Automated Analysis of Data-Dependent Programs with
Dynamic Memory

Parosh Aziz Abdulla', Muhsin Atto?, Jonathan Cederbergl, Ran Ji3.

! Uppsala University, Sweden.
2 University of Duhok, Kurdistan-Iraq.
3 Chalmers University of Technology, Gothenburg, Sweden.

Abstract. We present a new approach for automatic verification of data-dependent
programs manipulating dynamic heaps. A heap is encoded by a graph where the
nodes represent the cells, and the edges reflect the pointer structure between the
cells of the heap. Each cell contains a set of variables which range over the natural
numbers. Our method relies on standard backward reachability analysis, where
the main idea is to use a simple set of predicates, called signatures, in order to
represent bad sets of heaps. Examples of bad heaps are those which contain either
garbage, lists which are not well-formed, or lists which are not sorted. We present
the results for the case of programs with a single next-selector, and where vari-
ables may be compared for (in)equality. This allows us to verify for instance that
a program, like bubble sort or insertion sort, returns a list which is well-formed
and sorted, or that the merging of two sorted lists is a new sorted list. We report on
the result of running a prototype based on the method on a number of programs.

1 Introduction

We consider the automatic verification of data-dependent programs that manipulate dy-
namic linked lists. The contents of the linked lists, here refered to as a heap, is rep-
resented by a graph. The nodes of the graph represent the cells of the heap, while the
edges reflect the pointer structure between the cells (see Figure 1 for a typical example).

The pro-
gram has a vV Z
dynamic be- # O—) a5
haviour in the w
sense that cells

may be cre-
ated and deleted: Fig. 1. A typical graph representing the heap.
and that pointers may be re-directed during the execution of the program. The program
is also data-dependent since the cells contain variables, ranging over the natural num-
bers, that can be compared for (in)equality and whose values may be updated by the
program. The values of the local variables are provided as attributes to the correspond-
ing cells. Finally, we have a set of (pointer) variables which point to different cells
inside the heap.

In this paper, we consider the case of programs with a single next-selector, i.e.,
where each cell has at most one successor. For this class of programs, we give a method
for automatic verification of safety properties. Such properties can be either structural

properties such as absence of garbage, sharing, and dangling pointers; or data proper-
ties such as sortedness and value uniqueness. We provide a simple symbolic representa-
tion, which we call signatures, for characterizing (infinite) sets of heaps. Signatures can
also be represented by graphs. One difference, compared to the case of heaps, is that
some parts may be missing from the graph of a signature. For instance, the absence of
a pointer means that the pointer may point to an arbitrary cell inside a heap satisfying
the signature. Another difference is that we only store information about the ordering
on values of the local variables rather than their exact values. A signature can be in-
terpreted as a forbidden pattern which should not occur inside the heap. The forbidden
pattern is essentially a set of minimal conditions which should be satisfied by any heap
in order for the heap to satisfy the signature. A heap satisfying the signature is con-
sidered to be bad in the sense that it contains a bad pattern which in turn implies that
it violates one of the properties mentioned above. Examples of bad patterns in heaps
are garbage, lists which are not well-formed, or lists which are not sorted. This means
that checking a safety property amounts to checking the reachability of a finite set of
signatures. We perform standard backward reachability analysis, using signatures as a
symbolic representation, and starting from the set of bad signatures. We show how to
perform the two basic operations needed for backward reachability analysis, namely
checking entailment and computing predecessors on signatures.

For checking entailment, we define a pre-order T on signatures, where we view
a signature as three separate graphs with identical sets of nodes. The edge relation in
one of the three graphs reflects the structure of the heap graph, while the other two
reflect the ordering on the values of the variables (equality resp. inequality). Given two
signatures g and g», we have g; C g, if g; can be obtained from g by a sequence
of transformations consisting of either deleting an edge (in one of the three graphs),
a variable, an isolated node, or contracting segments (i.e., sequence of nodes) without
sharing in the structure graph. In fact, this ordering also induces an ordering on heaps
where hy C hy if, for all signatures g, h, satisfies g whenever h; satisfies g.

When performing backward reachability analysis, it is essential that the underly-
ing symbolic representation, signatures in our case, is closed under the operation of
computing predecessors. More precisely, for a signature g, let us define Pre(g) to be
the set of predecessors of g, i.e., the set of signatures which characterize those heaps
from which we can perform one step of the program and as a result obtain a heap sat-
isfying g. Unfortunately, the set Pre(g) does not exist in general under the operational
semantics of the class of programs we consider in this paper. Therefore, we consider an
over-approximation of the transition relation where a heap # is allowed first to move to
smaller heap (w.r.t. the ordering C) before performing the transition. For the approx-
imated transition relation, we show that the set Pre(g) exists, and that it is finite and
computable.

One advantage of using signatures is that it is quite straightforward to specify sets
of bad heaps. For instance, forbidden patterns for the properties of list well-formedness
and absence of garbage can each be described by 4-6 signatures, with 2-3 nodes in
each signature. Also, the forbidden pattern for the property that a list is sorted consists
of only one signature with two nodes. Furthermore, signatures offer a very compact
symbolic representation of sets of bad heaps. In fact, when verifying our programs, the

number of nodes in the signatures which arise in the analysis does not exceed ten. In
addition, the rules for computing predecessors are local in the sense that they change
only a small part of the graph (typically one or two nodes and edges). This makes it
possible to check entailment and compute predecessors quite efficiently.

The whole verification process is fully automatic since both the approximation and

the reachability analysis are carried out without user intervention. Notice that if we
verify a safety property in the approximate transition system then this also implies its
correctness in the original system. We have implemented a prototype based on our
method, and carried out automatic verification of several programs such as insertion
in a sorted lists, bubble sort, insertion sort, merging of sorted lists, list partitioning,
reversing sorted lists, etc. Although the procedure is not guaranteed to terminate in
general, our prototype terminates on all these examples.
Outline In the next section, we describe our model of heaps, and introduce the program-
ming language together with the induced transition system. In Section 3, we introduce
the notion of signatures and the associated ordering. Section 4 describes how to specify
sets of bad heaps using signatures. In Section 5 we give an overview of the backward
reachability scheme, and show how to compute the predecessor and entailment relations
on signatures. The experimental results are presented in Section 6. In Section 7 we give
some conclusions and directions for future research. Finally, in Section 8, we give an
overview of related approaches and the relationship to our work. Definitions of some of
the operations, and descriptions of the case studies are given in the appendix.

2 Heaps

In this section, we give some preliminaries on programs which manipulate heaps.

Let N be the set of natural numbers. For sets A and B, we write f : A — B to denote

that f is a (possibly partial) function from A to B. We write f(a) = L to denote that
f(a) is undefined. We use f[a < b] to denote the function f” such that f’(a) = b and
f'(x) = f(x) if x # a. In particular, we use f[a < L] to denote the function f* which
agrees on f on all arguments, except that f”(a) is undefined.
Heaps We consider programs which operate on dynamic data structures, here called
heaps. A heap consists of a set of memory cells (cells for short), where each cell has one
next-pointer. Examples of such heaps are singly liked lists and circular lists, possibly
sharing their parts (see Figure 1). A cell in the heap may contain a datum which is
a natural number. A program operating on a heap may use a finite set of variables
representing pointers whose values are cells inside the heap. A pointer may have the
special value null which represents a cell without successors. Furthermore, a pointer
may be dangling which means that it does not point to any cell in the heap. Sometimes,
we write the “x-cell” to refer to the the cell pointed to by the variable x. We also write
“the value of the x-cell” to refer to the value stored inside the cell pointed to by x. A
heap can naturally be encoded by a graph, as the one of Figure 1. A vertex in the graph
represents a cell in the heap, while the edges reflect the successor (pointer) relation on
the cells. A variable is attached to a vertex in the graph if the variable points to the
corresponding cell in the heap. Cell values are written inside the nodes (absence of a
number means that the value is undefined).

Assume a finite set X of variables. Formally, a heap is a tuple (M, Succ, A, Val) where

— M is a finite set of (memory) cells. We assume two special cells # and * which
represent the constant null and the dangling pointer value respectively. We define
M?® = MU {#,x}.

— Succ: M — M®.If Succ(m;) = my then the (only) pointer of the cell m; points to the
cell m,. The function Succ is total which means that each cell in M has a successor
(possibly # or x). Notice that the special cells # and * have no successors.

— A: X — M"* defines the cells pointed to by the variables. The function A is total, i.e.,
each variable points to one cell (possibly # or).

— Val : M — N is a partial function which gives the values of the cells.

In Figure 1, we have 17 cells of which 15 are in M, The set X is given by {x,y,z,v,w}.
The successor of the z-cell is null. Variable w is attached to the cell %, which means
that w is dangling (w does not point to any cell in the heap). Furthermore, the value of
the x-cell is 6, the value of the y-cell is not defined, the value of the successor of the
y-cell is 3, etc.

Remark In fact, we can allow cells to contain multiple values. However, to simplify the
presentation, we keep the assumption that a cell contains only one number. This will be
sufficient for our purposes; and furthermore, all the definitions and methods we present
in the paper can be extended in a straightforward manner to the general case. Also, we
can use ordered domains other than the natural numbers such as the integers, rationals,
or reals.

Programming Language We define a simple programming language. To this end, we
assume, together with the earlier mentioned set X of variables, the constant null where
null ¢ X. We define X* := X U {null1}. A program P is a pair (Q,T) where Q is a
finite set of control states and T is a finite set of transitions. The control states represent
the locations of the program. A transition is a triple (g1,0p,q2) where q1,¢2 € Q are
control states and op is an operation. In the transition, the program changes location
from g to ¢, while it checks and manipulates the heap according to the operation op.
The operation op is of one of the following forms

— x=yorx#ywhere x,y € X*. The program checks whether the x- and y-cells are
identical or different.

— x:=y or x.next := y where x € X and y € X*. In the first operation, the program
makes x point to the y-cell, while in the second operation it updates the successor
of the x-cell, and makes it equal to the y-cell.

— x := y.next where x,y € X. The variable x will now point to the successor of the
y-cell.

— new(x), delete(x), or read(x), where x € X. The first operation creates a new cell
and makes x point to it; the second operation removes the x-cell from the heap;
while the third operation reads a new value and assigns it to the x-cell.

— X.num = y.num, x.num < Y.Aum, X.num := y.num, X.num 3> y.num, or x.num :<
y.num, where x,y € X. The first two operations compare the values of (number
stored inside) the x- and y-cells. The third operation copies the value of the y-cell to
the x-cell. The fourth (fifth) operation assigns non-deterministically a value to the
x-cell which is larger (smaller) than that of the y-cell.

Figure 2 illustrates the effect of a sequence of operations of the forms described above
on a number of heaps. Examples of some programs can be found in the appendix.

hs

Fig. 2. Starting from the heap hyg, the heaps hy, hy, h3, hs, and hs are generated by performing the
following sequence of operations: z.num :> x.num, x := y.next, delete(x), new(x), and z.next := y.
To simplify the figures, we omit the special nodes # and * unless one of the variables x,y,z is
attached to them. For this reason the cell # is missing in all the heaps, and * is present only in
h3,ha,hs.

Transition System We define the operational semantics of a program P = (Q,T) by
giving the transition system induced by P. In other words, we define the set of configu-
rations and a transition relation on configurations. A configuration is a pair (q,h) where
q € Q represents the location of the program, and 4 is a heap.

We define a transition relation (on configurations) that reflects the manner in which
the instructions of the program change a given configuration. First, we define some op-
erations on heaps. Fix a heap h = (M,Succ,\,Val). For mj,m, € M, we use
(h.Succ) [m; < my] to denote the heap h’ we obtain by updating the successor rela-
tion such that the cell my now becomes the successor of m; (without changing any-
thing else in k). Formally, i’ = (M, Succ’, Val, \) where Succ’ = Succ[m; < my]. Anal-
ogously, (h.A)[x <« m] is the heap we obtain by making x point to the cell m; and
(h.Val) [m < i] is the heap we obtain by assigning the value i to the cell m. For instance,
in Figure 2, let h; be of the form (M;,Succ;, Val;, A;) for i € {0,1,2,3,4,5}. Then, we
have hy = (ho.Val) [Ao(z) < 9] since we make the value of the z-cell equal to 9. Also,
hy = (hy.Ap) [x < Succi (A1 (y))] since we make x point to the successor of the y-cell.
Furthermore, ks = (h4.Succs) [Ma(z) < Aa(y)] since we make the y-cell the successor of
the z-cell.

Consider a cell m € M. We define h©m to be the heap 4’ we get by deleting the cell
m from h. More precisely, we define h' := (M’,Succ’,\’, Val') where

- M =M-—{m}.

— Succ'(m') = Succ(m') if Succ(m') # m, and Succ’ (m') = otherwise. In other words,
the successor of cells pointing to m will become dangling in /'

- N (x) =x*if A(x) = m, and X' (x) = A(x) otherwise. In other words, variables pointing
to the same cell as x in /& will become dangling in /'

— Val'(m') = Val(m') if m" € M’. That is, the function Val’ is the restriction of Val
to M': it assigns the same values as Val to all the cells which remain in M’ (since
m & M, it not meaningful to speak about Val (m)).

In Figure 2, we have h3 = h, © 1 (x).

Let t = (q1,0p,q2) be a transition and let ¢ = (g,h) and ¢’ = (¢, k") be configura-
tions. We write ¢ —— ¢’ to denote that ¢ = g1, ¢ = g», and h -2 I, where h -2 i
holds if we obtain 4’ by performing the operation op on h. For brevity, we give the
definition of the relation —2 for three types of operations. The rest of the cases can be
found in the appendix.

— opis of the form x := y.next, M(y) € M, Succ(A(y)) # *, and b = (h.A) [x < Succ(\(y))].

— op is of the from new(x), M’ = M U{m} for some m & M, X' = A[x < m], Succ’ =
Succ|m « *), Val'(m') = Val(m') if m' # m, and Val'(m) = L. This operation cre-
ates a new cell and makes x point to it. The value of the new cell is not defined,
while the successor is the special cell *. As an example of this operation, see the
transition from £3 to h4 in Figure 2.

— op is of the form x.num :> y.num, Mx) € M, My) € M, Val(AM(y)) # L, and i’ =
(h.Val) [Mx) < i], where i > Val(A(y)).

We write ¢ — ¢’ to denote that ¢ —— ¢’ for some ¢ € T; and use 5 to denote the
reflexive transitive closure of —. The relations — and — are extended to sets of
configurations in the obvious manner.

Remark One could also allow deterministic assignment operations of the form x.num :=
y.num+ k or x.num := y.num — k for some constant k. However, according the approx-
imate transition relation which we define in Section 5, these operations will have iden-
tical interpretations as the non-deterministic operations given above.

3 Signatures

In this section, we introduce the notion of signatures. We will define an ordering on
signatures from which we derive an ordering on heaps. We will then show how to use
signatures as a symbolic representation of infinite sets of heaps.

Signatures Roughly speaking, a signature is a graph which is “less concrete” than a
heap in the following sense:

— We do not store the actual values of the cells in a signature. Instead, we define an
ordering on the cells which reflects their values.

— The functions Succ and A in a signature are partial (in contrast to a heap in which
these functions are total).

Formally, a signature g is a tuple of the form (M, Succ,\,Ord), where M, Succ, A
are defined in the same way as in heaps (Section 2), except that Succ and A are now
partial. Furthermore, Ord is a partial function from M x M to the set {<,=}. Intu-
itively, if Succ(m) = L for some cell m € M, then g puts no constraints on the succes-
sor of m, i.e., the successor of m can be any arbitrary cell. Analogously, if A(x) = L,

then x may point to any of the cells. The relation Ord constrains the ordering on the
cell values. If Ord(m;,my) == then the value of m; is strictly smaller than that of
my; and if Ord(m;,my) == then their values are equal. This means that we abstract
away the actual values of the cells, and only keep track of their ordering (and whether
they are equal). For a cell m, we say that the value of m is free if Ord(m,m’') = L
and Ord(m',m) = L for all other cells m'. Abusing notation, we write m; < my (resp.
m) = my) if Ord(my,my) == (resp. Ord(my,my) ==).

We represent signatures graphically in a manner similar to that of heaps. Figure 3
shows graphical representations of six signatures g, ...,gs over the set of variables
{x,y,z}. If a vertex in the graph has no successor, then the successor of the correspond-
ing cell is not defined in g (e.g., the y-cell in g4). Also, if a variable is missing in
the graph, then this means that the cell to which the variable points is left unspeci-
fied (e.g., variable z in g3). The ordering Ord on cells is illustrated by dashed arrows.
A dashed single-headed arrow from a cell m; to a cell m; indicates that m; < my. A
dashed double-headed arrow between m; and m; indicates that m; = mj. To simplify
the figures, we omit self-loops indicating value reflexivity (i.e., m = m). In this manner,
we can view a signature as three graphs with a common set of vertices, and with three
edge relations; where the first edge relation gives the graph structure, and the other two
define the ordering on cell values (inequality resp. equality)

=L In fact, each heap h = (M, Succ, A, Val)
induces a unique signature which
we denote by sig(h). More pre-
cisely, sig (h) := (M, Succ,\,Ord)
where, for all cells m,my, € M,
we have my < my iff Val(m;) <
Val(m,) and my = my iff Val(m;) =
Val(my). In other words, in the sig-
nature of h, we remove the con-
crete values in the cells and re-
place them by the ordering rela-
tion on the cell values. For exam-
82 y 83 y ple, in Figure 2 and Figure 3, we
have go = sig (ho).

X X Signature Ordering We define an

oo oo entailment relation, i.e., ordering

Seao- '; KO Seeo- '; CO C on signatures. The intuition is

84 y 85 y that each signature can be inter-

preted as a predicate which charac-

Fig. 3. Examples of signatures. terizes an infinite set of heaps. The

ordering is then the inverse of implication: smaller signatures impose less restrictions

and hence characterize larger sets of heaps. We derive a small signature from a larger

one, by deleting cells, edges, variables in the graph of the signature, and by weakening

the ordering requirements on the cells (the latter corresponds to deleting edges encod-

ing the two relations on data values). To define the ordering, we give first definitions
and describe some operations on signatures. Fix a signature g = (M, Succ, A, Ord).

A cell m € M is said to be semi-isolated if there is no x € X with A(x) = m, the
value of m is free, Succ™'(m) = 0, and either Succ(m) = L or Succ(m) = *. In other
words, m is not pointed to by any variables, its value is not related to that of any other
cell, it has no predecessors, and it has no successors (except possibly). We say that m
is isolated if it is semi-isolated and in addition Succ(m) = L. A cell m € M is said to
be simple if there is no x € X with A(x) = m, the value of m is free, [Succ™' (m)| = 1,
and Succ(m) # L. In other words, m has exactly one predecessor, one successor and no
label. In Figure 3, the topmost cell of g3 is isolated, and the successor of the x-cell in g4
is simple. In Figure 1, the cell to the left of the w-cell is semi-isolated in the signature
of the heap.

The operations (g.Succ) [m; < my] and (g.A) [x < m]| are defined in identical fash-
ion to the case of heaps. Furthermore, for cells m;,m; and O € {<,=, L}, we define
(g.0rd) [(m1,my) < O] to be the signature g’ we obtain from g by making the ordering
relation between m and my equal to O. For a variable x, we define g © x to be the signa-
ture g’ we get from g by deleting the variable x from the graph, i.e., g = (g.A) [x — L].
For a cell m, we define the signature g’ = g ©m = (M’,Succ’,\',Ord') in a manner
similar to the case of heaps. The only difference is that Ord’ (rather than Val’) is the
restriction of Ord to pairs of cells both of which are different from m.

Now, we are ready to define the ordering. For signatures g = (M, Succ, A, Ord) and
g = (M',Succ’,\',0rd"), we write that g <1 g’ to denote that one of the following prop-
erties is satisfied:

— Variable Deletion: g = g’ © x for some variable x,

— Cell Deletion: g = g’ ©m for some isolated cell m € M’,

— Edge Deletion: g = (g’ .Succ) [m « L] for some m € M’,

— Contraction: there are cells my,my,m3 € M’ and a signature g; such that m; is
simple, Succ’(my) = my, Succ'(my) = ms, g1 = (¢'.Succ) [m; «— m3] and g = g1 ©
my, Or

— Order Deletion: g = (g'.0rd) [(m1,my) < L] for some cells my,my € M’

We write g C g’ to denote that there are go <1 g <1go <1-+-<1g, withn >0, go = g,
and g, = g’. That is, we can obtain g from g’ by performing a finite sequence of vari-
able deletion, cell deletion, edge deletion, order deletion, and contraction operations.
In Figure 3 we obtain: g; from go through three order deletions; g, from g; through
one order deletion; g3 from g, through one variable deletion and two edge deletions; g4
from g3 through one node deletion and one edge deletion; and gs from g4 through one
contraction. It means that g5 <1g4 <1 g3 <1g2 <1 g1 < go and hence g5 C go
Heap Ordering

We define an ordering C on heaps such that & C /' iff sig (h) C sig (h'). For a heap h
and a signature g, we say that & satisfies g, denoted h |= g, if g C sig (h). In this manner,
each signature characterizes an infinite set of heaps, namely the set [g]] := {h|h = g}-
Notice that [[g] is upward closed w.r.t. the ordering = on heaps. We also observe that, for
signatures g and g’, we have that g C g’ iff [[¢’]] C [[g]. For a (finite) set G of signatures
we define [G] := Uy [g]- Considering the heaps of Figure 2 and the signatures of
Figure 3, we have h; = go, ha = 80, ho C hy, ho £ ha, etc.
Remark Our definition implies that signatures cannot specify “exact distances” be-
tween cells. For instance, we cannot specify the set of heaps in which the x-cell and the

y-cell are exactly of distance one from each other. In fact, if such a heap is in the set
then, since we allow contraction, heaps where the distance is larger than one will also
be in the set. On the other hand, we can characterize sets of heaps where two cells are
at distance at least k£ from each other for some & > 1.

4 Bad Configurations

In this section, we show how to use signatures in order to specify sets of bad heaps for
programs which produce ordered linear lists. A signature is interpreted as a forbidden
pattern which should not occur inside the heap. Typically, we would like such a program
to produce a heap which is a linear list. Furthermore, the heap should not contain any
garbage, and the output list should be ordered. For each of these three properties, we
describe the corresponding forbidden patterns as a set of signatures which characterize
exactly those heaps which violate the property. Later, we will collect all these signatures
into a single set which exactly characterizes the set of bad configurations.

First, we give some definitions. Fix a heap h = (M, Succ, A, Val). A loop in h is a set

{mo,...,my,} of cells such that Succ(m;) = m;y foralli: 0 <i< n, and Succ(m,) =my.
For cells m,m’ € M, we say that m’ is visible from m if there are cells mg, my,...,m, for
some n > 0 such that my = m, m,, = m’, and m; | = Succ(m;) foralli: 0 <i<n.In
other words, there is a (possibly empty) path in the graph leading from m to m’. We say
that m' is strictly visible from m if n > 0 (i.e. the path is not empty). A set M’ C M is
said to be visible from m if some m’ € M’ is visible from m.
Well-Formedness We say that & is well-formed w.r.t a variable x if # is visible form the
x-cell. Equivalently, neither the cell * nor any loop is visible from the x-cell. Intuitively,
if a heap satisfies this condition, then the part of the heap visible from the x-cell forms
a linear list ending with #. For instance, the heap of Figure 1 is well-formed w.r.t. the
variables v and z.

In Figure 2, ho is not well-formed wurt. the variables
x and z (a loop is visible), and A4 is not well-formed w.r.t. X %

z (the cell * is visible). The set of heaps violating well- b;: O—=>* by *
formedness w.r.t. x are characterized by the four signatures

in the figure to the right. The signatures b; and b, charac- ba: g_@ ba: @x
terize (together) all heaps in which the cell * is visible from > +

the x-cell. The signatures b3 and b4 characterize (together) all heaps in which a loop is
visible from the x-cell.

Garbage We say that i contains garbage w.r.t a vari- bs: O—Q O bg: @ (@)
able x if there is a cell m € M in h which is not vis- X X
ible from the x-cell. In Figure 2, the heap hy contains
one cell which is garbage w.r.t. x, namely the cell with
value 1. The figure to the right shows six signatures
which together characterize the set of heaps which con- by: S?') * O bio: ¥ O
tain garbage w.r.t. x. i
Sortedness A heap is said to be sorted if it satisfies the condition that whenever a cell
m € M is visible from a cell my € M then Val(m;) < Val(my).

b;: O># O bg: # O
X X

For instance, in Figure 2, only /s is sorted. The figure to the right

shows a signature which characterizes all heaps which are not bu: O‘{___?O
sorted.

Putting Everything Together Given a (reference) variable x, a configuration is con-
sidered to be bad w.r.t. x if it violates one of the conditions of being well-formed w.r.t.
X, not containing garbage w.r.t. x, or being sorted. As explained above, the signatures
by,...,by; characterize the set of heaps which are bad w.r.t. x. We observe that b; C bo,
by C by, b3 C bs and by C bg, which means that the heaps bg.b1g, b5, bg can be discarded
from the set above. Therefore, the set of bad configurations w.r.t. x is characterized by
the set {bl,b27b3,b4,b7,b8,b11}.

Remark Other types of bad patterns can be defined in a similar manner. Examples can
be found in the appendix.

S Reachability Analysis

In this section, we show how to check safety properties through backward reacha-
bility analysis. First, we give an abstract transition relation —,4 which is an over-
approximation of the transition relation —. Then, we describe how to compute prede-
cessors of signatures w.r.t. —4; and how to check the entailment relation. Finally, we
introduce sets of initial heaps (from which the program starts running), and describe
how to check safety properties using backward reachability analysis.
Over-Approximation The basic step in backward reachability analysis is to compute
the set of predecessors of sets of heaps characterized by signatures.
More precisely, for a signature g and an operation op, we would like to

compute a finite set G of signatures such that [G] = {h\ h-2 [[g]]} Con- g x(,)y
sider the signature g to the right. The set [[g]] contains exactly all heaps

where x and y point to the same cell. Consider the operation op defined by y := z.next.
The set H of heaps from which we can perform the operation and obtain a heap in [g]
are all those where the x-cell is the immediate successor of the z-cell. Since signatures
cannot capture the immediate successor relation (see the remark in the end of Section 3),
the set H cannot be characterized by a set G of signatures, i.e., there is no G such that
[G]] = H. To overcome this problem, we define an approximate transition relation —4
which is an over-approximation of the relation —. More precisely, for heaps h and /',
we have h -2, 1 iff there is a heap h; such that 4, C & and hy iy

Computing Predecessors We show that, for an operation op z X

and a signature g, we can compute a finite set Pre(op)(g) of 811 O—0O &2:){8
signatures such that [Pre(op)(g)] = {h|h 2 [[g]]} For in- .
stance in the above case the set Pre(op)(g) is given by the {g1,g>} shown in the figure
to the right. Notice that [{g1,g2}] is the set of all heaps in which the x-cell is strictly
visible from the z-cell. In fact, if we take any heap satisfying [[g1] or [g2], then we
can perform deletion and contraction operations (possibly several times) until the x-cell
becomes the immediate successor of the z-cell, after which we can perform op thus
obtaining a heap where x and y point to the same cell.

For each signature g and operation op, we show how to compute Pre(op)(g) as a
finite set of signatures. Due to lack of space, we show the definition only for the opera-
tion new. The definitions for the rest of the operations can be found in the appendix. For
acell m € M and a variable x € X, we define m being x-isolated in a manner similar to
m being isolated, except that we now allow m to be pointed to by x (and only x). More
precisely, we say m is x-isolated if A(x) = m, M(y) # m if y # x, the value of m is free,
Succ™!(m) = 0, and Succ(m) = L. We define m being x-semi-isolated in a similar man-
ner, i.e., by also allowing * to be the successor of the x-cell. For instance, the leftmost
cell of the signature b; in Section 4, and the x-cell in the signature sig (hs) in Figure 2
are x-semi-isolated.

We define Pre(g)(new(x)) to be the set of signatures g’ such that one of the follow-
ing conditions is satisfied:

— A(x) is x-semi-isolated, and there is a signature g; such that g; = g © A(x) and
g =g16x
- AMx)= 1 and g’ = g or g’ € g©&m for some semi-isolated cell m.

Initial Heaps A program starts running from a designated set Hp,;; of initial heaps. For
instance, in a sorting program, Hy,;, is the set of well-formed lists which are (potentially)
not sorted. Notice that this set is infinite since there is no bound on the lengths of the
input lists. To deal with input lists, we follow the methodology of [6], and augment the
program with an initialization phase. The program starts from an empty heap (denoted
he) and systematically (and non-deterministically) builds an arbitrary initial heap. In the
case of sorting, the initial phase builds a well-formed list of an arbitrary length. We can
now take the set Hj,;; to be the singleton containing the empty heap #e.

Checking Entailment For signatures g and g, checking whether g C g’ amounts to
constructing an injection from the cells of g to those of g’. It turns out that a vast major-
ity (more than 99%) of signatures, compared during the reachability analysis, are not
related by entailment. Therefore, we have implemented a number of heuristics to detect
negative answers as quickly as possible. An example is that a cell m in g should have
(at most) the same labels as its image m’ in g’; or that the in- and out-degrees of m are
smaller than those of m’. The details of the entailment algorithm are included in the
appendix.

Checking Safety Properties To check a safety property, we start from the set Gp,y
of bad signatures, and generate a sequence Gy, G1,Ga,... of finite sets of signatures,
where Go = Gpaa and Git1 = U,eg, Pre(g). Each time we generate a signature g such
that g’ C g for some already generated signature g’, we discard g from the analysis.
We terminate the procedure when we reach a point where no new signatures can be
added (all the new signatures are subsumed by existing ones). In such a case, we have
generated a set G of signatures that characterize all heaps from which we can reach a
bad heap through the approximate transition relation — 4. The program satisfies the
safety property if g £ sig (he) forall g € G.

6 Experimental Results

We have imple-
mented the meth-

Table 1. Experimental results

. Prog. Time |#Sig. [#Final| #Ent | Ratio
od described abo- ="
ve in a prototype EfficientInsert 0.1s 44 40 1570 | 0.7%
written in Java., [NonDuplicatelInsert 04s 111 99 8165 | 0.2%
We have run the |lnsert 26s |[2343] 1601 [2.2-10°] 0.03%
tool on several |Insert (bug) 145 337 | 268 | 86000 | 0.09%
examples, includ- [Merge 23.5s |11910| 5830 [3.6-107/0.017%
ing all the bench- |Reverse 1.5s 435 | 261 | 70000 | 0.3%
marks on singly |ReverseCyclic 1.6s 1031 | 574 |375000| 0.1%
linked lists with |Partition 2m 495 [21058/15072 (1.8 - 10%]0.003%
data known tous |BubbleSort 35.9s [11023]10034(7.5-107/0.001%
from the TVLA |BubbleSortCyclic 36.6s |[11142[10143(7.7-107(0.001%
and PALE tools. |BubbleSort (bug) 1.76 s | 198 | 182 | 33500 | 0.07%
Table 1 shows |InsertionSort 11 m 53 s(34843|23324 (4.4 - 108]0.003%

the results of our
experiments. The column “#Sig.” shows the total number of signatures that were com-
puted throughout the analysis, the column “#Final” shows the number of signatures that
remain in the visited set upon termination, the column “#Ent” shows the total number
of calls to entailment that were made, and the last column shows the percentage of such
calls that returned true. We have also considered buggy versions of some programs in
which case the prototype reports an error. All experiments were performed on a 2.2 GHz
Intel Core 2 Duo with 4 GB of RAM. For each program, we verify well-formedness,
absence of garbage, and sortedness. In the case of Partition, we also verify that the
two resulting lists do not have common elements.

7 Conclusions, Discussion, and Future Work

We have presented a method for automatic verification of safety properties for pro-
grams which manipulate heaps containing data. There are potentially two drawbacks
of our method, namely the analysis is not guaranteed to terminate, and it may generate
false positives (since we use an over-approximation). A sufficient condition for ter-
mination is well quasi-ordering of the entailment relation on signatures (see e.g. [2]).
The only example known to us for non-well-quasi-ordering of this relation is based
on a complicated sequence pattern by Nash-Williams (described in [12]) which shows
non-well-quasi-ordering of permutations of sequences of natural numbers. Such artifi-
cial patterns are unlikely to ever appear in the analysis of typical pointer-manipulating
programs. In fact, it is quite hard even to construct artificial programs for which the
Nash-Williams pattern arises during backward reachability analysis. This is confirmed
by the fact that our implementation terminates on all the given examples. As for false
positives, the definition of the heap ordering C means that the abstract transition re-
lation — 4 allows three types of imprecisions, namely it allows: (i) deleting garbage
(nodes which are not visible from any variables), (ii) preforming contraction, and (iii)

only storing the ordering on cell variables rather than their actual values. Program runs
are not changed by (i) since we only delete nodes which are not accessible from the
program pointers in the first place. Also, most program behaviors are not sensitive to
the exact distances between nodes in a heap and therefore they are not affected by (ii).
Finally, data-dependent programs (such as sorting or merge algorithms) check only or-
dering rather than complicated relations on data inside the heap cells. This explains
why we do not get false positives on any of the examples on which we have run our
implementation.

The experimental results are quite encouraging, especially considering the fact that
our code is still highly unoptimized. For instance, most of the verification time is spent
on checking entailment between signatures. We believe that adapting specialized algo-
rithms, e.g. [19], for checking entailment will substantially improve performance of the
tool.

Several extensions of our framework can be carried out by refining the considered
preorder (and the abstraction it induces). For instance, if needed, our framework can be
extended in a straightforward manner to handle arithmetical relations which are more
complicated than simple ordering on data values such as gap-order constraints [16] or
Presburger arithmetic. Given the fact that the analysis terminates on all benchmarks, it is
tempting to characterize a class of programs which covers the current examples and for
which termination is theoretically guaranteed. Another direction for future work is to
consider more general classes of heaps with multiple selectors, and then study programs
operating on data structures such as doubly-linked lists and trees both with and without
data.

8 Related Work

Several works consider the verification of singly linked lists with data. The paper [13]
presents a method for automatic verification of sorting programs that manipulate linked
lists. The method is defined within the framework of TVLA which provides an abstract
description of the heap structures in 3-valued logic [18]. The user may be required to
provide instrumentation predicates in order to make the abstraction sufficiently precise.
The analysis is performed in a forward manner. In contrast, the search procedure we
describe in this paper is backward, and therefore also property-driven. Thus, the signa-
tures obtained in the traversal do not need to express the state of the entire heap, but
only those parts that contribute to the eventual failure. This makes the two methods
conceptually and technically different. Furthermore, the difference in search strategy
implies that forward and backward search procedures often offer varying degrees of ef-
ficiency in different contexts, which makes them complementary to each other in many
cases. This has been observed also for other models such as parameterized systems,
timed Petri nets, and lossy channel systems (see e.g. [3, 8, 1]).

Another approach to verification of linked lists with data is proposed in [5, 6] based
on abstract regular model checking (ARMC) [7]. In ARMC, finite-state automata are
used as a symbolic representation of sets of heaps. This means that the ARMC-based
approach needs the manipulation of quite complex encodings of the heap graphs into
words or trees. In contrast, our symbolic representation uses signatures which provide a

simpler and more natural representation of heaps as graphs. Furthermore, ARMC uses
a sophisticated machinery for manipulating the heap encodings based on representing
program statements as (word/tree) transducers. However, as mentioned above, our oper-
ations for computing predecessors are all local in the sense that they only update limited
parts of the graph thus making it possible to have much more efficient implementations.

The paper [4] uses counter automata as abstract models of heaps which contain data
from an ordered domain. The counters are used to keep track of lengths of list segments
without sharing. The analysis reduces to manipulation of counter automata, and thus
requires techniques and tools for these automata.

Recently, there has been an extensive work to use separation logic [17] for per-
forming shape analysis of programs that manipulate pointer data structures (see e.g. [9,
20]). The paper [15] describes how to use separation logic in order to provide a semi-
automatic procedure for verifying data-dependent programs which manipulate heaps.
In contrast, the approach we present here uses a built-in abstraction principle which is
different from the ones used above and which makes the analysis fully automatic.

The tool PALE (Pointer Assertion Logic Engine) [14] checks automatically prop-
erties of programs manipulating pointers. The user is required to supply assertions ex-
pressed in the weak monadic second-order logic of graph types. This means that the
verification procedure as a whole is only partially automatic. The tool MONA [10],
which uses translations to finite-state automata, is employed to verify the provided as-
sertions.

Recently, there have been several works which aim at algorithmic verification of
systems whose configurations are finite graphs (e.g. [11,2]). These works may seem
similar since they are all based on backward reachability using finite graphs as symbolic
representations. However, they use different orderings on graphs which leads to entirely
different methods for computing predecessor and entailment relations. In fact, the main
challenge when designing verification algorithms on graphs, is to come up with the
“right” notion of ordering: an ordering which allows computing entailment and prede-
cessors, and which is sufficiently precise to avoid too many false positives. For instance,
the graph minor ordering used in [11] to analyze distributed algorithms, is too weak to
employ in shape analysis. The reason is that the contraction operation (in the case of
the graph minor relation) is insensitive to the directions of the edges; and furthermore
the ordering allows merging vertices which carry different labels (different variables),
meaning that we would get false positives in almost all examples since they often rely
tests like x = y for termination. In our previous work [2], we combined abstraction
with backward reachability analysis for verifying heap manipulating programs. How-
ever, the programs in [2] are restricted to be data-independent. The extension to the
case of data-dependent programs requires a new ordering on graphs which involves an
intricate treatment of structural and data properties. For instance, at the heap level, the
data ordering amounts to keeping track of (in)equalities, while the structural ordering
is defined in terms of garbage elimination and edge contractions (see the discussion in
Section 7). This gives the two orderings entirely different characteristics when com-
puting predecessors and entailment. Also, there is a non-trivial interaction between the
structural and the data orderings. This is illustrated by the fact that even specifications
of basic data-dependent properties like sortedness require forbidden patterns that con-

tain edges from both orderings (see Section 4). Consequently, none of the programs
we consider in this paper can be analyzed in the framework of [2]. In fact, since the
programs here are data-dependent, the method of [2] may fail even to verify properties
which are purely structural. For instance, the program EfficientInsert (described in
the appendix) gives a false non-well-formedness warning if data is abstracted away.

References

1. P. A. Abdulla, A. Annichini, and A. Bouajjani. Using forward reachability analysis for
verification of lossy channel systems. Formal Methods in System Design, 2004.

2. P. A. Abdulla, A. Bouajjani, J. Cederberg, F. Haziza, and A. Rezine. Monotonic abstraction
for programs with dynamic memory heaps. In Proc. CAV 2008, volume 5123 of LNCS, 2008.

3. P. A. Abdulla, N. B. Henda, G. Delzanno, and A. Rezine. Regular model checking without
transducers (on efficient verification of parameterized systems). In Proc. TACAS ’07, volume
4424 of LNCS. Springer Verlag, 2007.

4. A. Bouajjani, M. Bozga, P. Habermehl, R. losif, P. Moro, and T. Vojnar. Programs with lists
are counter automata. In Proc. CAV 2006, volume 4144 of LNCS, 2006.

5. A. Bouajjani, P. Habermehl, P. Moro, and T. Vojnar. Verifying programs with dynamic 1-
selector-linked structures in regular model checking. In Proc. TACAS ’05, volume 3440 of
LNCS. Springer, 2005.

6. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract tree regular model
checking of complex dynamic data structures. In Proc. SAS’06, volume 4134 of LNCS,
2006.

7. A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract regular model checking. In Proc. CAV
2004, volume 3114 of LNCS, Boston, 2004. Springer Verlag.

8. P. Ganty, J. Raskin, and L. V. Begin. A complete abstract interpretation framework for
coverability properties of wsts. In Proc. VMCAI *06, volume 3855 of LNCS, 2006.

9. B. Guo, N. Vachharajani, and D. I. August. Shape analysis with inductive recursion synthesis.
In Proc. PLDI’07, volume 42, 2007.

10. J. Henriksen, J. Jensen, M. Jgrgensen, N. Klarlund, B. Paige, T. Rauhe, and A. Sandholm.
Mona: Monadic second-order logic in practice. In Proc. TACAS ’95, volume 1019 of LNCS,
1996.

11. S. Joshi and B. Konig. Applying the graph minor theorem to the verification of graph trans-
formation systems. In Proc. CAV 2008, 2008.

12. R. Laver. Well-quasi-orderings and sets of finite sequences. Mathematical Proceedings of
the Cambridge Philosophical Society, 79:1-10, Jan. 1976.

13. T. Lev-Ami, T. W. Reps, S. Sagiv, and R. Wilhelm. Putting static analysis to work for
verification: A case study. In Proc. ISSTA °00, 2000.

14. A. Mgller and M. I. Schwartzbach. The pointer assertion logic engine. In Proc. PLDI’01,
volume 26, pages 221-231, 2001.

15. H. H. Nguyen, C. David, S. Qin, and W.-N. Chin. Automated verification of shape and size
properties via separation logic. In Proc. VMCAI ’07, volume 4349 of LNCS, 2007.

16. P. Revesz. Introduction to Constraint Databases. Springer, 2002.

17. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proc. LICS
’02, 2002.

18. S. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. ACM Trans.
on Programming Languages and Systems, 24(3):217-298, 2002.

19. G. Valiente. Constrained tree inclusion. J. Discrete Algorithms, 3(2-4):431-447, 2005.

20. H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P. W. O’Hearn. Scal-
able shape analysis for systems code. In Proc. CAV 2008, volume 5123 of LNCS, 2008.

A Example Programs

EfficientInsert This program, shown in Figure 4, is an optimized version of an insert
procedure in a linked list where you do not want duplicates. The program first inserts
the new element at the end of the list, and then searches for a value equal to itself.
If it finds the value before itself, there must be a duplicate in the list, and it removes
itself again. Otherwise, it is kept. The point of this is to avoid checking for null in each
iteration as well. Exactly this will give rise to a spurious error, if data is not taken into
consideration, but with our method the program is reported safe.

1 SENT.next:=elem
2 elem.next:=# .
1 if (head.val=/=elem.val) {
3 ci=start 2 temp:=head.next
4 while(c.val=/=elem.val) { emp:)
3 elem.next:=temp
5 c:=c.next
6) 4 head.next:=elem
7 if(c=elem) { 2 ?f(h d.val=elem.val) {
5 SENT:—elem : i frea(.zam;e em.va
9 } else { 8) eetee
10 SENT.next :=#
11 }

Fig. 5. The NonDuplicatelInsert

Fig.4. The EfficientInsert program

NonDuplicateInsert The first program, in Figure 5, illustrates that we capture data-
dependent control flow. The program is written in such a way that the two guards are
mutually exclusive, and an analysis which replaces the tests with nondeterminism will
report a spurious error in this case.

Insert In Figure 6, the insert program is illustrated. It inserts the elem-cell into the
sorted linear list pointed to by x, such that the returning linear list is again sorted. The
initialization phase (lines 1 - 16) first creates a non-empty sorted linear list, and then an
additional node to be inserted. The set of bad configurations is described in Section 4.

1
new (x) 1 if(x=#) {
2 read(x)
2 h:=y
3 x.next:=# 3 return h
4 while (NonDet) { - ety
5 new (temp) . _
6 if (NonDet) { 2 lfg?:#) {
7 temp.num:=x.num i
8) 7 return h
8 }
9 else {)
9 if(x.num<y.num) {
10 temp.num:<x.num
10 h:=x
11 }
11 x:=h.next
12 temp.next :=x 12
13 x:=temp
13 else {
14 14 h:=
15 new (elem) 15 ::i next
16 read(elem) yi=h.nex
. 16 }
17 if (x.num>elem.num) { 17 t:on
18 elem.next :=x T
18 while (x=/=#&&y=/=#) {
19 x:=elem ,
19 if (x.num<y.num) {
20 return x
21) 20 t.next:=x
22 tl:=x.next 21 bi=x
22 x:=x.next
23 t2:=x 23)
24 while (tl=/=%#) {
, 24 else {
25 if (tl.num<elem.num) {
25 t.next:=y
26 t2:=tl 26 e
27 tl:=t2.next Y
28) 27 y:=y.next
28
29 else { J
29 1}
30 t2.next:=elem 30 if (x=/=4
31 elem.next:=tl i (x=/=4) |
31 t.next:=x
32 return x
33 3 32}
343 33 if (y=/=#) {
35 t2.next:=elem 34 t.next:zy
35 }
36 elem.next:=#
36 return h
37 return x

Fig.7. The merge program without initializa-

Fig. 6. The insert program including initializa- tion phase

tion phase

Insert(bug) The faulty version of the insert program is identical to the one in Fig-
ure 6, except that t 1 :=x.next is substituted for t1:=x on line 22. It is intended to work
the same way as the correct version, but the faulty initialization of t1 makes it fail for
the case of the elem-cell containing a smaller value than any other value in the list. This
program also uses the set of bad configurations described in Section 4, and we get an
error-trace to the bad state by as expected.

Merge In Figure 7, the merge program is shown. It takes as input two sorted lists x and
v, and merges them into one sorted list x. The set of bad configurations is described in
Section 4.

Reverse In Figure 8, the reverse program is shown. It reverses a sorted linear list x,
and returns an inversely sorted linear list y. The set of bad configurations is described
in Section B, except that the variable x should be replaced by y wherever it occurs.

1 y:=#

2 while(x=/=%) {
3 ti=y

4 yi=x

5 x:=x.next

6 y.next:=t
T}

8 return y

Fig. 8. The reverse program without initialization phase

ReverseCyclic In Figure 9, the reverseCyclic program is shown. It takes a sorted
cyclic list x as input, and returns an inversely sorted cyclic list y. The initialization
phase (lines 1 - 23) creates a non-empty sorted cyclic list. The set of bad configurations
is described in Section B, except that the variable x should be replaced by y wherever it
occurs.

Partition In Figure 10, the partition program is shown. It takes a linear list b as
input, and returns two linear lists b and s such that whenever a cell m; € M is visible
from the b-cell then Val(A(b)) < Val(m), and whenever a cell my € M is visible from
the s-cell then Val(my) < Val(A(b)). The initialization phase (lines 1 - 9) creates a non-
empty linear list . The set of bad configurations is described in Section B, except that
the variables x and y should be replaced by » and s wherever they occur.

new (x)

read (x)

new(tail)

if (NonDet) {
tail.num:=x.num

}

QO 3 o U b W DN -

else | 1 new(b)
. 2 read(b)
tail.num:>x.num
.- 3 Db.next:=#
. 4 while (NonDet) ({
10 x.next:=tail
. 5 new (temp)
11 tail.next:=x 6 read (temp)
12 while (NonDet) { - oY
7 temp.next:=b
13 new (temp) 3 b:=tem
14 if (NonDet) { oy ’
12 : temp.num:=x.num 10 t:=b.next
11 b.next:=#
17 else { 12 g:=#
18 temp.num: <x. .
o EMmp . fuM: <X num 13 while(t=/=#) {
20 temp mext:ox 14 tt:=t.next
P : 15 if(t.num<b.num) {
21 tail.next:=temp
16 t.next:=s
22 x:=temp
17 s:=t
23 '} 18 }
24 t:=x.next 19 else |
25 whil =/=
while (t=/=x) { 20 tb:=b.next
26 k:=t
21 b.next:=t
27 t:=t.next
2) 22 t.next:=tb
23 }
29 y:=k 24 t:=tt
30 while(x=/=y) { 25 } .
31 t:=k
- - 26 return b,s
33 x:=xX.next
34 k.next:=t Fig. 10. The partition program including initial-
35} ization phase
36 y.next:=k
37 return y

Fig.9. The reverseCyclic program including
initialization phase

BubbleSort In Figure 11, the bubbleSort program is shown. It takes a linear list x
as input, and returns a sorted linear list x. The set of bad configurations is described in
Section 4.

1 if(x=#) {

2 return x

3}

4 change:=TRUE

5 while(change) {

6 p:=#

7 change:=FALSE

8 yi=x

9 yn:=y.next

10 while (yn=/=#) {
11 if (y.num>yn.num) {
12 t:=yn.next
13 change:=TRUE
14 y.next:=t
15 yn.next:=y
16 if (p=#) {
17 X:=yn

18 }

19 else {

20 p.next:=yn
21 }

22 p:=yn

23 yn:=t

24 }

25 else {

26 p:=y

27 y:i=yn

28 yn:=y.next
29 }

30 }

31}

32 return x

Fig. 11. The bubbleSort program without initialization phase

BubbleSort(bug) The faulty version of the program bubbleSort is identical to the
one in Figure 11, except that y:=x is substituted for y:=x.next on line 8. It is intended
to work the same way as the correct version, but the faulty initialization of y makes it
fail for the case of the y-cell containing a smaller value than any other value in the list.
This program also uses the set of bad configurations described in Section 4, and we get
an error-trace to the bad state by as expected.

BubbleSortCyclic In Figure 12, the bubbleSortCyclic program is shown. It takes
a cyclic list x as input, and returns a sorted cyclic list x. The initialization phase (lines

1 - 13) creates a non-empty cyclic list x. The set of bad configurations is described in
Section B.

23 while(yn=/=#) {

1 new(x) 24 if (y.num>yn.num) {
2 read(x) 25 t:=yn.next

3 new(tail) 26 change:=TRUE
4 read(tail) 27 y.next:=t

5 x.next:=tail 28 yn.next:=y

6 tail.next:=x 29 if (p=#) {

7 while (NonDet) { 30 X:1=yn

8 new (temp) 31 }

9 read (temp) 32 else {

10 temp.next:=x 33 p.next:=yn
11 tail.next:=temp 34 }

12 x:=temp 35 p:=yn

13} 36 yn:=t

14 tt:=x 37 }

15 x:=x.next 38 else {

16 tt.next:=# 39 p:=y

17 change:=TRUE 40 y:=yn

18 while (change) { 41 yn:=y.next
19 p:=¢# 42 }

20 change:=FALSE 43 }

21 yi=x 44 '}

22 yn:=y.next 45 y.next:=x

46 return x

Fig. 12. The bubbleSortCyclic program including initialization phase

InsertionSort In Figure 13, the insertionSort program is shown. It takes a linear list
x as input, and returns a sorted linear list x. The set of bad configurations is described
in Section 4.

while (t=/=#) {
tl:i=x
t2:=x.next
while (t2=/=#&&t2.val<t.val) {
tl:=t2
t2:=t2.next

8 e:=t

9 t:=t.next
10 tl.next:=e
11 e.next:=t2
12 }

13 return x

~J o) U1 B W N

Fig. 13. The insertionSort program without initialization phase

Remark on Spurious Errors Since the transition relation used in the analysis is an
over-approximation, there is a risk of generating false counter-examples. In our exper-
iments, this arises only in one example, namely a version of Merge (different from the
one included in Table 1) in which one pointer x follows another pointer y, such that
there is one cell between x and y. If y moves first followed by x then, according to
our approximation, the pointers may now point to the same cell. This kind of counter-
examples can be dealt with by refining the approximation so that contraction is allowed
only if the size of the resulting list segment will not become smaller than some given
k > 1. For the above counter-example, it is sufficient to take k = 2. Notice that in the
current approximation we have k = 1.

B More Bad Patterns

Well-Formedness for Cyclic Lists We say that & is

X X X
cyclically well-formed w.r.t. a variable x if the x-cell p,: O—px by3: * by #
belongs to a loop. Intuitively, if a heap satisfies this
condition, then the part of the heap visible from the x- X X
cell forms a cyclic list. The set of heaps violating cyclic bis: O_Q bis: 04
well-formedness w.r.t. x are characterized by the three signatures in the figure to the
right. The signatures by, and b3 characterizes (together) all heaps in which the cell *
is visible from the x-cell, and the signatures bj4 and b characterize all heaps in which
the cell # is visible from the x-cell. The signature b5 characterizes all heaps in which a
loop is visible from the x-cell, but where the x-cell itself is not part of the loop.

Cyclic Sortedness A heap is said to be cyclically sorted with e

respect to the variable x if it is cyclically well-formed w.r.t. xand ~ py5: O(,/___?b
satisfies the condition that whenever a cell m; € M belongs to the

same loop as the x-cell my, then either Val(m,) < Val(Succ(my)) X

or Succ(my) = my, but not both. Intuitively, this means that the bs: O—)O\{___?b
x-cell has the smallest value of all cells in the cycle, and that the

each consecutive pair of cells in the cycle is pairwise sorted. The figure to the right
shows the two signatures b17 and bg, which together with the signatures b2, b13,b14,
b1s and by characterizes all heaps that are not cyclically sorted w.r.t. x.

Sharing We say that & exhibits sharing w.r.t. two vari-

X X
ables x and y if there is a cell m € M in h which is visible pq: o—)o(—(); boo: éy
from both the x-cell and the y-cell. In Figure 2, the heaps
ho, h1 and h, exhibits sharing w.r.t. the variables x and X Y Yy X

z. The figure to the right shows four signatures b9, bag, bar: ba:

b>1 and by, which together characterize the set of heaps
which exhibits sharing w.r.t. the variables x and y.

Inversely Sorted Linear List A heap is said to be inversely sorted)
if it satisfies the condition that whenever a cell m; € M is visible 2R O(?_?,O

from a cell my € M then Val(my) < Val(m;). The figure to the right shows a signa-
ture which characterizes all heaps which are not inversely sorted. Therefore, the set of

bad configurations for a inversely sorted linear list w.r.t. x is characterized by the set
{b17b27b37b4vb77b8ab23}-

Inversely Sorted Cyclic List A heap is said to be cyclically in- x

versely sorted with respect to the variable x if whenever a cell ~ baa: 0(30

my € M belongs to the same loop as the x-cell m;, then either

Val(Succ(my)) < Val(my)) or Succ(mi) = m, but not both. In- .. é_)of__\'o
tuitively, this means that the x-cell has the largest value of all T=T
cells in the cycle, and that the each consecutive pair of cells in the cycle is pair-
wise sorted. The figure to the right shows two signatures b4 and b»5, which char-
acterize all heaps that are not cyclically sorted w.r.t. x. Therefore, the set of bad
configurations for a inversely sorted cyclic list w.r.t. x is characterized by the set
{b12,b13,b14,b15,b16,b24, b2s }.

Garbage With Multiple Pointers We say that & contains garbage w.r.t a set of vari-
ables X if there is a cell m € M in h which is not visible from the cell pointed to by any
x € X. The signatures characterizing these heaps are straight-forward to derive from the
signatures describing the property of garbage w.r.t. a single variable.

C Operational Semantics

In this section, we define the transition operations on heaps. A binary relation R on a
set A is said to be a partial order if it is irreflexive and transitive. We say that R is an
equivalence relation if it is reflexive, symmetric, and transitive. We use f(a) = f(b)
to denote that f(a) # L, f(b) # L, and f(a) = f(b), i.e., f(a) and f(b) are defined
and equal. Analogously, we write f(a) < f(b) to denote that f(a) # L, f(b) # L, and
f(a) < f(b). We will abuse the notation slightly by letting A(null) = #. For heaps &

and ', h % I’ holds if one of the following conditions is satisfied:

op is of the form x =y, A(x) # *, My) # *, A(x) = A(y), and &’ = h. In other words,

the transition is enabled if the pointers are not dangling, and they point to the same

cell.

— opis of the form x # y, M(x) # *, M(y) # *, M(x) # M(y), and I’ = h.

— op is of the form x :=y, M(y) # *, and /' = (h.X) [x — A(y)].

— opis of the form x := y.next, A(y) € M, Succ(A(y)) # *, and i = (h.A) [x < Succ(M(y))].

— op is of the form x.next 1=y, AMx) € M, My) # *, and b’ = (h.Succ) [Mx) < A(y)].

— op is of the from new(x), M’ = M U{m} for some m & M, N = A[x < m], Succ’ =
Succ [m «— x|, Val'(m') = Val(m') if m' # m, and Val'(m) = L. This operation cre-
ates a new cell and makes x point to it. The value of the new cell is not defined,
while the successor is the special cell *.

— op is of the form delete(x), M(x) € M, and /' = h& A(x). The operation deletes the
x-cell.

— op is of the form read(x), A(x) € M, and &’ = (h.Val) [M(x) < i], where i is the value

assigned to x-cell.

— op is of the form x.num = y.num, Mx) € M, M(y) € M, Val(M(x)) = Val(A(y)), and
h' = h. The transition is enabled if the pointers are not dangling and the values of
their cells are defined and equal.

— op is of the form x.num < y.num, M(x) € M, My) € M, Val(A(x)) < Val(A(y)), and
W =h.

— op is of the form x.num := y.num, Mx) € M, My) € M, Val(A(y)) # L, and ' =
(h.Val) [Mx) < Val(My))].

— op is of the form x.num :> y.num, Mx) € M, My) € M, Val(A(y)) # L, and ' =
(h.Val) [Mx) < i], where i > Val(A(y)). The case for x.num :< y.num is defined
analogously.

D Operations on Signatures

In this section, a number of operations on signatures are defined. A signature g is said

to be saturated if (1) = is an equivalence relation; (ii) < is a partial order; (iii) m; = my

my < m3 implies m; < m3; and (iv) m3 < m| and m| = my implies m3 < m;. For a signa-
ture g = (M, Succ, A, Ord), we define its saturation, denoted sat (g), to be the signature

(M, Succ,\,Ord") where Ord’ O Ord is the smallest set sufficient for making g saturated.

We use M* to denote M U {#}. Assume a saturated signature g = (M, Succ, A, Ord).
Operations on cells. For m & M, we define g m to be the signature ¢’ = (M’, Succ’,\',Ord’)
such that M’ = MU {m}, Succ’ = Succ, ' =\, and Ord’' = Ord. i.e. we add a new cell

to g. Observe that the added cell is then isolated.

We define g @ A(x) to be the signature g’ = (M’,Succ’,\',0rd") such that M’ =
MU {m}, Succ’ = Succ, ' = A|x < m], and Ord’' = Ord. i.e. we add a new cell to g
which is pointed by x .

For m € M, we define g ©m to be the signature g’ = (M’, Succ’,\’,Ord’) such that

- M =M-—{m}.

— Succ' (m') = Succ(m') if Succ(m') # m, and Succ’ (m') = * otherwise.
- N (x) = * if A(x) = m, and A’ (x) = A(x) otherwise.

— Ord'(my,my) = Ord(my,my) if my,my € M'.

Operations on variables. We use g @ x to denote the set of signatures we get from g
by letting x point anywhere inside g, except on *. Formally, we define g & x to be the
smallest set containing each signature g’ such that one of the following conditions is
satisfied:

1. Thereis acellm € M*, and g’ = (g.A) [x « m].

2. Thereis a cell m & M, and a signature g| such that gy = g®m, g = (g1.A) [x — m].

3. There are m; € M, mp ¢ M, and signatures gi,g»,g3 such that Succ(my) # L,
g1 =gdmy, go = (g1.Succ) [my — Succ(my)], g3 = (g2.Succ) [m; « my], and g’ =
(g3-M) [x — my].

For variables x and y, A(x) € M*, we use g ®_,y to denote (g.1) [y < A(x)], i.e. we
make y point to the same cell as x. Furthermore, we define g ®-, y to be the smallest
set containing each signature g’ such that g’ € (g&®y), and X' (y) # X' (x), i.e. we make
y point anywhere inside g except on x-cell and *. As a special case, we use g @y to

denote the smallest set containing each signature g’ such that g’ € (g&y), and X' (y) # #,
i.e. we make y point anywhere inside g except on # and .

For variables x and y, A(x) € M, Succ(M(x)) € M*, we use g @, y to denote the set
of signatures we get from g by letting y point to the successor of x-cell. Formally, we
define g ®,_. y to be the smallest set containing each signature g’ such that one of the
following conditions is satisfied:

L g = (g M) [y — Succ(A(x))].
2. Thereisacell m ¢ M, and signatures g1, 82,83, such that g; = gBm, g2 = (g1.Succ) [m «— Succy (A(x)],
g3 = (g2.Succ) [Mx) < m], and g’ = (g3.A) [y < m].

for variables x and y, Succ(A(x)) = *, we use g Dy_. y to denote the signature we
get from g by letting y point to the new added cell in between x-cell and *. Formally,
we define g @, y to be the signature g’ such that there is a cell m € M, and signatures
81,82,83, such that g = g m, g» = (g1.Succ) [m — =, g3 = (g2.Succ) [A(x) < m], and
g = (&M [y —m.

For variables x and y, A(x) € M*, we use g D,y to denote the set of signatures
we get from g by letting y point to any cell except *, where it has no successor or its
successor is x-cell. Formally, we define g G, y to be the smallest set containing each
signature g’ such that one of the following conditions is satisfied:

1. Thereis acell m € M such that Succ(m) = L or Succ(m) = A(x), and g’ = (g.A) [y — m].
2. Thereis a cell m & M, and a signature g| such that gy = g®m, g = (g1.A) [y < m].
3. There are m; € M, my ¢ M, and signatures g1, 82,83, such that Succ(m;) = A(x),
81 =8®my, g2 = (g1.Succ) [mz — Mx)], g3 = (g2.Succ) [my < my], and g' = (g3.1) [y < mo].

For variables x and y, A(x) € M, we use g D=,y to denote the set of signatures we
get from g by letting y point to any cell such that possibly A(y) = A(x). Formally, we
define g ®—, y to be the smallest set containing each signature g’ such that one of the
following conditions is satisfied:

1. There is a cell m € M such that Ord(m,A(x)) == or Ord(m,A(x)) = 1, and g’ =
(8-A) [x —m].

2. There is a cell m ¢ M, and a signature g; such that g = g®m, g = (g1.A) [x — m].

3. There are m; € M, my ¢ M, and signatures gi,g»,g3 such that Succ(m;) # L,
g1 =gdmy, go = (g1.Succ) [my — Succ(my)], g3 = (g2.Succ) [my « my], and g’ =
(g3.A) [x — ma].

For variables x and y, A(x) € M, we use g ®~, y to denote the set of signatures we
get from g by letting y point to any cell such that possibly A(y) < A(x). Formally, we
define g ®~, y to be the smallest set containing each signature g’ such that one of the
following conditions is satisfied:

1. There is a cell m € M such that Ord(m,\(x)) ==, or Ord(m,A(x)) = L, and g’ =
(g-A) [x — m].

2. There is a cell m ¢ M, and a signature g; such that g1 = g®dm, g = (g1.A) [x — m].

3. There are m; € M, my ¢ M, and signatures gi,g»,g3 such that Succ(my) # L,
g1 =gdmy, g = (g1.Succ) [my — Succ(my)], g3 = (g2-.Succ) [my « my], and g’ =
(83.M) [).

For variables x and y, A(x) € M, we use g @, y to denote the set of signatures we
get from g by letting y point to any cell such that possibly A(x) < A(y). Formally, we
define g By~ y to be the smallest set containing each signature g’ such that one of the
following conditions is satisfied:

1. There is a cell m € M such that Ord(A(x),m) ==, or Ord(A(x),m) = L1, and g’ =
(8.1 [x — m].

2. There is am & M, and a signature g; such that g; = g m, g = (g1.A) [x — m].

3. There are m; € M, mp, ¢ M, and signatures gi,g»,83 such that Succ(m;) # L,
g1 =8gDmy, g2 = (g1.Succ) [my — Succ(my))], g3 = (g2.Succ) [my «— my), and g’ =
(83.M) [).

For a variable x, we use g © x to denote g’ = (g.A) [x « L], i.e. we remove x from g.
Operations on edges. For variables x and y, A(x) € M, A(y) € M*, we use gl (x — y) to
denote (g.Succ) [AM(x) — A(y)], i.e. we remove the edge between x-cell and its successor
(if any), and add an edge from x-cell to y-cell.

For a variable x, A(x) € M, we use gH (x —) to denote the set of signatures we get
from g by making an edge from x-cell to anywhere inside g, except *. Formally, we
define gH (x —) to be the smallest set containing each signature g’ such that one of the
following conditions is satisfied:

1. There isam € M*, and g’ = (g.Succ) [A(x) < m].

2. There is am € M such that g’ = ((g® m).Succ) [AM(x) «— m].

3. There are m; € M, my ¢ M, and signatures g1, 82,3, such that Succ(m;) # L,
g1 =gdmy, g2 = (g1-Succ) [my « Succy(my)], g3 = (g2-Succ) [my « mp],and g’ =
(g3-Succ) [A3(x) «— ma].

We use ML to denote the set of cells such that for all m € M~, Succ(m) = *. For a
variable x, A(x) € M, we define g (M" — x) to be the smallest set containing each sig-
nature g’ such that g’ = (g.Succ) [m’ « A(x)], where m' € M', M' € P(M"), and P(M")
is the power set of M. i.e. we get each g’ by picking some cells in M”, and make their
successors all point to x .

For a variable x, A(x) € M, we use g B (x —) to denote (g.Succ) [A(x) — L], i.e. we

remove the edge from x-cell and its successor (if any).
Operation on ordering relations. For variables x and y, A(x) € M, A(y) € M, we use
gH (x =y) to denote (g.0rd)[(A(x),A(y)) —=]|, (g.0rd)[(m1,\M(y)) «<—=], for m; €
M, Ord(m;,M(x)) ==, and (g.0rd) [(m2,A(x)) —=], for my € M, Ord(my,A(y)) ==,
i.e. we make the ordering relation between x-cell and y-cell equal to =, and make g’
saturated.

For variables x and y, A(x) € M, A(y) € M, we use g (x < y) to denote (g.0rd) [(M(x),A(y)) «=<],
(g.0rd) [(m1,M(y)) «=], for m; € M, Ord(m;,\(x)) == or Ord(m;,\(x)) ==, and
(g.0rd) [(A(x),my) =], for my € M, Ord(A(y),mp) == or Ord(A(y),m;) ==, i.e. we
make the ordering relation between x-cell and y-cell equal to <, and make g’ saturated.

For a variable x, A(x) € M, we use gHp,4A(x) to denote that for all m € M — {A(x)},
(g.0rd) [(A(x),m) « L], (g.0rd) [(m,A(x)) < L], i.e. we remove the ordering relation
between x-cell and other cells.

E Computing Predecessors

In this section, we define how to compute predecessors of a saturated signature. We
assume a saturated signature g = (M, Succ, A, Ord).

We define Pre(g)(x = y) to be the set of saturated signatures g’ such that one of the
following conditions is satisfied:

AMx) € M, M(y) € M¥, A(x) = A(y) and g’ = g.
- Mx) EM# My)=L,and g’ =g®—,y.

AMx) =L, My) e M*, and g’ = gDy x.

A(x)=

) =L My

We define Pre(g)(x # y) to be the set of saturated signatures g’ such that one of the
following conditions is satisfied:

L, and there is a signature g such that g| € g®x, g’ = g1 By Y.

- Mx) € M*,M(y) € M*, A(x) # A(y) and g’ = g.

- K(x)eM# My)=L,and g € gBy.

- Mx) =L, My) eM*, and g’ € gP sy x.

- Mx) = L, A(y) = L, and there is a signature g; such that g; € gPx, g’ € g1 D4y y.

We define Pre(g)(x :=y) to be the set of saturated signatures g’ such that one of the
following conditions is satisfied:

Mx) € M*, (y)eM# Mx)=A(y)and g = gox.

Ax) € M# A(y) = L, and there is a signature g; such that g; = gb_,y, g = g1 Sx.
- Alx) = ()EM# andg' =g.

M) = LAG) = Land g € gy,

We define Pre(g)(x := y.next)) to be the set of saturated signatures g’ such that one
of the following conditions is satisfied:

- AMx) € M*,A(y) € M, Succ(My)) = A(x),and g = gOx.

- Ax) € M# () € M, Succ(A(y)) = L, and there is a signature g such that g; =
gHy—x), ¢ =g16x

- Mx) € M*, M(y) = L, and there are signatures g;,g> such that g; € g, y, g0 =
gl (y—x). ¢ =g0x

- AMx) = L, A(y) € M, Succ(My)) € M*, and g’ = g.

- Mx) =1L, AMy) € M, Succ(M(y)) = *, and there is a signature g; such that g; =
gDy—sX, g =g10x.

- AMx)=1,My) €M, Succ(A(y))=1,and g’ € g (y —).

- Mx) = L, A(y) = L, and there are signatures g;,g2,g3 such that g; € gdx, g» €
818y g3 =B —x), ¢ =gox

We define Pre(g)(x.next :==y) to be the set of saturated signatures g’ such that one
of the following conditions is satisfied:

- Mx) € M, A(y) € M*, Succ(M(x)) = A(y), and g’ = gB (x —).
- Mx) € M, Succ(M(x)) € M*, A(y) = L, and there is a signature g such that g; €
g®x-y. 8’ =18 (x—).

- Mx) € M, Succ(M(x)) = L, A(y) e M*,and g’ = g.
- Ax) €M, Succ(Mx)) =L, A(y)=L1,and g € gDy.
- Mx) = L, A(y) € M*, and there is signature g; such that g| € 8Py x, g =g 8
x—).
(x) = L, Ay) = L, and there are signatures g;,g> such that g; € gDy, g2 €
ﬁ%hxg—gﬁﬂx&)

>)/—\

We define Pre(g)(new(x)) to be the set of saturated signatures g’ such that one of
the following conditions is satisfied:

— A(x) is x-semi-isolated, and there is signature g; such that gy = g©A(x) and g’ =
219X,
- AMx)= 1 and g’ = g or g’ € g©&m for some semi-isolated cell m.

We define Pre(g)(delete(x)) to be the set of saturated signatures g’ such that one of
the following conditions is satisfied:

— A(x) = *, and there are a signature g, g, such that g = gSx, g2 = g1 B A(x),
g =g B ME—x).
— AM(x) = L, and there is signatures g such that g; = g ®A(x), g’ = g1 B (M* — x).

We define Pre(g)(read(x)) to be the set of saturated signatures g’ such that one of
the following conditions is satisfied:

- AMx) € M, and g = gBoa M(x).
— A(x) = L, and there is a signature g; such that g; € &4 x, &' = g1 Boa M(x)

We define Pre(g)(x.num = y.num) to be the set of saturated signatures g’ such that
one of the following conditions is satisfied:

- Ax) eM,My) e M, A(x) =A(y), and g’ = g.
- Ax) eM,AMy) EM, Ord(x,y)=1,and g = gHB (x=Yy).
- A(x) € M, A(y) = L, there is signature g such that g € gB=,y, g = g1 B (x=Yy).
- Mx) = L, A(y) € M, there is signature g; such that g; € gB=yx, ¢’ = g1 H(x =y).
— A(x) =L, A(y) = L, there are signatures g1, g> such that g| € g®4, g2 € g1 D=y X,
g =gBx=y).
We define Pre(g)(x.num < y.num) to be the set of saturated signatures g’ such that

one of the following conditions is satisfied:

- AMx) e M, AMy) € M, AM(x) < A(y), and g’ = g.

- AMx) eM, My) €M, Ord(x,y) = L,and g = gH (x < y).

- A(x) € M, A(y) = L, there is a signature g; such that g; € gPB,<y, & = g1 B(x<y).
- Mx) =L, A(y) € M, there is signature g; such that g; € gP~yx, & =g B (x<y).
— A(x) =L, A(y) = L, there are signatures g1, g> such that g| € g®.4Y, g2 € g1 D=y X,

We define Pre(g)(x.num := y.num) to be the set of saturated signatures g’ such that
one of the following conditions is satisfied:

- Mx) € M, My) € M, Mx) = My), and g' = gBora M(x).

- AMx) e M, AMy) €M, Ord(x,y) = L, and g’ = gBppg A(x).

— A(x) € M, A(y) = L, and there is a signature g; such that g; € g®=,y, & = g1How
A(x).

- Ax)=L,My)eM,and g’ = g.

- Ax)=L,Ay)=L,and g € gPr4y.

We define Pre(g)(x.num :< y.num) to be the set of saturated signatures g’ such that
one of the following conditions is satisfied:

€M, A(y) €M, Ord(x,y) = 1, and g’ = gBpms M(x).
€ M, A(y) = L, and there is a signature g| such that g; € g®,~, &’ = g1 Bou

We define Pre(g)(x.num :> y.num) to be the set of saturated signatures g’ such that
one of the following conditions is satisfied:

— Mx) € M, M) € M, A() < A(x), and ¢ = ¢Bom M(x).

- AMx) e M, My) €M, Ord(x,y) = L, and g’ = gB g A(x).

— A(x) € M, A(y) = L, and there is a signature g; such that g; € g® .y, & = g1How
Ax).

- Ax)=1L,My)eM,and g’ = g.

- AMx)=L,Ay)=L,and g’ € gDyy.

F Deciding entailment

To decide the entailment between two heaps g1 = (M1, Succy, A1, O0rdy) and g = (M2, Succy, hy, Ordy),
we have to find an injection 1 : M| — M such that the following hold:

— The injection preserves the labeling. Formally, for each x € X, 1(A; (x)) = Ap(x).

— The injection maps the special cells to the special cells. Formally: 1(#) = # and
() =

— The injection respects the ordering between cells. Formally, this means that for
each pair of cells m,m’ € My, m <m' = Ord>(\(m),\(m')) =< andm=m' —>
Ord,(1(m),1(m')) ==. Here Ord denotes the transitive closure of Ord.

— The injection maps edges in g; to paths in g>. The cells in these paths cannot be the
image of any cell. Formally, for each pair of cells m,m’ € M; such that Succ|(m) =
!, there exists i € N such that Succh (1(m)) = m’ and for each j < i, Succh(1(m)) &
dom 1. Here f* denotes iterative application of the function f k times.

Since there is only a very small percentage (0.001-1 %) of the generated heaps where
we actually get a match, we start by using simple necessary conditions to discard a large
portion of the signatures which does not satisfy them. These are conditions like point 1
and 2 above, meaning for example that if A; (x) = A;(y), then Ay (x) = A, (y). Also other

conditions like the need for at least one cell in M, with an in-degree equal or greater
than the largest in-degree for any cell in M| can be used here.

When we have done the first pruning of the obviously negative matches, we proceed
to incrementally construct the injection. First, we construct a partial injective function
1 such that #, x and all labeled nodes are mapped correctly according to point 1 and 2.
We then proceed to map the remaining cells by enlarging the domain of t in such a way
that we always respect the points above, backtracking when necessary. This permits us
to prune the possible images of every cell with each successive enlargement, as more
mapped cells impose more restrictions on which cells can be images in the mapping.

There are also other heuristics that turns out to be useful. For example, the ordering
graphs tend to be very sparse, and therefore, taking their structure into account when
deciding which cell to map next is a good idea. This way, we get very few choices of
where to map the next cell while at the same time we get, as noted earlier, even more
restrictions on the graph structure.

This is also in line with the experimental results. As soon as we get contradictory
information, we can discard the current attempt to build the mapping, and thus we
acquire such information as early as possible.

