Skip to main content

SGEGC: A Selfish Gene Theory Based Optimization Method by Exchanging Genetic Components

  • Conference paper
Advances in Computation and Intelligence (ISICA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5821))

Included in the following conference series:

Abstract

In this paper, a new algorithm named SGEGC was proposed. Inspired by selfish gene theory, SGEGC uses a vector of survival rate to model the condition distribution, which serves as a virtual population that is used to generate new individuals. While the present Estimation of Distribution Algorithms (EDAs) require much time to learn the complex relationships among variables, SGEGC employs an approach that exchanges the relevant genetic components. Experimental results show that the proposed approach is more efficient in convergent reliability and convergent velocity in comparison with BMDA, COMIT and MIMIC in the test functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, C.W., Ramakrishna, R.S.: On the scalability of real-coded bayesian optimization algorithm. IEEE Transactions on Evolutionary Computation 12(3), 307–322 (2008)

    Article  Google Scholar 

  2. Baluja, S.: Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning. Technical Report CMU-CS-94-163, Carnegie Mellon University Pittsburgh, PA, USA (1994)

    Google Scholar 

  3. Baluja, S., Davies, S.: Using optimal dependency-trees for combinational optimization. In: ICML 1997: Proceedings of the Fourteenth International Conference on Machine Learning, San Francisco, CA, USA, pp. 30–38 (1997)

    Google Scholar 

  4. Baluja, S., Davies, S.: Fast probabilistic modeling for combinatorial optimization. In: Proc. of 15th National Conf. on Artificial Intelligence(AAAI), pp. 469–476 (1998)

    Google Scholar 

  5. Bonet, J., Isbell, C.L., Viola, P.: Mimic: Finding optima by estimating probability densities. In: Advances in Neural Information Processing Systems, vol. 9, pp. 424–430. MIT Press, Cambridge (1997)

    Google Scholar 

  6. Corno, F., Reorda, M.S., Squillero, G.: A new evolutionary algorithm inspired by the selfish gene theory. In: ICEC 1998: IEEE International Conference on Evolutionary Computation, pp. 575–580 (1998)

    Google Scholar 

  7. Corno, F., Reorda, M., Squillero, G.: The selfish gene algorithm: a new evolutionary optimization strategy. In: SAC 1998: 13th Annual ACM Symposium on Applied Computing, pp. 349–355 (1998)

    Google Scholar 

  8. Corno, F., Reorda, M., Squillero, G.: Exploiting the selfish gene algorithm for evolving cellular automata. In: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, 2000. IJCNN 2000, vol. 6, pp. 577–581 (2000)

    Google Scholar 

  9. Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. IEEE Transactions on Evolutionary Computation 3(4), 287–297 (1999)

    Article  Google Scholar 

  10. Muhlenbein, H., Paass, G.: From recombination of genes to the estimation of distributions i. binary parameters. In: PPSN IV: Proceedings of the 4th International Conference on Parallel Problem Solving from Nature, London, UK, pp. 178–187 (1996)

    Google Scholar 

  11. Larranaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Kluwer Academic Publishers, Boston (2002)

    Book  MATH  Google Scholar 

  12. Muhlenbein, H., Mahnig, T.: The factorized distribution algorithm for additively decomposedfunctions. In: Proceedings of the 1999 Congress on Evolutionary Computation,1999.CEC 1999, vol. 1 (1999)

    Google Scholar 

  13. Pelikan, M., Goldberg, D.E., Cant-Paz, E.: Boa: The bayesian optimization algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference(GECCO-1999), pp. 525–532. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  14. Pelikan, M., Muhlenbein, H.: The bivariate marginal distribution algorithm. In: Advances in Soft Computing:Engineering Design and Manufacturing, pp. 521–535. Springer, London (1999)

    Chapter  Google Scholar 

  15. Dawkins, R.: The Selfish Gene - new edition. Oxford University Press, Oxford (1989)

    Google Scholar 

  16. Harik, G.R., Lobo, F.G., Sastry, K.: Linkage learning via probabilistic modeling in the extended compact genetic algorithm(ecga). Scalable Optimization via Probabilistic Modeling, 39–61 (2006)

    Google Scholar 

  17. Zhou, S.D., Sun, Z.Q.: A survey on estimation of distribution algorithms. Acta Automatica Sinica 33(2), 113–124 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yang, S.Y., Ho, S.L., Ni, G.Z., Machado, J.M., Wong, K.F.: A new implementation of population based incremental learning method for optimizations in electromagnetics. IEEE Transactions on Magnetics 43(4), 1601–1604 (2007)

    Article  Google Scholar 

  19. Yang, S.X., Yao, X.: Population-based incremental learning with associative memory for dynamic environments. IEEE Transactions on Evolutionary Computation 12(5), 542–561 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, C., Li, Y., Lin, Z. (2009). SGEGC: A Selfish Gene Theory Based Optimization Method by Exchanging Genetic Components. In: Cai, Z., Li, Z., Kang, Z., Liu, Y. (eds) Advances in Computation and Intelligence. ISICA 2009. Lecture Notes in Computer Science, vol 5821. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04843-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04843-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04842-5

  • Online ISBN: 978-3-642-04843-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics