Skip to main content

Single and Multiple-Access Channel Capacity in Molecular Nanonetworks

  • Conference paper
Nano-Net (NanoNet 2009)

Abstract

Molecular communication is a new nano-scale communication paradigm that enables nanomachines to communicate with each other by emitting molecules to their surrounding environment. Nanonetworks are also envisioned to be composed of a number of nanomachines with molecular communication capability that are deployed in an environment to share specific molecular information such as odor, flavour, light, or any chemical state. In this paper, using the principles of natural ligand-receptor binding mechanisms in biology, we first derive a capacity expression for single molecular channel in which a single Transmitter Nanomachine (TN) communicates with a single Receiver Nanomachine (RN). Then, we investigate the capacity of the molecular multiple-access channel in which multiple TNs communicate with a single RN. Numerical results reveal that high molecular communication capacities can be attainable for the single and multiple-access molecular channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hiyama, S., Moritani, Y., Suda, T., Egashira, R., Enomoto, A., Moore, M., Nakano, T.: Molecular Communication. In: Proc. of NSTI Nanotechnology Conference and Trade Show, California, USA, pp. 391–394 (2005)

    Google Scholar 

  2. Akyildiz, I.F., Brunetti, F., Blazquez, C.: NanoNetworking: A New Communication Paradigm. Computer Networks (Elsevier) 52(12), 2260–2279 (2008)

    Article  Google Scholar 

  3. Moore, M., Enomoto, A., Nakano, T., Egashira, R., Suda, T., Kayasuga, A., Kojima, H., Sakakibara, H., Oiwa, K.: A Design of a Molecular Communication System for Nanomachines Using Molecular Motors. In: Proc. of IEEE International Workshops on Pervasive Computing and Communications (PERCOMW), Italy (2006)

    Google Scholar 

  4. Eckford, A.W.: Molecular communication: Physically realistic models and achievable information rates. Submitted to IEEE Transactions on Information Theory (2008)

    Google Scholar 

  5. Eckford, A.W.: Nanoscale communication with Brownian motion. In: Proc. of International Conference on Information Sciences and Systems, Baltimore, MD, pp. 160–165 (2007)

    Google Scholar 

  6. Atakan, B., Akan, O.B.: On Channel Capacity and Error Compensation in Molecular Communication. Springer Trans. on Computational System Biology 10, 59–80 (2008)

    Google Scholar 

  7. Atakan, B., Akan, O.B.: On Molecular Multiple-Access, Broadcast and Relay Channels in Nanonetworks. In: Proc. of ACM International Conference on Bio-Inspired Models of Network, Information, and Computing Systems (BIONETICS), Hyogo, Japan (2008)

    Google Scholar 

  8. Rospars, J.P., Krivan, V., Lansky, P.: Perireceptor and receptor events in olfaction. Comparison of concentration and flux detectors: a modeling study. Chemical Sense 25, 293–311 (2000)

    Article  Google Scholar 

  9. Krivan, V., Lansky, P., Rospars, J.P.: Coding of periodic pulse stimulation in chemoreceptors. Biosystem (Elsevier) 67, 121–128 (2002)

    Article  Google Scholar 

  10. Malaka, R., Ragg, T., Hammer, M.: Kinetic models of odor transduction implemented as artificial neural networks. Biological Cybernetics 73, 195–207 (1995)

    Article  MATH  Google Scholar 

  11. Northrup, S.H., Allison, S.A., McCammon, J.: Brownian dynamics simulation of diffusion-influenced bimolecular reactions. Journal of Chemical Physics 80, 1517–1524 (1984)

    Article  Google Scholar 

  12. Berg, H.C., Purcell, E.M.: Physics of chemoreception. Biophysical Journal 20, 193–219 (1977)

    Article  Google Scholar 

  13. Chang, K.C., Hammer, D.A.: The Forward Rate of Binding of Surface-Tethered Reactants: Effect of Relative Motion between Two Surfaces. Biophysical Journal 76, 1280–1292 (1999)

    Article  Google Scholar 

  14. Cooper, M.A.: Label-free screening of bio-molecular interactions. Analytical and Bioanalytical Chemistry 377, 834–842 (2003)

    Article  Google Scholar 

  15. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley-Sons, Chichester (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Atakan, B., Akan, O.B. (2009). Single and Multiple-Access Channel Capacity in Molecular Nanonetworks. In: Schmid, A., Goel, S., Wang, W., Beiu, V., Carrara, S. (eds) Nano-Net. NanoNet 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04850-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04850-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04849-4

  • Online ISBN: 978-3-642-04850-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics