Skip to main content

A Neuronal Model with Excitatory and Inhibitory Inputs Governed by a Birth-Death Process

  • Conference paper
Computer Aided Systems Theory - EUROCAST 2009 (EUROCAST 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5717))

Included in the following conference series:

  • 1113 Accesses

Abstract

A stochastic model for the firing activity of a neuronal unit has been recently proposed in [4]. It includes the decay effect of the membrane potential in the absence of stimuli, and the occurrence of excitatory inputs driven by a Poisson process. In order to add the effects of inhibitory stimuli, we now propose a Stein-type model based on a suitable exponential transformation of a bilateral birth-death process on \({\mathbb Z}\) and characterized by state-dependent nonlinear birth and death rates. We perform an analysis of the probability distribution of the stochastic process describing the membrane potential and make use of a simulation-based approach to obtain some results on the firing density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1992)

    MATH  Google Scholar 

  2. Di Crescenzo, A.: On certain transformation properties of birth-and-death processes. In: Trappl, R. (ed.) Cybernetics and Systems 1994, vol. 1, pp. 839–846. World Scientific, Singapore (1994)

    Google Scholar 

  3. Di Crescenzo, A.: On some transformations of bilateral birth-and-death processes with applications to first passage time evaluations. In: SITA 1994 – Proc. 17th Symp. Inf. Theory Appl., Hiroshima, pp. 739–742 (1994), http://arXiv.org/pdf/0803.1413v1

  4. Di Crescenzo, A., Martinucci, B.: Analysis of a stochastic neuronal model with excitatory inputs and state-dependent effects. Math. Biosci. 209, 547–563 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Di Crescenzo, A., Martinucci, B.: A first-passage-time problem for symmetric and similar two-dimensional birth-death processes. Stoch. Models 24, 451–469 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Giorno, V., Lánský, P., Nobile, A.G., Ricciardi, L.M.: Diffusion approximation and first-passage-time problem for a model neuron. III. A birth-and-death process approach. Biol. Cybernet. 58, 387–404 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hongler, M.O., Parthasarathy, P.R.: On a super-diffusive, nonlinear birth and death process. Phys. Lett. A 372, 3360–3362 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Pokora, O., Lánský, P.: Statistical approach in search for optimal signal in simple olfactory neuronal models. Math. Biosci. 214, 100–108 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Pollett, P.K.: Similar Markov chains. In: Daley, D.J. (ed.) Probability, Statistics and Seismology. A Festschrift for David Vere-Jones; J. Appl. Prob. 38A, 53–65 (2001)

    Google Scholar 

  10. Ren, Y.J., Zhang, H.Q.: New generalized hyperbolic functions and auto-Bäcklund transformation to find new exact solutions of the (2 + 1)-dimensional NNV equation. Phys. Lett. A 357, 438–448 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ricciardi, L.M.: Stochastic population theory: birth and death processes. In: Hallam, T.G., Levin, S.A. (eds.) Biomathematics. Mathematical Ecology, vol. 17, pp. 155–190. Springer, Heidelberg (1986)

    Google Scholar 

  12. Ricciardi, L.M., Di Crescenzo, A., Giorno, V., Nobile, A.G.: An outline of theoretical and algorithmic approaches to first passage time problems with applications to biological modeling. Math. Japonica 50, 247–322 (1999)

    MathSciNet  MATH  Google Scholar 

  13. Stein, R.B.: A theoretical analysis of neuronal variability. Biophys. J. 5, 173–194 (1965)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Di Crescenzo, A., Martinucci, B. (2009). A Neuronal Model with Excitatory and Inhibitory Inputs Governed by a Birth-Death Process. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory - EUROCAST 2009. EUROCAST 2009. Lecture Notes in Computer Science, vol 5717. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04772-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04772-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04771-8

  • Online ISBN: 978-3-642-04772-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics