlarm(@S,D,Stat), gateway(@S,M).

cm3 gatewayAlarm(@M,Z) :- pAlarms(@M,S,Z), rAlarms(@M,Z,D).

cm4d alarmNum(@M,COUNT<>) :- gatewayAlarm(@M,Z).

cm5 attackAlarm(@M,Count) :- alarmNum_ins(@M,Count), Count>4.

4 Translating MEDL into NDlog

In this section, we present a general algorithm that translates MEDL rules into
the corresponding NDlog programs. Figure 3 shows the steps involved in trans-
lation: MEDL normalization, Datalog generation, and Optimized NDlog genera-
tion. We focus on the first two steps, and defer the discussion of the third step
to Section 4.3.

4.1 MEDL Normalization

In the first step, each MEDL rule is rewritten into a normalized MEDL expres-
sion, in which each event and condition is defined by an application of exactly
one operator, applied to either events or conditions or constants. For example,
e(z,y) = (e1(z, 2) A<t ea(y, 2)) when (c1 [z, y] A ca[x, 2]) would be represented as
the following three rules:

G(SU, y) = 612(‘777 Y, Z) when C12[$7 Y, Z}
e12(w,y, 2) = er(x, 2) A<t e2(y, 2)

ci2[w,y, 2] = ai[w, Y] A 2w, 2]

We also require that each guarded command updates exactly one variable,
which can be achieved by splitting the update block into individual statements
and creating a separate guarded command for each.

As the basic components in MEDL, events, conditions and auxiliary variables

are translated to tuples in NDlog. An event e(X) is translated to the tuple

e(X1,...,Xn), and the presence of a tuple indicates that the event has occurred.
Translation of a condition ¢[X] is ¢ (X1, ...,Xn), where the presence of the tuple
indicates that the condition is true and the absence of it means that it is false.
An auxiliary variable v[X] is translated to the tuple v(X1,...,Xn,V), with the
last variable storing the current value of the variable. Tuples that correspond to
conditions and variables are materialized using X1,...,Xn as keys. Events, on
the other hand, may carry attributes that need not be used as keys. We use a
simple technique to identify such attributes.

An event attribute that is used in the definition of a condition or variable as
its parameter is always a part of the key for the event relation. This is to ensure
that the event is present when the rule that updates the condition or variable is
evaluated. However, if an attribute of an event is used only to update values of
auxiliary variables, then attribute need not be a part of the key. Consider event
newRoute in Figure 2. Its attribute p is not a part of the key, since the event is
used in the definition of persistenceAlarm and also to update values of variables

routeStored and timeStored, none of which is parameterized by p.

Event Filer
L

ocation Information

Normalized Location-agnostic v
MEDL rules MEDL MEDL rules Datalog Datalog rules [Optimized NDIog | NPlog rules
Normalization Generation Generation

Fig. 3. Translation process from MEDL rules to NDlog rules

4.2 Datalog Generation

The Datalog generation process rewrites normalized MEDL rules into location-
agnostic Datalog rules. Figure 4 summarizes the translation algorithm by listing
each MEDL rule type and the corresponding Datalog rules.

We categorize normalized MEDL rules into ten different types, of which six
are for event generation, three for condition generation and one for variable up-
dates. Due to space constraints, we highlight two particularly interesting trans-
lation.

The 3"¢ row shows a MEDL rule for sliding window based event correlation
(see Section 3.2) and the corresponding Datalog rules. The translation result in
4 Datalog rules that used to store the events el and e2 as soft-state tables e
and e, respectively for a specified lifetime determined by the sliding window size
of ¢t seconds. The soft-state tables are then used for correlating the events over
the time-interval of ¢ seconds.

In the 8*" row, the condition predicate c¢(X7, ..., X,,) over auxiliary variables

v1[X1], ..., vu[X,] is handled by introducing the function predicate pred into the

MEDL Rules Corresponding Datalog Rules
o\ _ = = e(X1, .., Xy) : —el(X1 1,00 X1 k)-

o(X) = er(X) Ves(X2) e(X1s s Xn) £ —€2(Xp1s s Xo)-

e(X) = e1(X) when ¢[X,] e(Xy, ... Xn) =X, Xig), c(Xo1, .o, Xom)-
materialize(el, keys(1,2),1).
materialize(eh, keys(1,2),t).

e (X1, Xg) =1 (X1, o, Xa k)
ey(Xa 1, Xom) : —€2(Xo1, s Xom).
e(X1, ey Xn) = e1(X1 1, o, X1k)s €5(X2,15 w0y Xom)-

e(X) = e1(X1) A<t ea(Xa2)

e(Xl,’ ey XT,) = eQ(XQJ, ...,Xg_m>,€,1 ()(vl‘l7 ----,Xl,lc)-
e(X) = start(c[Y]) e(X1,..., Xpn) : —ciins(Y, ..., Vo).
e(X) = end(c[Y]) e(X1,..., Xp) : —cdel(Y1, ..., Yp).
C[X] = Cl[Xl] A CQ[XQ] C(Xl, ﬁXr,) H _Cl(Xl‘ls ...7X17k), CQ(XQJ, veey XQVm)A
(;[X] = (:1[X1] vV (}Q[Xz] (X, Xo) (X, Xug).

(X1, s Xn) t —C2(Xo1, 0y Xom)-
o(X1,... X)) —vi(Zia, oy Z1my, Valh), ooy
Vp(Zp,1s s Zpmys Valy), pred(Valy, ... Valy).
C(X], ...,Xn> N 761(X171, aXlk‘)
delete ¢(Xq,...,X,) : —e2(Xa1, ..., Xom), (X7, ..., Xa).
% AN iz v(Z1, .y Zn, Val) s —0i(Z1 1, o, Z1m,, Vala), ...,
e(X) = {v[2] := eapr(vi[21], ., v [Zp])} p(Zpas -y Zpmys Valy), Val := g:}:pr(Vall, .Valy).

[X] = pred(vi[Z1], ..vp[Z,])

[X] = [e1(X1), e2(X2))

Fig. 4. MEDL and corresponding Datalog rules

Datalog rule. The rule is triggered by update events of each variable. As an
example, the condition clx,y] = vi[z] + v2[y] > 5 will be translated to the
corresponding Datalog rule ¢(X,Y) : —v1(X,Valy),v2(Y, Valz),Val;+Vals > 5.

Note that, the time(event) semantic in MEDL requires recoding the gen-
eration timestamp as additional information for an event. If the timestamp of
an event is used in a MEDL program, variable T is added to the relation, and
T := f_now() is added to the rule that produces the event. This results in the
use of receiver-based timestamps, where each event is timestamped based on the
recipient node’s time.

4.3 NDlog Program Generation and Optimization

The Filter and Locationer modules in PEDL explicitly indicate the physical lo-
cations of the import and export events and conditions used in DMaC rules. To
deploy DMaC programs for distributed monitoring, one needs to further assign
the locations where the computations in MEDL (e.g. correlation of events and
conditions) should take place. In several instances, different location assignments
may result in varying communication overhead, and the specific data placement
strategy is determined by factors such as inter-node latency, bandwidth, and also
the rate at which events are generated. Interestingly, given our use of declara-
tive networking, the optimization decisions map naturally into distributed query
optimizations. Our goal in this section is to highlight some of the challenges and
opportunities in this space, and set the stage for richer explorations in future.

Motivating Example. We consider a three-node network consisting of nodes
n1, no and n3. The three events in the network that follow the MEDL rule are:

e3(X3) = e1(X1) A<t e2(X2), where e1(X7) is located at nq; e2(Xz) is located
at mo; and e3(X3), as the correlation results of e; and es, is located at ns.
These three events respectively refer to the persistenceAlarm, flowAlarm, and
attackAlarm events from the event correlation example in Section 3.3.
According to the locations where the correlation is performed, the compi-
lation of the MEDL rule may result in different sets of NDlog rules, each of
which potentially has a distinct execution overhead. There are three potential

execution plans for the above MEDL rule:

— Plan a (correlation at n;): Node ny sends es(X3) to ny. Meanwhile n; per-
forms correlation of the received ey(Xs) events and the local e; (X;) events,
and it sends the resulting e3(X3) to ns;

— Plan b (correlation at ny): Node n; sends e;(X1) to no, and ny performs
the correlation and sends the resulting e3(X3) to ns;

— Plan ¢ (correlation at n3): Node n; and ng send the generated events
e1(X1) and es(X3) to n3, where the correlation is performed.

Once the correlation location is decided, a MEDL rule will be translated
into NDlog rules automatically by the compilation process. For instance, taking
node ng as the correlation location, the above MEDL rule is translated into the
following NDlog rules:

opl e1’(@n3,X1) :- el(@ni,X1).
op2 e2’(@n3,X2) :- e2(@n2,X2).
op3 e3(@n3,X3) :- el’(@n3,X1), e2’(@n3,X2).

Rules op1 and op2 ship e;(X;) and es(X3) from their original location to node
ng, which is the correlation location. Rule op3 then performs the correlation of
these two events and generates e3(X3). Following a similar approach, one can
easily write corresponding NDlog rules if the correlation happens at ny or ns.

Cost-based Query Optimizations. When a MEDL rule that involves mul-
tiple events and conditions is compiled to NDIlog implementation, we choose as
default to send the contributing events and conditions to the location where the
computation result is located (i.e. plan ¢ in the above example).

Plan ¢ may in fact turn out to be an inefficient strategy. Revisiting the
correlation example in Section 3.3, if node n3 is connected via a high-latency,
low-bandwidth link to nodes n1 and n2, and the rate at which events e1 and e2
are generated is extremely high, this plan would result in overwhelming node
n3. A superior strategy in this case could be for events to be correlated locally
between n1 and n2 first. The savings can be tremendous, particularly if these
two nodes are connected via a high-speed network, and the actual correlation of
e3 events is infrequent.

Interestingly, one can model the above tradeoffs via cost-based query opti-
mizations, where a cost is assigned to each plan, and the plan with the lowest
cost is selected. As an example, the bandwidth utilization of the above plans

can be estimated from the rate at which events arrive, and the selectivity of the
correlation:

Plan a: |ea] * Se, 4 Tep e, * |€1] * |€2] * Se,

Plan b: |e1] * Se, + Tey e, * |€1] * |€2] * S,

Plan c: |ej| * Se, + |ea] * Se,

where |e;| represents the estimated generation rate of event e;(X;), s., represents
the message size of €;(X;), Te, e, is the selectivity of the correlation, i.e. the
likelihood that e (X;) and ey(Xs) are correlated.

Given a MEDL rule, exhaustive enumeration is required to search for all
potential execution plans and select the optimal plan given the cost estimates.
In practice, finding the optimal plan is NP-hard. To find approximate solutions
that provide efficient plans, commercial database engines utilize dynamic pro-
gramming [20] in combination with other plan selection heuristics, enabling the
query engine to generate efficient plans at reasonable overhead.

In our distributed setting, the optimal plan may change over time as the rate
of events and network conditions vary during the monitoring period. In recent
database literature, there has been significant interests and progress in the area
of adaptive query optimization [5] techniques, commonly used to reoptimize query
plans during execution time. Such runtime reoptimizations are particularly useful
in the areas of wide-area data integration and distributed processing of sensor
feeds. We intend to explore the use of adaptive query optimizations in DMaC as
future work.

5 Evaluation

In this section, we perform an evaluation of the DMaC system. The goals of
our evaluation are two-fold: (a) to experimentally validate the correctness of
the DMaC' implementation, and (b) to study the additional overhead incurred
by monitoring rules. Our experiments are executed within a local cluster with
15 quad-core machines with Intel Xeon 2.33GHz CPUs and 4GB RAM running
Fedora Core 6 with kernel version 2.6.20, which are interconnected by high-speed
Gigabit Ethernet. Our evaluation is based on the P2 declarative networking
system [1]. In the experiments, we deploy up to a network size of 120 nodes
(eight nodes per physical machine).

For the workload, we utilize the path vector protocol which computes the
shortest paths between all pairs of nodes. To evaluate the additional overhead
incurred by monitoring safety properties, we deploy two versions of the path
vector query, i.e. PV and PV-DMaC, where PV executes pure path vector query
presented in Section 2.1, PV-DMaC additionally executes the DMaC rules pre-
sented in Section 3.1 to monitor the route persistence property. When a violation
of the property is detected, the specified MEDL /PEDL results in the generation
of persistenceAlarm events which are exported to a centralized monitor to log
all such violations across the network.

As input, each node takes a 1ink table pre-initialized with 6 neighbors. After
the path vector query computation reaches a fixpoint, i.e. the computation of

IS
S

-+ PV
——PV-DMaC

=+ -Link Events
—>—Alarms

Now oW
G S G

Rate of Events/Alarms
s
5 &

PerNode Bandwidth (KBps)
«n 53

o

0 100 200 300 400 500 0 100 200 300 400 500
Time Elapsed (s) Time Elapsed (s)

Fig. 5. Number of updates and persis- Fig. 6. Per-Node bandwidth (KBps)
tence alarms over time for monitoring route persistence

all-pairs best paths have completed, we periodically inject network events to
induce churn (changes to the network topology). To evaluate the performance
overhead at high and low rates of network churn, at each 60-second interval, we
interleave high churn of 50 link updates per second followed by low churn of 15
link updates per second. As links are added and deleted, the path vector query
will recompute the routing tables incrementally.

Figure 5 shows the number of persistenceAlarms that are generated per sec-
ond in response to the link updates. We observe that there is a clear correlation
between the rate of link events and alarms: when the network is less stable (i.e.
in high churn, such as 0-60 seconds), the persistence property is more likely to
be violated due to frequent route recomputations, hence resulting in a higher
rate of the persistenceAlarms; whereas the rate of the alarms drops significantly
when the network is under low churn.

Figure 6 shows the per-node bandwidth overhead incurred by PV and PV-
DMaC as the protocol incrementally recomputes in response to link updates.
We observe that PV-DMaC incurs only an additional overhead of 11% in band-
width utilization. The overhead is attributed primarily to the generation of
persistenceAlarms which are sent to the centralized monitor. We note that in
absolute terms, the increase in bandwidth utilization is 2.5KBps, which is well-
within the capacity of typical broadband connections.

6 Related Work

Literature on run-time monitoring and checking for networked systems can be
divided into two broad categories. One category of papers addresses general-
purpose run-time verification problems. These papers are typically concerned
with increasing expressiveness of property specification languages and devel-
oping time- and space-efficient online checking algorithms. Multiple run-time
verification systems [7,21,3,4] reported in the literature are primarily oriented
toward monitoring of software. While some of them are capable of collecting ob-
servations from multiple nodes in a distributed system [2], they typically assume
a centralized checker.

The other category of related work contains papers originating in the net-
working community. Here, distribution is critical in both collection of obser-

vations and in checking. This category of work typically uses simple invariant
properties and is concerned with minimization of network traffic. An important
point of comparison is [8], which offers a system H-SEND for invariant monitor-
ing of wireless networks.

Our work differs from both of these categories. On one hand, we are using a
richer language than the one typically used in correctness monitoring of networks.
On the other hand, we address distributed deployment of checkers in the network,
the aspect typically not considered in run-time verification literature. Finally,
deployment of checkers is tightly integrated with the network deployment itself
through NDlog, which is a unique feature of our approach.

7 Conclusion and Future Work

We have presented a way to integrate a run-time verification framework into a
declarative networking system that is based on the language NDlog. The inte-
gration allows us to specify high-level, implementation-independent properties
of network protocols and applications in the language MEDL, generate checkers
for these properties, and deploy the checkers in a distributed fashion across the
network. Checkers are generated by translating MEDL properties into NDlog and
are executed as distributed queries along with the protocol implementations. We
use distributed query optimization techniques to derive allocation of checkers to
network nodes.

In the future work, we will work to remove restrictions on MEDL constructs
introduced in this paper. The restrictions stem from the treatment of event
timestamps in a distributed system. Currently, timestamps of events transmit-
ted across the network are assigned based on the local clock of the receiving
node, and sender’s timestamps may be captured as event attributes. While this
is adequate for many of commonly used network properties, a more general treat-
ment is desirable. A possible approach is to introduce the knowledge about the
physical distribution of events through the network and extending the notion of
a timestamp along the lines of [22].

8 Acknowledgments

This work is based on work supported in part by ONR MURI N00014-07-1-0907,
NSF CNS-0721845 and NSF I1S-0812270.

References

1. P2: Declarative Networking. http://p2.cs.berkeley.edu.

2. A. Bauer, M. Leucker, and C. Schallhart. Monitoring of real-time properties. In
Proceedings of the 26th Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS06), volume 4337 of LNCS, Dec. 2006.

3. F. Chen and G. Rosu. MOP: An efficient and generic runtime verification frame-
work. In Proceedings of OOPSLA’07, pages 569-588, 2007.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

C. Colombo, G. Pace, and G. Schneider. Dynamic event-based runtime monitoring
of real-time and contextual properties. In 13" International Workshop on Formal
Methods for Industrial Critical Systems (FMICS ’08), Sept. 2008.

A. Deshpande, Z. G. Ives, and V. Raman. Adaptive query processing. Foundations
and Trends in Databases, 1(1):1-140, 2007.

M. Diaz, G. Juanole, and J.-P. Courtiat. Observer - a concept for formal on-line
validation of distributed systems. IFEE Transactions on Software Engineering,
20(12):900-913, Dec. 1994.

K. Havelund and G. Rosu. Monitoring Java programs with JavaPathExplorer.
In Proceedings of the Workshop on Runtime Verification, volume 55 of Electronic
Notes in Theoretical Computer Science. Elsevier Publishing, 2001.

D. Herbert, V. Sundaram, Y.-H. Lu, S. Bagchi, and Z. Li. Adaptive correctness
monitoring for wireless sensor networks using hierarchical distributed run-time
invariant checking. ACM Transactions on Autonomous and Adaptive Systems,
2(3), 2007.

F. Jahanian and A. Goyal. A formalism for monitoring real-time constraints at
run-time. 20th Int. Symp. on Fault-Tolerant Computing Systems (FTCS-20), pages
148-55, 1990.

M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan. Java-MaC: a run-
time assurance approach for Java programs. Formal Methods in Systems Design,
24(2):129-155, Mar. 2004.

M. Kim, M. Viswanathan, H. Ben-Abdallah, S. Kannan, I. Lee, and O. Sokol-
sky. Formally specified monitoring of temporal properties. In Proceedings of the
European Conf. on Real-Time Systems - ECRTS’99, pages 114-121, June 1999.
X. Liu, Z. Guo, X. Wang, F. Chen, X. L. J. Tang, M. Wu, M. F. Kaashoek, and
Z. Zhang. D3S: Debugging Deployed Distributed Systems. In NSDI, 2008.

B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and I. Stoica.
Implementing Declarative Overlays. In ACM SOSP, 2005.

B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan. Declarative Routing:
Extensible Routing with Declarative Queries. In SIGCOMM, 2005.

A. K. Mok and G. Liu. Efficient run-time monitoring of timing constraints. In
IEEE Real-Time Technology and Applications Symposium, June 1997.

V. Paxson, J. Kurose, C. Partridge, and E. W. Zegura. End-to-end routing behavior
in the internet. In IEEE/ACM Transactions on Networking, pages 601-615, 1996.
P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah, and A. Vahdat.
Pip: Detecting the Unexpected in Distributed Systems. In NSDI, 2006.

S. Sankar and M. Mandal. Concurrent runtime monitoring of formally specified
programs. IEEE Computer, 1993.

T. Savor and R. E. Seviora. Toward automatic detection of software failures. In
IEEE Computer, pages 68-74, Aug. 1998.

P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.
Access path selection in a relational database management system. In SIGMOD,
1979.

K. Sen, G. Rosu, and G. Agha. Online efficient predictive safety analysis of mul-
tithreaded programs. In Proceedings of TACAS 2004, pages 123-138, May 2004.
K. Sen, A. Vardhan, G. Agha, and G. Rosu. Efficient decentralized monitoring
of safety in distributed systems. In 262" International Conference on Software
Engineering (ICSE’04), pages 418-427, 2004.

O. Sokolsky, U. Sammapun, I. Lee, and J. Kim. Run-time checking of dynamic
properties. In Proceeding of the 5th International Workshop on Runtime Verifica-
tion (RV’05), Edinburgh, Scotland, UK, July 2005.

