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Abstract. Within-network regression addresses the task of regression in
partially labeled networked data where labels are sparse and continuous.
Data for inference consist of entities associated with nodes for which
labels are known and interlinked with nodes for which labels must be
estimated. The premise of this work is that many networked datasets
are characterized by a form of autocorrelation where values of the re-
sponse variable in a node depend on values of the predictor variables of
interlinked nodes. This autocorrelation is a violation of the independence
assumption of observation. To overcome to this problem, the lagged pre-
dictor variables are added to the regression model. We investigate a com-
putational solution for this problem in the transductive setting, which
asks for predicting the response values only for unlabeled nodes of the
network. The neighborhood relation is computed on the basis of the
node links. We propose a regression inference procedure that is based
on a co-training approach according to separate model trees are learned
from both attribute values of labeled nodes and attribute values aggre-
gated in the neighborhood of labeled nodes, respectively. Each model
tree is used to label the unlabeled nodes for the other during an iter-
ative learning process. The set of labeled data is changed by including
labels which are estimated as confident. The confidence estimate is based
on the influence of the predicted labels on known labels of interlinked
nodes. Experiments with sparsely labeled networked data show that the
proposed method improves traditional model tree induction.

1 Introduction

A data network (also called networked data) consists of entities, generally of
the same type such as web-pages or telephone accounts, which are associated
with the nodes of the network and which are interlinked with other nodes via
various explicit relations (or edges) such as hyperlinks between web-pages or
people calling each other. Over the past few years data networks such as sensor
networks, communication networks, financial transaction networks and social
networks have become ubiquitous in everyday life. This ubiquity of data net-
works motivates the recent focus of research in data mining to extend traditional
inference techniques in order to learn in data networks.



Several issues challenge the task of learning in network data, the most impor-
tant being the consideration of various forms of autocorrelation which may affect
data networks. Different definitions of autocorrelation are in use depending on
the field of study which is being considered and not all of them are equivalent.
Here autocorrelation is defined as the property that a value observed at a node
depends on the values observed at neighboring nodes in the network. Autocorre-
lation has been justified in several ways, such as Tobler’s first law of geography
[20] and the homophily’s principle [14], according to the specific application
domain.

The major difficulty due to the autocorrelation is that the independence
assumptions, which typically underlies machine learning methods, are no longer
valid. For example, the violation of the instance independence has been identified
as the main responsible of poor performance of traditional machine learning
methods [16]. To remedy the negative effects of the violation of independence
assumptions, autocorrelation has to be explicitly accommodated in the learned
models.

In predictive models, where response variables depend on both predictor vari-
ables and an error term, autocorrelation can be expressed in three different ways,
by correlating: 1) the error terms of neighboring nodes; 2) the response variables
of neighboring nodes; 3) the response variable with the predictor variables of
neighboring nodes. In spatial data analysis, these three types of predictive mod-
els are respectively known as spatial error models, spatial lag models and spatial
cross-regressive models [18]. As observed in [2], the first two types of models
are global in scope, in the sense that an error term or a dependent variable
at a location (node of a network) has a spillover effect on all other locations,
while cross-regressive models are local in scope, since the effects are confined
to the neighbors of each observation. In spatial data analysis, cross-regressive
models make more sense from a theoretical point of view [1] and present the
additional advantage of being easier to use. In this paper we face the problem of
learning predictive (regression) models in data networks and we deal with the
autocorrelation issue by considering cross-regressive models.

The consideration of partially labeled data networks, where labeled entities
are possibly interlinked to unlabeled entities and vice-versa, adds a further degree
of complexity, since it is difficult to separate data into training and test sets. In-
deed, labeled data would serve as training data and subsequently as background
knowledge necessary for labeling entities in the test set. This consideration mo-
tivates the investigation of the learning problem in a setting different from the
classical inductive one, where the prediction model is built by considering only
a finite set of labeled data (training set) and it is then used to make predic-
tion on any possible instance. In this work, we consider the transductive setting
[21], where both labeled and unlabeled data are used to build the model and
predictions are confined to unlabeled data available when learning starts. More
precisely, the idea behind transductive inference (or transduction) is to analyze
both the labeled data L and the unlabeled data U to build a model which predicts



(exlusively) data in U as accurately as possible. Therefore, in the transductive
setting, difficulties due to the separation of training and test set are overcome.

The data mining task considered in this work is transductive within-network
regression, which is a variant of the classification task recently investigated in
[11] for categorical labels. Given a fully described network (nodes and edges) for
which continuous labels are provided for only some of the nodes, the goal is to
determine labels of the rest of the nodes in the network. We propose a learning
algorithm, named ITL (Iterative Transductive Learner), which capitalizes on the
strengths of both model tree induction and transductive learning to effectively
solve the given problem when labels of data networks are originally sparse and
possibly scarce. The specific contributions of this work are highlighted as follows:

1. The combination of iterative transductive learning with the co-training paradigm
in order to both generate cross-regressive models and bootstrap from a small
set of labeled training data via a large set of unlabeled data.

2. Prediction of continuous labels is based on model trees [3], which do not
impose any a priori global structure (e.g., linear) of the regression surface.
Model trees are build on two views of data, as required by the co-training
paradigm. Each model tree labels the unlabeled data for the other during
the learning process.

3. The use of co-training paradigm allows us to learn two different model trees:
a model tree that identifies the correlation between the label of an entity
and the attribute values of the same entity and a model tree that identifies
the correlation between the label of an entity and the attribute values in the
neighborhood of the entity. Each model tree labels the unlabeled data for
the other during the learning process.

4. We present some procedures to estimate the confidence of predicted label(s)
through consulting the influence of the labeling of unlabeled entities in a
model tree based re-prediction of the labeled entities which are interlinked
to the unlabeled one(s).

5. We demonstrate that our approach is robust to both sparse labeling and
low label consistency, performing well consistently across a range of data
network where traditional model tree induction fails.

The rest of the paper is organized as follows. In Section 2, we review related
work. We present the formal definition of the task in Section 3 and our proposed
method in Section 4. Section 5 describes the experimental methodology and
results. Finally, Section 6 concludes the work.

2 Related Work

Regression inference in data network is still a challenging issue in machine learn-
ing and data mining. Due to the recent efforts of various researchers, numerous
algorithms have been designed for modeling a partially labeled network and pro-
viding estimates of unknown labels associated with nodes. Anyway, at the best



of our knowledge, these algorithms address the prediction problem only in the
classification case, that is, when labels are categorical.

Currently, the main research in this area is in the thrust of network learning
and graph mining. Network learning assumes that data for inference are already
in the form of a network and exploits the structure of the network to allow
the collective inference. Collective inference allows to infer various interrelated
values simultaneously. It is used in network learning since it permits to estimate
neighboring labels which influence one another [12, 9, 19]. Since exact inference
is known to be an NP-hard problem and there is no guarantee that data network
satisfy the conditions that make exact inference tractable for collective learning,
most of the research in collective learning has been devoted to the development
of approximate inference algorithms.

Some of the popular approximate inference algorithms are the iterative in-
ference, the Gibbs sampling, the loopy belief propagation and the mean-field
relaxation labeling. An outline of strengths and weakness of these algorithms is
reported in [19]. In general, one of the major advantages of collective learning
lies in its powerful ability to learn various kinds of dependency structures (posi-
tive vs. negative autocorrelation, different degrees of correlation and so on) [10].
However, as pointed out in [15], when the labeled data is very sparse, the per-
formance of collective classification might be largely degraded due to the lack
of sufficient neighbors. This is overcome by incorporating informative “ghost
edges” into the networks to deal with sparsity issues [13, 15].

Interestingly learning problems similar to the tasks addressed in network
learning have been recently addressed outside the areas of network learning and
graph mining. This second area of work has not been cast as a network learning
problem, but rather in the area of semi-supervised learning in a transductive
setting [21] where a corpus of data without links is given. The basic idea is to
connect data into a weighted network by adding edges (in various ways) based
on the similarity between entities and to estimate a function on the graph which
guarantees the consistency with the label information and the smoothness over
the whole graph [23]. The constraint on smoothness implicitly assumes positive
autocorrelation in the graph, that is, nearby nodes tend to share the same class
labels (i.e., homophily).

A prominent achievement in semi-supervised learning is represented by the
co-training paradigm [4] where independent views, i.e., distinct sets of attributes,
of labeled and unlabeled data are available for deriving separate learners. Predic-
tions of each learner of unlabeled data are then used to augment the training set
of the other within an iterative learning process. Co-training is already used to
design regression algorithms in semi-supervised learning. Brefeld et al. [5] use co-
training to formulate a semi-supervised least square regression algorithm, where
co-training is casted as a regularized risk minimization problem in Hilbert spaces.
Several data views are obtained for learning from different instance descriptions,
views, and/or different kernel functions. Zhou and Li [22] apply co-training to
learn k-NN regression by adopting a single attribute set but considering distinct
distance measures for the two hypotheses.



3 Problem Definition and Notations

A network is a set of entities connected by edges. Each entity is called node of
the network. A number (which is usually taken to be positive) called weight is
associated with each edge. In a general formulation, a network can be represented
as a (weighted) graph that is a set of nodes and a ternary relation which represent
both the edges between nodes and the weight associated to each edge. Formally,

Definition 1 (Data Network). A data network N is a pair (V, E), where:

1. V is a set of nodes, and
2. E is a set of weighted edges between nodes, that is,

E = {〈u, v, w〉|u, v ∈ V, w ∈ R+}.
In this work, each node of the network is associated with a data observation

(x, y) ∈ X × Y . X is a feature space spanned by m predictor variables Xi with
i = 1, . . . , m while Y is the possibly unknown response variable (or label) with
a range in R. Additionally, labels are typically sparse in the network, that is,
nodes for which labels are known may be interlinked with nodes for which labels
must be estimated. In several real cases, labels are also scarce since the manual
annotation of large data sets can be very costly. In this data context, the prob-
lem of regression consists in predicting the labels of unlabeled nodes as accurate
as possible. The regression problem is formulated in network learning as follows.

Given:

1. the labeled node set L ⊂ X × Y ;
2. the projection of the unlabeled (working) node set U = V − L on X;
3. the ternary relation E ⊂ V × V × R+;
4. the neighborhood function ηE : V �−→ 2V ×R

+
such that:

ηE(u) = {(v1, w1), . . . , (vk, wk)} with (u, vi, wi) ∈ E, i = 1 . . . k

Find an estimate Ŷ for the unknown value of response variable Y for each node
u ∈ U such that ŷu is as accurate as possible.

An algorithmic solution to this problem is reported in the next Section. The
learner receives full information (including labels) on the nodes of L and partial
information (without labels) on the nodes of U as well as weighted edges in E and
is asked to predict the labels of the nodes of U . The algorithm is formulated in the
original distributional-free transductive setting [21] and requires that both L and
U are sampled from the node set V without replacement. This means that, unlike
the standard inductive setting, the nodes in the labeled (and unlabeled) set are
supposed to be mutually dependent based on the existence of a link (transitively)
connecting them. Vapnik introduced an alternative transductive setting which
is distributional, since both T and W are assumed to be drawn independently
and identically from some unknown distribution. As shown in [21](Theorem 8.1),
error bounds for learning algorithms in the distribution-free setting apply to the
more popular distributional transductive setting. This justifies our focus on the
distributional-free setting.



Algorithm 1 Top-level description of the Iterative Transductive Learner in Co-
training style.
1: ITL(L, U, E)
2: Input
3: the labeled node set L ⊂ X× Y ;
4: the projection of the unlabeled node set U = V − L on X;
5: the ternary relation E ⊂ V × V × R

+;
6: Output
7: an estimate of unknown labels of nodes in U ;
8: begin
9: L← laggedPredictorVariables(L, V, E); U ← laggedPredictorVariables(U, V, E);

10: L0 ← L; U0 ← U ; L1 ← L; U1 ← U ;
11: i← 1;
12: repeat
13: change← false;
14: t0 ←learn(L0); t1 ←learn(L1);
15: P0 ←predictConfidentLabels(t0, U0, L0, E); P1 ←predictConfidentLabels(t1, U1, L1, E);
16: if P0 �= � or P1 �= � then
17: change← true;
18: for e ∈ P0 do
19: L1 ← L1 ∪ {〈instance(e, U1), ŷe〉}; U1 ← U1−{instance(e, U1)};
20: end for
21: for e ∈ P1 do
22: L0 ← L0 ∪ {〈instance(e, U0), ŷe〉}; U0 ← U0−{instance(e, U0)};
23: end for
24: end if
25: until not(+ + i ≥ MAX ITERS AND change);
26: U ←label(t0, L, U, t1, L, U);
27: end

4 The Algorithm

The Iterative Transductive Learner (ITL) addresses the problem of predicting
the unknown continuous labels of nodes which are distributed in a sparsely
labeled network. ITL iteratively induces two distinct model trees in a co-training
style. Labels predicted from one model tree which are estimated as confident
extend the labeled set to be used by the other model tree learner for the next
iteration of the learning process. The model trees which are induced in the last
iteration of ITL are used to predict the unknown network labels. Details on the
learning in co-training style, the evaluation of the confidence of predicted labels
and the labeling of unlabeled nodes are reported in the next subsections.

4.1 Iterative Learning in Co-Training Style

The top level description of ITL is reported in Algorithm 1. Let N(V, E) be
the sparsely labeled network whose unknown labels have to be predicted, ITL
takes as input: the attribute-value observations (with labels) associated with



the labeled node set L ⊂ V , the attribute-value observations (without labels)
associated with the unlabeled node set U ⊂ V (U = V −L), and the relation E,
and predicts the unknown labels for the nodes of U . ITL is iterative and keeps
with the main idea of co-training by inducing at each iteration, two distinct
regression models from different views of the attribute-value data associated
with the node set. The former is a regression model which includes the predictor
variables measured at the currently labeled nodes of the network, the latter is
a cross-regressive model which includes the lagged predictor variables measured
in the neighborhood of the nodes.

In Algorithm 1, the function laggedPredictorV ariables() is in charge of con-
structing L (U) that is the lagged view of the data associated with the node set
L (U). This lagged view of a dataset is obtained by projecting data over the
lagged predictor variables in place of the original predictor variables. Formally,

Definition 2 (Lagged variable). Let N = (V, E) be a network and X be a
variable that is measured at the nodes of V . For each node u ∈ V , the lagged
variable X is assigned with the aggregate of the values which are measured for
X at nodes falling in the neighborhood ηE(u).

In particular, by considering the case that Xi is continuous, then,

xiu =

∑
(v,w)∈ηE(u)

(xiv × w)

∑
(v,w)∈ηE(u)

w
, i = 1 . . .m. (1)

Further extension of ITL would allow to deal with discrete predictor variables.
By initially assigning L0 = L, U0 = U, L1 = L and U1 = U , ITL learns

the regression model t0 from L0 and the regression model t1 from L1 (see the
function learn() in Algorithm 1). The basic learner employed to induce both
t0 and t1 is the model tree learner presented in [3]. The choice of a model tree
learner is motivated by the capability of model trees of do not imposing any a-
priory defined global form of regression surface, but assuming a functional form
at local level. t0 and t1 are then used to predict the unknown labels (ŷ) of the
nodes falling in U0 and U1, respectively.

Labels which are confidently predicted (see function predictConfidentLabels()
in Algorithm 1) are assigned to the corresponding nodes in U1 (U0). New la-
beled nodes are then moved from U1 to L1 (U0 to L0). The function instance()
is in charge of passing from the original data view to the lagged data view
of a node, and vice-versa. In particular, if u belongs to L (U), instance(u, L)
(instance(u, U)) returns u in L (U). Similarly, if u belongs to L (U), instance(u, L)
(instance(u, U)) returns the corresponding u in L (U).

The learning process stops when the maximum number of learning itera-
tions, MAX ITERS, is reached, or there is no unlabeled node which is con-
fidently moved from the unlabeled set to the labeled set. Model trees which
are learned in the last iteration of the learning process are used to definitely
label working observations (see function label() in Algorithm 1). Details of
predictConfidentLabels() and label() are provided in the next subsections.



Algorithm 2 Predict and estimate confidence of labels according to Single Label
Confidence Estimate.
1: determineConfidentlyLabeledNodes(Ui, Li, E, ti)=⇒ Pi

2: Input
3: the node set Ui ⊂ X× Y and the node set Li ⊂ X× Y ;
4: the ternary relation E ⊂ Ui ∪ Li × Ui ∪ Li × R+;
5: the model tree ti induced from Li;
6: Output
7: Pi ⊆ Ui such that Pi includes only the nodes of Ui whose predicted labels are

estimated as confident;
8: begin
9: Pi ← �;

10: for u in Ui do
11: ŷu ←response(ti, u);
12: t′i ←learn(Li ∪ {〈u, ŷu〉});
13: pos← 0; neg ← 0;
14: for v in ηE(u)|Li do
15: if (yv-response(t′i, v))2-(yv-response(ti, v))2 ≥ 0 then
16: pos← pos + 1;
17: else
18: neg ← neg + 1;
19: end if
20: end for
21: if pos ≥ neg then
22: Pi ← Pi ∪ {〈u, ŷu〉};
23: end if
24: end for
25: end

4.2 Evaluating the Confidence of Predicted Labels

A model tree is used to predict the unknown labels in the network. The confi-
dence of each estimated label is evaluated in order to identify the most confident
labels. Intuitively, confident labels are with the following property. The error
performed by a model tree in re-predicting the labeled node set should decrease
the most if the most confidently labeled nodes are utilized in the learning pro-
cess. According to this property, we have designed two alternative mechanisms,
named Single Label Confidence Evaluation (SLCE) and Multi Label Confidence
Evaluation (MLCE), which provide an estimate of the confidence of the labels
which are predicted in ITL.

Single Label Confidence Evaluation

The SLCE estimates the confidence of predicted labels one by one (see Algorithm
2). The confidence is estimated by a model tree that is learned from a training
set consisting of the nodes which are currently labeled in the network and the
unlabeled node whose predicted label has to be estimated. The confidence of



this label corresponds to the confidence of this model tree in re-predicting the
labeled nodes which are interlinked (as neighbors) to the unlabeled one.
Formally, let:

1. ti (with i = 0, 1) be the model tree induced from the labeled node set Li,
2. u ∈ Ui be a node falling in the unlabeled set Ui (with i = 0, 1),
3. ŷu the label predicted from ti for u,
4. ηE(u)|Li = {v ∈ Li|(u, v, w) ∈ E} be the set of labeled nodes v which are

neighbors of u in Li according to E, and
5. t′i (with i = 0, 1) be the model tree induced from Li ∪ {〈u, ŷu〉},

the confidence of ŷu is evaluated according to the influence of ŷu on the known
labels of nodes falling in ηE(u)|Li . In particular, for each v ∈ ηE(u)|Li , εv is the
result of subtracting the squared error performed by t′i in determining the label
of v from the squared error performed by ti in determining the label of v,

εv = (yv − response(t′i, v))2 − (yv − response(ti, v))2 (2)

with yv be the response that originally labels v in Li at the current iteration of
ITL. The function response(ti, v) returns the label predicted for v by ti, while
response(t′i, v) returns the label predicted for v by t′i, respectively.
By defining:

Pos = |{v ∈ ηE(u)|Li |εv ≥ 0}| Neg = |{v ∈ ηE(u)|Li |εv < 0}|, (3)

with | · | the cardinality of a set ·, the label ŷv is estimated as confident if
Pos ≥ Neg, un-confident otherwise.

Multi Label Confidence Evaluation

The MLCE firstly groups unlabeled nodes of the network in possibly overlapping
clusters and then estimates the confidence of the entire cluster of predicted
labels, cluster by cluster (see Algorithm 3). For each labeled node v ∈ Li, a
cluster, ηE(v)|Ui is constructed by including the unlabeled neighbors of v which
are determined in Ui according to E. By using ti to assign a label to the nodes
falling ηE(v)|Ui , the labeled node set ̂ηE(v)|Ui is constructed from ηE(v)|Ui (see
function assignLabel() in Algorithm 3), as follows:

̂ηE(v)|Ui = {〈u, response(ti, u)〉|u ∈ ηE(v)|Ui} (4)

where response(ti, u) is the label predicted for u by ti. Let t′i be the model
tree induced from Li ∪ ̂ηE(v)|Ui ), predicted labels of ̂ηE(v)|Ui are estimated as
confident iff:

(yv − response(t′i, v))2 − (yv − response(ti, v))2 ≥ 0, (5)

un-confident, otherwise.



Algorithm 3 Predict and estimate confidence of labels according to Multi Label
Confidence Estimate.
1: determineConfidentlyLabeledNodes(Ui, Li, E, ti)=⇒ Pi

2: Input
3: the node set Ui ⊂ X× Y and the node set Li ⊂ X× Y ;
4: the ternary relation E ⊂ Ui ∪ Li × Ui ∪ Li × R+;
5: the model tree ti induced from Li;
6: Output
7: Pi ⊆ Ui such that Pi includes only the nodes of Ui whose predicted labels are

estimated as confident;
8: begin
9: Pi ← �;

10: for v in Li do

11: ̂ηE(v)|Ui ←assignLabel(Ti, ηE(v)|Ui);

12: t′i ←learn(Li ∪ ̂ηE(v)|Ui);
13: if (response(t′i, v)-y(v))2-(response(ti, v)-y(v))2 ≥ 0 then

14: Pi ← Pi ∪ ̂ηE(v)|Ui ;
15: end if
16: end for
17: end

4.3 Predicting the Unlabeled Nodes in the Network

Model trees t0 and t1 which are learned in the last iteration of ITL are used to
predict the final labels Ŷ to be associated with originally unlabeled nodes of U .
Let u ∈ U be the lagged data view of the unlabeled node u ∈ U , then:

ŷu =
ω0 × response(t0, u) + ω1 × response(t1, u)

ω0 + ω1
with u ∈ U. (6)

where ω0 and ω1 are computed on the basis of the mean square error (mse) of
each model tree on the original labeled set (L and L, respectively). Details are
provided in Algorithm 4.

5 Experiments

We demonstrate that ITL is robust to both sparse labeling and low label consis-
tency and it improves traditional model tree induction across a range of several
geographical data networks.

Dataset Description

GASD (USA Geographical Analysis Spatial Dataset) [17] contains 3,107 ob-
servations on USA county votes cast in 1980 presidential election. Specifically,
it contains the total number of votes cast in the 1980 presidential election per
county (response attribute), the population in each county of 18 years of age



Algorithm 4 Assigning a final label to the unlabeled nodes of the network.
1: label(t0, L, U, t1, L, U)
2: Input
3: the model tree t0 induced on the feature space X;
4: the set L ⊆ X× Y ;
5: the unlabeled set U ⊆ X;
6: the model tree induced on the feature space X;
7: the labeled set L ⊆ X× Y ;
8: the unlabeled set U ⊆ X;
9: Output

10: U ′ = {〈u, ŷu〉|u ∈ U, ŷu is the final label predicted for u} ;
11: begin
12: U ← �;
13: m0 ← mse(t0, L); m1 ← mse( t1, L);
14: if m0 > m1 then
15: ω0 ← 1; ω1 ← m0/m1;
16: else
17: ω0 ← m1/m0; ω1 ← 1;
18: end if
19: for u ∈ U do
20: u← instance(u, U); ŷu ← response(t0,u)×ω0+response(t1,u)×ω1

ω0+ω1
;

21: U ′ ← U ∪ {〈u, ŷu〉};
22: end for
23: end

or older, the population in each county with a 12th grade or higher education,
the number of owner-occupied housing units, the aggregate income, the XCoord
and YCoord spatial coordinates of the county. Forest Fires is public available
for research at UCI Machine Learning Repository1. The details are described
in [7]. It collects 512 forest fire observations from the Montesinho natural park
in the northeast region of Portugal. The data, collected from January 2000 to
December 2003, include the burned area of the forest in ha2 (response vari-
able), the Fine Fuel Moisture Code (FFMC), the Duff Moisture Code (DMC),
the Drought Code (DC), the Initial Spread Index (ISI), the temperature in Cel-
sius degrees, the relative humidity, the wind speed in km/h, the outside rain
in mm/m2, the XCoord and YCoord spatial coordinates within the Montesinho
park map. NWE (North-West England ) contains census data collected in the
European project SPIN!3. Data are census data concerning North West England
area that is decomposed into censual sections or wards for a total of 1011 wards.
Census data provided by 1998 Census is available at ward level. We consider
percentage of mortality (response variable) and measures of deprivation level in
the ward according to index scores such as, Jarman Underprivileged Area Score,
Townsend score, Carstairs score and the Department of the Environments Index,
1 http://archive.ics.uci.edu/ml/
2 1ha/100 = 100 m2

3 http://www.ais. fraunhofer.de/KD/SPIN/project.html



the XCoord and YCoord spatial coordinates of the ward centroid. By removing
observations including null values, only 979 observations are used in this ex-
periments. Finally, Sigmea-Real [8] collects 817 measurements of the rate of
herbicide resistance of two lines of plants (response variables), that is, the trans-
genic male-fertile (MF) and the non-transgenic male-sterile (MS) line of oilseed
rape. Predictor variables of this study are the cardinal direction and distance
from the center of the donor field, the visual angle between the sampling plot
and the donor field, and the shortest distance between the plot and the nearest
edge of the donor field, the XCoord and YCoord spatial coordinates of the plant.

Experimental Setting

Each geo-referenced dataset D is mapped into a data network N = (V, E) that
includes a node u ∈ V for each observation (x1, . . . , xn, y, xCoord, yCoord) ∈ D
and associates u with (x1, . . . , xn, y). Let u and v be two distinct nodes in V ,
there is an edge from u to v labeled with w in N (i.e., (u, v, w) ∈ E) iff v is
one of the k nearest neighbors of u. The Euclidean distance is computed to
determine neighbors. Notice that the neighboring relation defined above is not
necessarily symmetric, v may be a k nearest neighbor of u, but not necessarily
vice-versa. Additionally, u is a neighbor of u. In this paper, several data networks
are constructed from the same dataset by varying k = 5, 10, 15. They are denoted
as N5, N10 and N15. In each data network, the weight w is defined according to
a continuous function of Euclidean distance [6] as follows:

w = e
−dist(u,v)2

b2u with bu = max
v∈k−nearestNeighbors(u,V )

dist(u, v), (7)

If u and v are associated with observations taken at the same geographical
site, the weighting of observations collected at this site would be unity. The
weighting of other observations will decrease according to a Gaussian curve as
the Euclidean distance between u and v increases.

For each data network, experiments are performed in order to: 1) validate
the actual advantage of the iterative transductive learner over the basic model
tree learner in labeling the unlabeled nodes of a sparsely and scarcely labeled
network (ITL vs t0 and ITL vs t1), 2) evaluate the advantages of a co-training
implementation in the transductive learning (ITL vs ITL*), and 3) compare
performance of SLCE and MLCE in estimating the confidence of labels (SLCE
vs MLCE). t0 (t1) denotes the model tree which is induced from the original set
of labeled data by considering the predictor variables (lagged predictor variables)
only, ITL* is the iterative transductive learner without co-training, that is, no
lagged view of data is considered in the learning process, ITL is the iterative
transductive learner with co-training.

The empirical comparison is based on the mean square error (MSE) that is
estimated according to a K-fold cross validation. K is set to 10 in experiments
performed with GASD dataset, and K = 5 in experiments performed with For-
est Fires, NWE and Sigmea Real. For each trial, algorithms to be compared are



trained on a single fold and tested on the hold-out K - 1 folds, which form the
working set. The comparative statistics is computed by averaging the MSE error
over the K-folds (Avg.MSE). It is noteworthy that, unlike the standard cross-
validation approach, here only one fold is used for the training set. In this way
we can simulate datasets with a small percentage of labeled cases (the training
set) and a large percentage of unlabeled data (the working set), which is the
usual situation for a transductive learning. ITL is run with MAX ITERS = 5.

Results

The Avg. MSE performed by both the transductive learner and the inductive
learner is reported in Table 1. Results suggest several conclusions. First, they
confirm that ITL performs generally better than the basic model tree learners
(ITL improves both t0 and t1 in accuracy) by profitably employing a kind of
iterative learning to bootstrap from a small set of labeled training data via a large
set of unlabeled data. The exception is represented by Sigmea Real (MF) that
is the only dataset where the baseline inductive learner t0 always outperforms
ITL. Our justification is that the worse performance of ITL may depend on the
fact that this dataset exhibits about 65% of observations which are labeled as
zero which leads to a degradation of both predictive capability of the learner
that operates with the aggregate data view in the co-training and capability
of identifying confident labels. This is confirmed by the fact accuracy of cross-
regressive model tree t1 is significantly worse than the accuracy of the classical
model tree t0. Second, the co-training improves the accuracy of the iterative
transductive learner (ITL vs ITL*) by combining cross-regressive models with
traditional regression models. Finally, the comparison between MLCE and SLCE
suggests that the accuracy of ITL is improved by the use of MLCE when the
data network includes nodes with a low number of neighbors (k = 5), while
the accuracy of ITL is generally improved by the use of SLCE when the data
network includes nodes with higher number of neighbors (k = 15).

6 Conclusions

In this paper we investigate the task of regression in labeled networked data
where labels are sparse and continuous. We assume that data present a form
of autocorrelation where the value of the response variable in a node depends
on the values of the predictor variables of interlinked nodes. For this reason, we
consider the contribution of lagged predictor variables in the regression model.
We investigate a computational solution in the transductive setting, which asks
for predicting the response values only for unlabelled nodes of the network. The
neighborhood relation used in the transductive setting is computed on the basis
of the node links. The solution is based on co-training, since separate model trees
are learned from attribute values of labeled nodes and attribute values aggre-
gated in the neighborhood of labeled nodes, respectively. Two distinct procedures
have been proposed to evaluate confidence of the predicted labels. Experiments



Table 1. Avg.MSE: Inductive learners (t0 and t1) vs. iterative transductive learner
without co-training (ITL*) and with co-training (ITL).

Avg.MSE
N5 N10 N15

SLCE MLCE SLCE MLCE SLCE MLCE

GASD

t0 0.15174 0.15174 0.15174 0.15174 0.15174 0.15174
t1 0.15879 0.15879 0.17453 0.17453 0.17419 0.17419

ITL* 0.13582 0.13239 0.13643 0.13387 0.13606 0.13468
ITL 0.13006 0.12965 0.13156 0.13162 0.13387 0.13128

Forest Fires

t0 81.16599 81.16599 81.16599 81.16599 81.16599 81.16599
t1 64.68706 64.68706 64.71256 64.71257 64.80331 64.80332

ITL* 81.45897 82.33336 81.04362 74.48984 81.30787 80.89551
ITL 64.44121 63.88140 64.73077 64.28176 63.92594 64.41118

NWE

t0 0.00255 0.00255 0.00255 0.00255 0.00255 0.00255
t1 0.00250 0.00250 0.00252 0.00252 0.00256 0.00256

ITL* 0.00253 0.00252 0.00254 0.00258 0.00252 0.00253
ITL 0.00245 0.00244 0.00248 0.00248 0.00247 0.00248

SigmeaReal (MF)

t0 2.35395 2.35395 2.35395 2.35395 2.35395 2.35395
t1 2.57045 2.57045 2.51061 2.51061 2.51991 2.51991

ITL* 2.36944 2.36336 2.36579 2.35532 2.37024 2.35966
ITL 2.44036 2.43278 2.40851 2.42544 2.46547 2.43397

SigmeaReal(MS)

t0 5.87855 5.87855 5.87855 5.87855 5.87855 5.87855
t1 5.80157 5.80157 6.12569 6.12569 6.08601 6.08601

ITL* 5.87364 5.87389 5.87374 5.87781 5.87346 5.87340
ITL 5.75021 5.61658 5.85322 5.85275 5.74338 5.87403

with several sparsely labeled networked data are performed. Results show that
the proposed method improves accuracy of traditional model tree induction.
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