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Abstract.  In this work we propose a new model for the extraction of bottom-
up  saliency.  It  presents  low  computational  complexity  compared  to  other 
models of the state of the art. It is based in biologically plausible mechanisms: 
the decorrelation and the distinctiveness  of  local  responses.  Decorrelation is 
achieved by applying principal component analysis over a set of multiscale low 
level features. Distinctiveness is measured using the Hotelling's T2 statistic. It is 
conceived to be used in a machine vision system, in which attention would 
contribute to enhance performance together with other visual functions. We will 
show  that  our  model  is  consistent  with  a  wide  variety  of  psychophysical 
phenomena that are referenced in the visual attention modeling literature, and 
that  it  outperforms  other  state  of  the  art  models  in  reproducing  these 
phenomena. 
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1   Introduction

The Human Visual System (HVS) has to face a huge computational complexity, as 
has been shown in visual search experiments [1]. It tackles this challenge through the 
selection  of  information  using  several  mechanisms.  In  the  basis  of  this  selection 
process are the visual attention mechanisms, including the data-driven ones, leading 
to  the  so  called  bottom-up  saliency.  In  the  last  decades,  the  interest  in  the 
understanding  of  this  attentional  component  and  the  appraisal  of  its  relative 
importance in relation to the top-down, knowledge-based mechanisms, has constantly 
raised.  Correspondingly,  an increasing number  of  approaches to  its  computational 
modeling is coming up. Besides, there exists an evident interest in the application of 
these models in the solution of technical problems requiring active vision approaches, 
ranging from robotics to image compression or object recognition.

Many of the models for bottom-up saliency proposed in the literature are based on 
abundant  evidences  from  psychophysical  experimentation.  Nothdurft  [2]  has 
proposed that  local  feature contrast  generally  attracts gaze.  In  the  same direction, 
Zetchsche [3] points out to the local contribution to the structure content as driving 
attention.  In  general,  most  models  of  bottom-up  saliency  assume  that  local 
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distinctiveness  is  the  basis  for  data-driven  attention.  Following  this  direction,  the 
already classic model of Itti  & Koch [4] proposed the iteration of center-surround 
competition processes to reach a powerful computational model of saliency. With a 
similar  approach  Le  Meur  et  al.  [5]  posed  a  scheme  using  a  multiscale  and 
multioriented decomposition, along with contrast sensitivity, visual masking, center-
surround competition and perceptual grouping. Recently, a different set of approaches 
to bottom-up saliency has been proposed based on similarity and local information 
measures.  In  these  models  local  distinctiveness  is  obtained  either  from  self-
information  [6][7],  mutual  information  [8][9],  or  from  dissimilarity  [10],  using 
different decomposition and competition schemes.

In  a  previous  work  [11]  we  studied  the  combination  of  scale  information 
decorrelation with center-surround (c-s) differences. There, we compared the obtained 
performance in visual search experiments with the model of Itti & Koch [4]. In that 
approach only achromatic information was taken into account. Moreover, that model 
was unable to correctly reproduce some important psychophysical phenomena tackled 
here. 

In this paper we propose a more efficient, simple and light approach to the problem 
of  modeling  bottom-up  saliency.  It  is  based  solely  in  the  decorrelation  of  scale 
information without the use of c-s differences. Hence, we turn back to the proposal of 
Olshausen & Field about the need of taking into account the decorrelation of neural 
responses when considering the behavior of a population of neurons subject to stimuli 
of  a  natural  image  [12].  That  means  considering  neurons  collectively,  instead  of 
individually.  This  is  believed  to  be  closely  related  to  the  important  role  of  Non 
Classical Receptive Fields (NCRF) in the functioning of HVS. Therefore, we start 
from  a  classic  multiscale  decomposition  on  two  main  feature  dimensions:  local 
orientation energy and color. We obtain the decorrelated responses applying PCA to 
the multiscale features. Then, we measure the statistical distance of each feature to the 
center  of  the  distribution  as  the  Hotelling's  T2 distance.  Finally,  we  apply 
normalization and Gaussian smoothing to gain robustness.  The resulting maps are 
firstly  summed, delivering local  energy and color conspicuities,  and then they are 
normalized and averaged, producing the final saliency map. 

It  is  worth noting that  we start  -like  probably most  models-  from a  controlled 
decomposition,  which  retains  important  information.  Thus,  it  is  suitable  for 
combination  with  top-down  modulation  approaches,  like  the  incorporation  of 
contextual influences or learning and recognition mechanisms. Unlike in the model of 
Bruce & Tsotsos [7], who use a decomposition based on independent components of 
patches from natural images, in our model it is very simple to actuate on (and from) 
scales, orientations or color components.

This approach reproduces a  wide variety of psychophysical  results,  all  of them 
closely related to the attentional function of the HVS. Hence, we will show how the 
model matches the nonlinearity against  orientation contrast;  the efficient  (parallel) 
and  inefficient  (serial)  search,  the  orientation  asymmetry,  the  presence-absence 
asymmetry and Weber's law, the influence of background on color asymmetries, and 
the capability in the prediction of eye fixation data. Therefore the model achieves a 
degree of validation that outperforms other state of the art models.

The paper  is  developed as follows. Section 2 is  devoted to describe the visual 
attention  model.  In  Section  3  we  present  the  experimental  work  carried  out  for 



validation of the model and the achieved results. Finally, Section 4 summarizes the 
paper and presents conclusions.

2   Model

Our model takes as input a color image codified using the Lab color model. In this 
way,  each  pixel  is  described  by  one  luminance  component  (L),  and  two  color 
opponent  components:  red/green  (a)  and  blue/yellow  (b).  Unlike  other 
implementations  of  saliency  [8][13]  this  election  is  based  on  a  widely  used 
psychophysical standard. We decompose the luminance image by means of a Gabor-
like bank of filters, in agreement with the standard model of V1. Since orientation 
selectivity is very weakly associated with color selectivity, the components  a and  b 
simply  undergo  a  multiscale  decomposition.  Hence,  we  employ  two  feature 
dimensions  -in  the  sense  proposed  by  Wolfe  [14]-:  color  and  local  energy.  By 
decorrelating  the  multiscale  responses,  extracting  from  them  a  local  measure  of 
variability, and further performing a local averaging, we obtain a unified and efficient 
measure of saliency.

2.1   Local Energy and Color Maps 

Local energy is extracted applying a bank of log Gabor filters [15] to the luminance 
components.  The  transfer  function  of  the  log  Gabor  filter  takes  the  following 
expression
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where ( , ρ α) are polar frequency coordinates and (ρi, αi) is the central frequency of the 
filter.

While the Gabor filter is non-zero for negative frequencies and presents a non-zero 
DC component, giving rise to artifacts, the log Gabor does not present this problem. 
Besides, it presents a symmetric profile in a logarithmic frequency scale. Hence, in a 
linear frequency scale it shows a long tail towards the high frequencies, providing a 
more localized impulse response. The impulse response is a complex valued function 
(with no analytical expression), whose components are a couple of functions in phase 
quadrature,  f and  h.  Hence,  the  response  of  a  log  Gabor  filter  with  scale  s and 
orientation o to a luminance image L is:

Respsox, y = L∗ logGabor sox,y  = L∗f sox ,y  L∗h sox , y  i (2)

The modulus of the complex response of this filter is a measure of the local energy 
of the input associated to the frequency band with scale s and orientation o [16][17]
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Regarding the color dimension, we obtain a multiscale representation for each of 
the opponent components  a and  b,  from the responses to a bank of log Gaussian 
filters.

logGauss =e
−

log2

2log 2n2 (4)

Thus, for each scale and color opponent component we get a real valued response 
map:

Resps a x , y  = a ∗ logGausssx,y 

Resps bx, y  = b∗ logGausssx, y
(5)

The parameters used here were: 4 scales spaced by one octave, 4 orientations (for 
local energy), minimum wavelength of 4 pixels, angular standard deviation of σα = 
37.5º, and a frequency bandwidth of 2 octaves.

2.2   Measurement of Distinctiveness

Variability and richness of structural content have been proven as driving attention in 
psychophysical experiments [3]. Here we have chosen a measure of distance between 
local  and global  structure  to  represent  distinctiveness.  But  before  estimating such 
distance,  we  need  to  preprocess  the  low  level  representation.  Observations  from 
neurobiology  show  decorrelation  of  neural  responses,  as  well  as  an  increased 
population sparseness in comparison to what can be expected from a standard Gabor-
like representation [18]. To decorrelate the multiscale information of each sub-feature 
(orientations and color components) we perform a PCA on the corresponding set of 
scales. Once scales are decorrelated, we extract the statistical distance at each point as 
the Hotelling's T2 statistic. Being xij a feature corresponding to pixel j and scale i, with 
i={1,...,S} and j ={1,...,N}, we compute the statistical distance T2

j of each pixel in the 
decorrelated coordinates

x=x 11  x1N
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T2 is defined as follows, where  xj is a multiscale feature vector with  S components 
and W is the covariance matrix.

T j
2=x j−x 'W−1x j−x  (7)

This should be viewed as the key point of our approach to the feature integration 
process. It  provides an efficient mechanism for the deployment of pop-out effects, 
widely observed in psychophysics experiments, by means of a multivariate measure 
of the distance from a feature vector associated to a point in the image to the average 
feature vector of the global scene, that is, a measure of the local feature contrast.

Fig. 1. Bottom-up Saliency Model.

Final  Map. The  final  saliency  map  is  obtained  normalizing  and  smoothing  the 
extracted maps, first within each feature dimension and next with the resulting local 
energy  conspicuity  and  color  conspicuity  maps.  In  this  way  we  obtain  a  unique 
measure of saliency for each point of the image.

Computational Complexity. The whole process involves two kinds of operations. 
Firstly, filtering for decomposition and smoothing has been realized in the frequency 
domain, as the product of the transfer functions of the input and the filters, using the 
Fast Fourier Transform (FFT) and its inverse (IFFT). This implies a computational 
complexity  of  O(k  N log(N) + N),  being k the number of  operations,  a  constant 
independent  of  the  image,  and  N the  number  of  pixels  of  the  image.  The  other 
operation is PCA with a complexity of  O(S3 + S2 N), being S the number of scales 
(dimensionality)  and  N the  number  of  pixels  (samples).  There  exist  methods that 
allow to reduce this complexity in relation to the dimensions [19]. In our case, as the 
number of scales is relatively small and remains constant, we are interested in the 
dependency on the number of pixels, being O(N). Therefore, the overall complexity 
of the algorithm, against the resolution of the image, is established by the use of the 
FFT, being O( N log(N) ).
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3   Experimental Results and Discussion

In this work we focus in showing the consistency of the model with a number of 
outstanding psychophysical results related to bottom-up attention in the HVS. Most of 
these experiments are yet classic in literature related to visual attention. All of them 
have been employed to validate any of the state of the art models cited here. They are 
related to different behaviors observed in the study of human attention: nonlinearity 
against  orientation  contrast,  efficient  (parallel)  and  inefficient  (serial)  search, 
orientation asymmetry, presence-absence asymmetry and Weber's law, and influence 
of background on color asymmetries. Finally a ROC analysis shows how the model 
predicts eye fixations better than other models of the state of the art on an open access 
image dataset.

We start proving the nonlinear behavior of the model against orientation contrast. 
Hence, examining figure 2 we see how saliency increases quickly from 10º to 30º-35º, 
an then it remains constant at a saturation value. This is in agreement with the already 
classic psychophysical experiment conducted by Nothdurft [20]. Other models like 
the proposed by Harel et al. [10] or Bruce and Tsotsos [7] do not reproduce this result 
on our images. At least with the code publicly provided by the authors, using the 
default configuration. This is also the case of the model of Itti and Koch [4][8].
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Fig. 2. Nonlinearity of saliency against orientation contrast. Four example images are shown.

Other main issue in the validation of a saliency model is related to the reproduction 
of the results of efficient search of certain feature singletons and the inefficient search 
of conjunction singletons. Of course, it is also very important what features give rise 
to this behavior. Thereby, we can see in figure 3 four typical examples to illustrate all 
of this. The first one is an image provided by Bruce with the code of his model of 
saliency  [7],  reproducing  a  typical  example  collected  by  Wolfe  [14].  As  we  see, 
character “2” does not stand out among the  fives, because it has not any different 
feature to produce pop-out nor parallel search. However, the tilted “5” does stand out, 
due to the unique orientation that it presents. In the same way, the red “5” stands out 
due to its unique color, and the smaller “5” stands out due to its unique size.

The three remaining images are also typical examples of color (second image) and 
orientation (third image) pop-out -this used by Itti & Koch [4]-, and serial search for a 



target  differing  from distractors  in  a  unique  conjunction  of  color  and  orientation 
(fourth image).

Fig. 3. Four examples related to efficient and inefficient search [14].

We show now how the saliency provided by the model allows to explain several 
psychophysical phenomena known as search asymmetries [21]. A couple of stimuli 
differing in a simple feature exhibit different detection times depending on which is 
the target and which is the distractor. Actually, this term encompasses phenomena of 
very different nature. It has been pointed, in most cases, that the name itself is not 
suitable. The reason is  that the underlying assumption of symmetric design of the 
experiment is wrong.

Fig. 4. In the upper row: images used to reproduce the orientation asymmetry (two first), and 
the  presence-absence  asymmetry  (four  remaining).  In  the  lower  row  the  corresponding 
saliencies are shown.

Orientation asymmetry seems to be however a real asymmetry, not related at all to 
an  asymmetric  design  of  the  experiment.  This  asymmetry  really  indicates  the 
existence of four privileged canonical orientations [21]. Thus the HVS is observed to 
present  a  different  behavior  depending  on  the  orientation,  therefore  arising  the 
asymmetry. Given that we have assumed the existence of four canonical orientations 
(like many other models), it should not be surprising that the model provides with the 
expected result. In this sense, we see in figure 5 that the relative saliency of a target 
tilted 80º  within vertical  distractors  is  clearly higher  than that  of  a  vertical  target 
within  80º  tilted  distractors,  so  much  so  that  in  the  first  case  occurs  a  pop-out, 
inexistent  in  the  second case.  Hence,  the  result  provided  by  the  model  perfectly 
matches the observed in psychophysical experiments.



The model reproduces also the asymmetric behavior exhibited by the HVS when 
target and  distractors only differ in the presence or absence of a simple element or 
feature. In the figure 4 we see two examples typically used to illustrate this fact. As 
we can see, when the target is the stimulus (circle, dash) with the additional vertical 
bar present, a pop-out is observed. However when the vertical bar is present in the 
distractors and absent in the target, there is no pop-out. This is again in agreement 
with the observed behavior of the HVS. The explanation in the frame of our model 
matches up with a fact pointed out by Zetchsche [3]: saliency is directly related to the 
structure content in the image. Therefore, the absence of structure doesn't contribute 
at all to the increase of saliency, but to its decrease. Or in other words, presence is not 
a feature. Then, this is not a true asymmetry since the underlying experiment design is 
not symmetric.

Another consequence of this presence/absence behavior is the so called Weber's 
law. This law states that an increase in the relative length in a given dimension gives 
place to a proportional increase of saliency [21]. In figure 5 we show four examples 
of the  20 images used to test this behavior in our model. The results provided present 
a very good match with the Weber's law. As we can see, saliency is linear respect to 
the  relative  extension  of  the  target.  This  result  is  also  reproduced by  the models 
proposed by Harel et al. [10] or Gao et al [8] . The model of Bruce and Tsotsos does 
not reproduce so well this linear behavior. Except for Gao et al. these comparisons 
have been made with the code publicly provided by the authors,  using the default 
configuration. On the other hand, the model of Itti and Koch fails in reproducing this 
law[4][8].
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Fig.  5. Saliency against relative increase in length exhibits a linear behavior. Four of the 20 
displays used are also shown.

Other important psychophysical result obtained by Rosenholtz et al. [22], shows 
the  way  in  which  background properties  influence  the  color  search  asymmetries. 
Consider  two  stimuli  of  the  same  luminance  differing  only  in  color.  These 
asymmetries consist in observing a different detection time in a visual search task 
when target and distractors are exchanged. In this context Rosenholtz et al observed 
that  background  properties  (color  and  luminance)  have  direct  effects  on  these 
asymmetry, to the point to be reversed, generated or suppressed. This challenges the 
denomination of asymmetry given to these phenomena, since it implies to forget the 
existence of the background, that breaks in fact the assumed asymmetry, explaining 



the results. In figure 6 we can see an example in which the model reproduces this 
asymmetry and its reversal under a change in background color, in the same way that 
was observed by Rosenholtz  et  al.  Unlike  Bruce  and Tsotsos  [7]  -who employed 
images elaborated by their selves- we use here reproductions of the images employed 
by Rosenholtz et al. in their experiments [22]. Hence, in the figure 6 we can see how 
on  a  gray  background  the  redder  stimulus  is  more  salient,  explaining  the  lower 
detection time in visual search reported by Rosenholtz et al.. Meanwhile, when the 
color of the background is changed to red, the situation is reversed and the less red 
target  becomes more salient  than the redder  target.  This  is  in agreement  with the 
detection time observed by in the experiments. 

Fig. 6. Example of color asymmetry reversal by a change in color background. 

Moreover, our model predicts a higher relative saliency of the redder target in the 
gray background than the less red target in the red background, again in agreement 
with the reported search detection times.  Note that  this  is  an asymmetry -both in 
experimental and model results-, not an antisymmetry.  In contrast, in the example 
provided by Bruce  and Tsotsos  [7],  their  model  seems to  show an antisymmetric 
behavior. This criticism must be taken with caution since they employed their own 
images, similar but still different to those used in experiments with humans.

We have also observed, in agreement with human behavior, an influence of the 
contrast of stimuli relative to background in the magnitude of the asymmetry. But it 
remains out of the scope of this work to quantitatively measure of this effect. On the 
other  hand,  Rosenholtz  et  al.  found  that  changes  in  color  background  can  also 
generate or suppress a color asymmetry. In figure 7 we see how the result provided by 
our model matches well with this behavior of the HVS.

On a gray background, a bluer target is  more salient than a less blue target, in 
agreement with the observed lower detection time. Meanwhile, on a red background 
the asymmetry almost disappears, with only a slightly higher saliency of the less blue 
target  compared  to  the  bluer.  This  result  appears  to  be  consistent  again  with  the 
results reported by Rosenholtz et al. [22].

The model of  Bruce and Tsotsos,  which capable of  capturing an antisymmetry 
(more  than  an  asymmetry),  on  images  of  their  own  -not  the  ones  used  in 
psychophysical  experiments-is  not,  however,  able  to  reproduce  correctly  other 
important results like the suppression or generation of an asymmetry by a change in 
background color. On the other hand, their model provides with a measure of saliency 
much less graded than the model proposed here.



Fig. 7. Example of color asymmetry suppression by a change in color background.

Other state of the art models, like the model by Gao et al [8] or the model by Harel 
et  al  [10],  have  not  shown either  the capability  of  reproducing these  results.  The 
model proposed by Rosenholtz has been specifically designed to explain these results, 
and it is not clear how it would capture other important results like orientation or size 
pop-out. It  remains also questionable its capability of reproducing other important 
results, specially with images constructed in different color spaces. In this sense, it is 
worth noting that we have used the Lab color space to decompose the image, which is 
different to the one employed by Rosenholtz et al. to synthesize their images. And this 
is very interesting, since even the stimuli symmetry may disappear when the color 
space to represent them is replaced. Therefore, we think that it could be interesting to 
do experiments similar to these but with stimuli that are symmetric in different color 
spaces, to see what computational models reproduce better the ensemble of results.

Finally  we  compare  the  performance  of  the  model  in  predicting  human  eye 
fixations through ROC analysis. We use an open access image dataset, published by 
Bruce & Tsotsos. It is made up of 120 images, and of the corresponding fixation data 
for 20 different subjects. A detailed description of the eye-tracking experiment can be 
found in [6]. We can see in table 1 the obtained AUC value, that outperforms those 
obtained by the models of Bruce & Tsotsos and Gao et al. on the same image dataset.

Table 1.  AUC values obtained from ROC analysis. (*published by the authors).

Model: T2-Based Bruce and Tsotsos 2009* [7] Gao et al. 2008* [9]

AUC: 0.791 0.781 0.769

The way in which ROC analysis is performed is often not explicit. In fact, they 
have been compared AUC values  computed in different manners.  We have opted 
here, like many authors [9][10][23], for computing a ROC curve for each image and 
next averaging the result. Bruce and Tsotsos [7] compute instead a unique curve for 
all of the images. Results are, in fact, very close using both methods, at least with this 
dataset. There are also several approaches in treating uncertainty. Hence, Harel et al. 
or Gao et al. do not provide with it. Bruce and Tsotsos use a procedure [24] that does 
not reflect  the inter-scene variance,  and only affects in  practice  the third decimal 
value. We think that this requires a deeper analysis, in the line pointed in [25].  It 



would be worth checking the influence of the type of scene in the result. In fact, the 
images  in  this  dataset  present  mainly  urban  or  indoor  scenes,  which  lack  of 
representativity of possibles contexts. We leave this task for a future work since it 
remains out of the scope of this paper, given the extension required.

4   Conclusions

In this work we have described a simple model of low computational complexity, that 
resorts  to  the  decorrelation of  the  responses  to  a  Gabor-like  bank  of  filters.  This 
mechanism is biologically plausible and could have an important role in the influence 
of NCRF when V1 cells are subjected to natural stimuli [11][17].

We  have  shown  the  agreement  of  our  model  with  an  important  set  of 
psychophysical phenomena. To our knowledge, none of the models of the state of the 
art cited here, have been validated with all of these results at once. On the other hand 
these results are highly relevant references in the literature related to visual attention 
[14][20][21][22]. Moreover, all of them have served to support the validity of any of 
the referred models.

Hence our model suitably reproduces the nonlinear behavior against  orientation 
contrast; the efficient search phenomena on orientations, color and size, as well as the 
inefficient search of conjunctions of orientation and color; the orientation asymmetry; 
the  presence/absence  asymmetry  and  the  Weber's  law;  and  the  influence  of 
background in color search asymmetries (we expect that a quantitative comparison 
would reinforce this assessment). Finally by means of a ROC analysis we can claim 
that our model predicts human fixations better than other models of the state of the art 
on an open access image dataset.

On the other hand the computational complexity of our model is O(N log(N)). This 
value clearly improves the ones achieved by other models. For instance Harel et al. 
report a computational complexity of O(N4) for their model.

Finally, our model, like that of Bruce & Tsotsos [7], avoids any parameterization 
of the process, beyond the initial decomposition of the image. However we maintain 
an initial decomposition which is ordered and suitable for the incorporation, from the 
beginning, of top-down influences. This tunable design, in the line of many other 
approaches, makes the model more suitable for machine vision purposes.
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