
A Sliding Window Algorithm for Relational

Frequent Patterns Mining from Data Streams

Fabio Fumarola, Anna Ciampi, Annalisa Appice, Donato Malerba

Dipartimento di Informatica, Università degli Studi di Bari
via Orabona, 4 - 70126 Bari - Italy

{ffumarola, aciampi, appice, malerba}@di.uniba.it

Abstract. Some challenges in frequent pattern mining from data streams
are the drift of data distribution and the computational efficiency. In this
work an additional challenge is considered: data streams describe com-
plex objects modeled by multiple database relations. A multi-relational
data mining algorithm is proposed to efficiently discover approximate re-
lational frequent patterns over a sliding time window of a complex data
stream. The effectiveness of the method is proved on application to the
Internet packet stream.

1 Introduction

A data stream is a sequence of time-stamped transactions which arrive on-line,
at consecutive time points. The large volume of data continuously generated in
short time and the change over time of statistical properties of data, make tradi-
tional data mining techniques unsuitable for data streams. The main challenges
are avoiding multiple scans of the entire data sets, optimizing memory usage,
and mining only the most recent patterns. In this work, we consider a further
issue: the stream is a sequence of complex data elements, composed of several ob-
jects of various data types are someway related. For instance, network traffic in
a LAN can be seen as a stream of connections, which have an inherent structure
(e.g., the sequence of packets in the connection). The structure of complex data
elements can be naturally modeled by means of multiple database relations and
foreign key constraints ((multi-)relational representation). Therefore, we face a
problem of relational data stream mining.

The task considered in this paper is frequent pattern mining. The proposed
approach is based on the sliding window model, which completely discard stale
data, thus saving memory storage and facilitating the detection of the distri-
bution drift. This model is common to several algorithms for frequent pattern
mining in data streams [9, 11, 6, 13]. However, all these algorithms work on a
single database relation (propositional representation) and are not able to deal
directly with complex data stored in multiple database relations.

Although it is possible to “propositionalize” relational data, i.e., transform
them into a propositional form by building features which capture relational
properties of data, this transformation can cause information loss. Multi-relational

data mining (MRDM) algorithms [4], which can navigate the relational struc-
ture in its original format, generate potentially new forms of evidence (relational
patterns), which are not readily available in a propositional representation [5].
Several MRDM systems allow frequent patterns mining. Two representative ex-
amples of the state-of-the-art are WARMR [3] and SPADA [7], which both rep-
resent relational data and domain (or background) knowledge à la Datalog [2].
However, these systems are not designed to efficiently process data streams and
to capture the possible drift of data distribution.

In this work, we propose a novel MRDM algorithm, called SWARM (Sliding
Window Algorithm for Relational Pattern Mining), which discovers approxi-
mate frequent relational patterns over a sliding time window of a relational data
stream. SWARM is a false positive oriented algorithm, i.e., it does not discover
any false negative frequent pattern. The contributions of SWARM are threefold.
First, the multi-relational approach to complex data stream mining. Second, the
use of the SE-tree to efficiently store and retrieve relational patterns. Third, the
efficient and accurate approximation of the support of the frequent patterns over
the sliding time window.

The paper is organized as follows. Section 2 introduces some preliminary con-
cepts. The algorithm is described in Section 3, while experiments on an Internet
packet stream are reported in Section 4. Finally, conclusions are drawn.

2 Preliminary Concepts and Definitions

In this work, objects stored in distinct relations of a database D play different
roles. We distinguish between the set S of reference (or target) objects, which are
the main subject of analysis, and the sets Rk, 1 ≤ k ≤ M , of task-relevant (non-
target) objects, which are related to the former and can contribute to define
the units of analysis. It has been proved that this “individual centered” rep-
resentation has several computational advantages, both theoretical (e.g., PAC-
learnability) and practical (efficient exploration of the search space) [1].

Henceforth, we adopt a logic framework for the representation of units of
analysis, and we categorize predicates into three classes. The unary key predi-
cate identifies the reference objects in S (e.g., connection in Example 1). Binary
structural predicates either relate task-relevant objects (e.g., next) or relate refer-
ence objects with task-relevant objects (e.g., packet) in the same unit of analysis.
Property predicates define the value taken by a property. They can be either bi-
nary, when the attribute represents a property of a single object (e.g., nation
source), or ternary, when the attribute represents a property of a relationship
between two objects (e.g., distance between consecutive packets).

Example 1. A unit of analysis formed by a connection c (reference object) and
a sequence of packets p1, p2, ... (task-relevant objects) is reported below:

connection(c), time(c,12:05), sourceNation(c, japan), ...,packet(c,p1),
time(p1,12:05), number(p1,1), packet(c,p2), time(p2,12:06), number(p2,2),
next(p1,p2), distance(p1,p2,1), packet(c,p2), ...

A relational pattern is a set of atoms (atomset). An atom is a predicate
applied to a tuple of terms (variables or constants). Variables denote objects in
S or some Rk, while constants denote values of property predicates.

Definition 1 (Relational pattern). A relational pattern P is a set of atoms
p0(t0), {pi(ti1 , ti2)}i=0,...,n, {pj(tj1 , tj2 , tj3)}j=0,...,m

where p0 is the key predicate, pi (i = 0, . . . , n) are either structural predicates or
binary property predicates, pj (j = 0, . . . ,m) are ternary property predicates.

Example 2. A relational pattern is reported below:
“connection(C), packet(C,P), number(P,4), next(P,Q), distance(P,Q,3ms),
number(Q,2), next (Q,R)”.

The support of a relational pattern P , denoted as sup(P |D), is the percentage
of units of analysis in D “covered” (i.e., logically entailed) by P . P is frequent
if sup(P) is greater than a user-defined threshold σ.

Following the sliding window model, the units of analysis in D depend on a
time-sensitive sliding window.

Definition 2 (Time-sensitive sliding-window). Given a time point p, the
set of units of analysis arriving in the period [t − p + 1, t] forms a slide B. Let
Bi be the i-th slide, the time-sensitive sliding-window Wi associated with Bi is
the set of w consecutive slides from Bi−w+1 to Bi.

The window moves forward by a certain amount of unit of analysis by adding
the new slide (Bi+1) and dropping the expired one (Bi−w+1). The number of
units of analysis that are added to (and removed from) each window is |Bi|. We
assume that a unit of analysis is associated with a timestamp and data elements
forming a single unit of analysis flow in the stream at the same time.

3 The Algorithm

A buffer continuously consumes the stream units of analysis and pours them
slide-by-slide into SWARM system. After a slide goes through SWARM, it is
discarded. SWARM operations consist of discovering relational patterns over a
slide, maintaining relational patterns over a window and approximating frequent
relational patterns over a window. Input parameters are: the minimum support
threshold σ, the maximum support error ǫ (ǫ < σ), the period p of a slide, the
number w of slides in a window, and the maximum depth MaxDepth of patterns.

3.1 Relational Pattern Discovery over a Slide

Once a slide flows in the buffer, relational patterns are locally discovered by
exploring the lattice of relational patterns ordered according to a generality order
(≥). This generality order is based on θ-subsumption [10] and is monotonic with
respect to support. The search proceeds in a Set Enumerated tree (SE-tree)

search framework [12], starting from the most general pattern (the one with
only the key predicate), and iteratively alternating the candidate generation
and candidate evaluation as in the level-wise method [8]. The SE-tree search
framework has several advantages. First, the SE-tree enumerates all possible
patterns by allowing a complete search. Second, it prevents the generation and
evaluation of candidates which are equivalent under θ-subsumption. Third, it
effectively exploits the monotonicity property of ≥ to prune the search space.

A node of the SE-tree is associated with a progressive natural index and it
is represented by the head and the tail. The head of the root is the pattern that
contains only the key predicate. The tail is the ordered set of atoms which may
be appended to the head by the downward refinement operator ρ.

Definition 3 (Downward refinement operator). Let P be a relational pat-
tern. Then ρ(P) = {P ∪ {p(. . .)}|p is either a structural predicate or a property
predicate that shares at least one argument with one of the atoms in P}.

Let n[head, tail] be a node of the SE-tree and q(. . .) be an atom in tail(n).
Then n has a child nq[head, tail] whose head is defined as follows:

head(nq) = head(n) ∪ q(. . .). (1)

If q is based on a property predicate, its tail is defined as follows:

tail(nq) = Π>qtail(n) (2)

where Π>qtail(n) is the order set of atoms stored after q in tail(n). Differently,
if q is based on a structural predicate, its tail is defined as follows:

tail(nq) = Π>qtail(n) ∪ {r(. . .)} (3)

where {r(. . .)} is a set of atoms r(. . .). Each r(. . .) is an atom that belongs
to one of the refinement ρ(head(nq)) under the conditions that r(. . .) shares
variables with q(. . .) and r(. . .) is not included in tail(n). When r(. . .) is based
on a structural predicate, one of its arguments must be a new variable.

The monotonicity property of ≥ with respect to support makes the expansion
of infrequent nodes (i.e., nodes whose local support is less than ǫ) useless. In
addition, we prevent the expansion of nodes at a depth greater than MaxDepth.

3.2 Relational Pattern Maintenance over a Window

Distinct sets of relational patterns are discovered for each slide. The naive solu-
tion is to keep in memory a distinct SE-tree for each slide of the window. This
would lead to enumerate several times relational patterns which are discovered
in distinct slides. To reduce memory usage, a single SE-tree is maintained on
the window. At this aim, each node n of the SE-tree maintains a w sized sliding
vector sv(n), which stores one support for each slide in the window. By default,
the local support values which are stored in sv(n) are set to unknown. According

to the sliding model when a new slide flows in the buffer, the support vector is
shifted on the left in order to remove the expired support. In this way, only the
last w support values are maintained in the nodes of the SE-tree.

The maintenance of the SE-tree proceeds as follows. When a relational pat-
tern Pn is discovered over a slide B, we distinguish between two cases, namely,
Pn is enumerated in the SE-tree or not. In the former case, the SE-tree is ex-
panded with the new node n which enumerates Pn, while in the latter case the
node n already exists in the SE-tree and sv(n) is shifted on the left. In both
cases, the value of support sup(Pn|B) is computed over B and is then stored
in the last position of sv(n). Finally, nodes are pruned when they enumerate
relational patterns which are unknown on each slide of the window.

3.3 Relational Frequent Pattern Approximation over a Window

A relational pattern Pn is identified as approximately frequent over W iff the
approximate support supA(Pn|W) estimated over W is greater than σ. The ap-
proximate support of Pn is computed on the basis of the local support values
which are stored in sv(n).

supA(Pn|W) =

w∑

i=1

(sv(n)[i] × |Bi|)/

w∑

i=1

|Bi| (4)

When the local support sv(n)[i] is unknown over a slide Bi, it is estimated
by using the known support of an ancestor of Pn. In particular, the pattern
Qm is found such that Qm is the most specific ancestor of Pn in the SE-tree
with a known support value over Bi. Theoretically, the complete set of at worst
2k − 1 ancestors should be explored, where k denotes the pattern length. This
solution may be impractical for high value of k. To improve efficiency, only the
ancestors along the path from n to the root are truly explored. This way, the
time complexity of this search is O(k).

Since the SE-tree enumerates patterns discovered by using the maximum
support error ǫ as support threshold, Qm can either be infrequent (sup(Qm|Bi

) <
ǫ), or sub-frequent (ǫ ≤ sup(Qm|Bi

) < σ) or frequent (sup(Qm|Bi
) ≥ σ). In the

first case, the support of Qm is used to estimate the support of Pn. In the other
two cases the support of Pn is correctly determined as zero. Indeed, the fact
that a pattern is refined until it is not infrequent, except when ρ refinements of a
pattern have zero valued support over the slide, and the monotonicity property
of ≥ with respect to support, ensure that sup(Pn|Bi

) = 0.

4 Experiments

We evaluate SWARM on a real Internet packet stream that was logged by the
firewall of our Department, from June 1st till June 28th, 2004. This stream con-
sists of 380,733 ingoing connections for a total of 651,037 packets. A connection
is described by means of six properties (e.g. service, protocol, ...). A packet is

described by means of the order of arrival of the packet within the connection.
This order of arrival allows us to represent a relationship of sequentiality between
270,304 pairs of consecutive packets. The time distance between two packets is
a property of each pair of consecutive packets. The stream is segmented in time
slides with a period p and approximate relational frequent patterns are discov-
ered on sliding windows covering w consecutive slides. Experiments are run by
varying p (p = 30, 60 minutes), w (w = 6h/p, 12h/p, 18h/p) and ǫ (ǫ = 0.5, 0.7).
σ is set to 0.7 and MaxDepth is set to 8.

Relational patterns discovered by SWARM are compared with relational pat-
terns discovered by a multi-relational implementation that we have done of the
algorithm SW [6]. Initially, we analyze the total number of false positive patterns
which are discovered over the sliding windows of the entire stream. No false neg-
ative pattern is discovered by both SWARM and SW due to the overestimation
of the support. The number of false positive patterns is reported in Table 1.
False positive are those approximate patterns which are not included in the set
of true frequent patterns we have directly discovered over the entire windows.
These results confirm that SWARM discovers a lower number of false positive
than SW by providing a more significant approximation of support when local
support values are unknown. Additionally, the number of false positive patterns
is significantly lower when sub-frequent candidates (ǫ = 0.5 < σ = 0.7) are lo-
cally generated at slide level. As expected, the number of false positive patterns
increases by enlarging the window size and/or reducing the slide period.

Table 1. The total number of false positive patterns discovered on the entire stream:
comparison between SWARM and SW. σ = 0.7.

Experimental Setting SWARM σ = 0.7 ǫ = 0.5 SWARM σ = ǫ = 0.7 SW

p = 30 min w = 12 1 42 145
p = 30 min w = 24 6 68 203
p = 30 min w = 36 8 42 240
p = 60 min w = 6 0 27 68
p = 60 min w = 12 3 28 104
p = 60 min w = 18 3 23 135

Further considerations are suggested by the analysis of the absolute error
of the approximated support, averaged over the true positive patterns. Only
the sliding windows where the error is greater than zero are plotted in Figure 1.
Due to space limitations, the plot concerns only the parameter setting p = 30, 60
minutes and w = 12h/p, but the considerations we report below can be extended
to other settings we tried. We observe that SWARM always exhibits a lower error
rate than SW. Additionally, the discovery of sub-frequent local patterns (ǫ < σ)
makes more accurate the approximation of the support.

A different perspective of the results is offered by the comparison of the
relational patterns discovered by both SWARM and SW over the sliding windows
that cover the same portion of the data stream, but are generated with different

p = 60 minutes p = 30 minutes

Fig. 1. Average absolute error rate: SWARM with ǫ = 0.5 and ǫ = 0.7 vs. SW.

w = 6h/p w = 12h/p w = 18h/p

Fig. 2. Average absolute error rate of SWARM (θ = 0.7 and ǫ = 0.5): p = 60 minutes
vs. p = 30 minutes.

slide period. Although the same number of false positive patterns is discovered
independently from the slide period, some differences are observed in the error
rate plotted in Figure 2. The general trend is that the error decreases by enlarging
the period of a slide. Few exceptions are observed with greater values of w.

Statistics on the elapsed time are shown in Figure 3. The discovery of ap-
proximate frequent patterns on a slide-by-slide basis is more efficient than the
discovery of exact frequent patterns on the entire window. As expected, elapsed
time decreases by reducing the slide period.

Fig. 3. Elapsed time: discovering approximate frequent patterns on a slide-by-slide
basis vs. discovering exact frequent patterns on the entire window.

5 Conclusions

We present a novel multi-relational data mining algorithm for approximate fre-
quent relational pattern discovery over sliding time windows of a data stream.
The algorithm is evaluated in a real Internet packet stream. Experiments prove
that our algorithm is both accurate and efficient. In a future work, we intend
to investigate the quality of the approximation the unknown local support of a
pattern when it is based on all ancestors of the pattern and not only the most
specific ancestor along the path to the top of SE-tree.

6 Acknowledgments

This work is supported by both the Project “Scoperta di conoscenza in domini
relazionali” funded by the University of Bari and the Strategic Project PS121
“Telecommunication Facilities and Wireless Sensor Networks in Emergency Man-
agement” funded by Apulia Region.

References

1. H. Blockeel and M. Sebag. Scalability and efficiency in multi-relational data mining.
SIGKDD Explorations, 5(1):17–30, 2003.

2. S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Springer-
Verlag, New York, NY, 1990.

3. L. Dehaspe and L. De Raedt. Mining association rules in multiple relations. In the

7th International Workshop on Inductive Logic Programming, ILP 1997, volume
1297, pages 125–132. Springer-Verlag, 1997.

4. S. Džeroski and N. Lavrač. Relational Data Mining. Springer-Verlag, 2001.
5. S. Kramer. Relational Learning vs. Propositionalization: Investigations in Inductive

Logic Programming and Propositional Machine Learning. PhD thesis, 1999.
6. C. Lin, D. Chiu, and Y. Wu. Mining frequent itemsets from data streams with a

time-sensitive sliding window. In Proc. of the SIAM Int. Data Mining Conf., 2005.
7. F. A. Lisi and D. Malerba. Inducing multi-level association rules from multiple

relations. Machine Learning, 55(2):175–210, 2004.
8. H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge

discovery. Data Mining and Knowledge Discovery, 1(3):241–258, 1997.
9. B. Mozafari, H. Thakkar, and C. Zaniolo. Verifying and mining frequent patterns

from large windows over data streams. In Proc. Int. Conf. on Data Engineering,
pages 179–188, Los Alamitos, CA, 2008. IEEE Computer Society.

10. G. Plotkin. A note on inductive generalization. Machine Intelligence, 5:153–163,
1970.

11. J. Ren and K. Li. Find recent frequent items with sliding windows in data streams.
In Proc. 3rd Int. Conf. on Information Hiding and Multimedia Signal Processing,
pages 625–628. IEEE Computer Society, 2007.

12. R. Rymon. An SE-tree based characterization of the induction problem. In Proc.

Int. Conf on Machine Learning, pages 268–275. Morgan Kaufmann, 1993.
13. C. Silvestri and S. Orlando. Approximate mining of frequent patterns on streams.

Intelligent Data Analysis, 11(1):49–73, 2007.

