Skip to main content

On Two-Layer Hierarchical Networks How Does the Brain Do This?

  • Conference paper
  • 838 Accesses

Abstract

In this paper our aim is to identify layered hierarchical generic network topologies which could closely mimic brain’s connectivity. Recent analyses have compared the brain’s connectivity (based both on a cortical-equivalent Rent’s rule and on neurological data) with well-known network topologies used in supercomputers and massively parallel computers (using two different interpretations of Rent’s rule). These have revealed that none of the well-known computer network topologies by themselves are strong contenders for mimicking the brain’s connectivity. That is why in this paper we perform a high-level analysis of two-layer hierarchical generic networks. The range of granularities (i.e., number of gates/cores/neurons) as well as the fan-ins and the particular combinations of the two generic networks which would make such a mimicking achievable are identified and discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. SIA: International Technology Roadmap for Semiconductors. Austin, TX, USA (2007, 2008), http://public.itrs.net/

  2. Beiu, V., Ibrahim, W., Makki, R.Z.: On Wires Holding a Handful of Electrons. In: NanoNet 2009, Luzern, Switzerland (2009) (in press)

    Google Scholar 

  3. Wen, Q., Chklovskii, D.B.: Segregation of the Brain into Gray and White Matter: A Design Minimizing Conduction Delays. PLoS Comp. Biol. 1, 617–630 (2005)

    Article  Google Scholar 

  4. Dally, W.J., Towels, B.: Principles and Practices of Interconnection Networks. Elsevier/Morgan Kaufmann, San Mateo (2004)

    Google Scholar 

  5. Jirsa, V.K., McIntosh, A.R. (eds.): Handbook of Brain Connectivity. Springer, Berlin (2007)

    MATH  Google Scholar 

  6. Chklovskii, D.B.: Exact Solution for the Optimal Neuronal Layout Problem. Neural Comp. 16, 2067–2078 (2004)

    Article  MATH  Google Scholar 

  7. Karbowski, J.: Optimal Wiring Principle and Plateaus in the Degree of Separation for Cortical Neurons. Phys. Rev. Lett. 86, 3674–3677 (2001)

    Article  Google Scholar 

  8. Laughlin, S.B., Sejnowski, T.J.: Communication in Neural Networks. Science 301, 1870–1874 (2003)

    Article  Google Scholar 

  9. Zhang, K., Sejnowski, T.J.: A Universal Scaling Law Between Gray Matter and White Matter of Cerebral Vortex. PNAS 97, 5621–5626 (2000)

    Article  Google Scholar 

  10. Beiu, V., Amer, H., McGinnity, T.M.: On Global Communications for Nano-architectures – Brain versus Rent’s Rule. In: DCIS 2007, Seville, Spain, pp. 305–310 (2007)

    Google Scholar 

  11. Hammerstrom, D.: Biologically Inspired Nanoarchitectures. In: CANDE 2007, Long Beach, CA, USA (2007), http://web.cecs.pdx.edu/~strom/danh_cande07.pdf

  12. Lanzerotti, M.Y., Fiorenza, G., Rand, R.A.: Interpretation of Rent’s Rule for Ultralarge-scale Integrated Circuit Designs, with an Application to Wirelength Distribution Models. IEEE Trans. VLSI Syst. 12, 1330–1347 (2004)

    Article  Google Scholar 

  13. Madappuram, B.A.M., Beiu, V., Kelly, P.M., McDaid, L.J.: On Brain-inspired Connectivity and Hybrid Network Topologies. In: IEEE/ACM NanoArch 2008, Anaheim, CA, USA, pp. 54–61 (2008)

    Google Scholar 

  14. Teuscher, C., Gulbahce, N., Rohlf, T.: Assessing Random Dynamical Network Architectures for Nanoelectronics. In: IEEE/ACM NanoArch 2008, Anaheim, CA, USA, pp. 16–23 (2008)

    Google Scholar 

  15. Johansson, C.: Towards Cortex Isomorphic Attractor Neural Networks. PhD thesis, School Comp. Sci. & Comm., Royal Inst. Tech (KTH), Stockholm, Sweden (2004), http://www.nada.kth.se/~cjo/publications.htm

  16. Silver, R., Boahen, K., Grillner, S., Kopell, N., Olsen, K.L.: Neurotech for Neuroscience: Unifying Concepts, Organizing Principles, and Emerging Tools. J. Neurosci. 27, 11807–11819 (2007)

    Article  Google Scholar 

  17. Djurfeldt, M., Lundqvist, M., Johansson, C., Rehn, M., Ekeberg, Ö., Lansner, A.: Brain-scale Simulation of the Neocortex on the IBM Blue Gene/L Supercomputer. IBM J. R&D 52 (Special Issue on Applications of Massively Parallel Systems), 31–41 (2008)

    Google Scholar 

  18. von Neumann, J.: The Computer and the Brain. Yale Univ. Press, New Haven (1958)

    MATH  Google Scholar 

  19. Hammerstrom, D.: The Connectivity Analysis of Simple Associations –or– How Many Connections Do We Need? In: Anderson, D.Z. (ed.) NIPS, pp. 338–347. IoP (1988)

    Google Scholar 

  20. Vitányi, P.M.B.: Locality, Communication, and Interconnect Length in Multicomputers. SIAM J. Comput. 17, 659–672 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fernández, A., Efe, K.: Bounds on the VLSI Layout Complexity of Homogeneous Product Networks. In: ISPAN 1994, Kanazawa, Japan, pp. 41–48 (1994)

    Google Scholar 

  22. Legenstein, R.A.: The Wire-length Complexity of Neural Networks. PhD thesis, Graz Univ. Tech., Graz, Austria (2001), http://www.igi.tugraz.at/legi/psfiles/legi_diss.pdf

  23. Kyogoku, T., Inoue, J., Nakashima, H., Uezono, T., Okada, K., Masu, K.: Wire Length Distribution Model Considering Core Utilization for System on Chip. In: ISVLSI 2005, Tampa, FL, USA, pp. 276–277 (2005)

    Google Scholar 

  24. Burleson, W., Maheshwari, A.: VLSI Interconnects: A Design Perspective. Elsevier/ Morgan Kaufman, San Mateo (2009/10); See Burleson, W.: Statistical Design Issues and Tradeoffs in On-chip Interconnects. In: MPSoC 2006 (2006), http://www.mpsoc-forum.org/2006/slides/Burleson.pdf

    Google Scholar 

  25. Ho, R.: On-chip Wires: Scaling and Efficiency. PhD thesis, Stanford Univ., Stanford, CA, USA (2003), http://www-vlsi.stanford.edu/papers/rh_thesis.pdf

  26. Ho, R.: Interconnection Technologies. In: OCIN 2006 (2006), http://www.ece.ucdavis.edu/~ocin06/talks/ho.pdf

  27. Bialek, W., Rieke, F.: Reliability and Information Transmission in Spiking Neurons. Trends Neurosci. 15, 428–434 (1992)

    Article  Google Scholar 

  28. Stevens, C.F.: Neuronal Communication – Cooperativity of Unreliable Neurons. Current Biol. 4, 268–269 (1994)

    Article  Google Scholar 

  29. Smetters, D.K., Zador, A.: Synaptic Transmission: Noisy Synapses and Noisy Neurons. Current Biol. 6, 1217–1218 (1996)

    Article  Google Scholar 

  30. Lisman, J.E.: Bursts as a Unit of Neural Information: Making Unreliable Synapses Reliable. Trends Neurosci. 20, 38–43 (1997)

    Article  Google Scholar 

  31. Zador, A.: Impact of Synaptic Unreliability on the Information Transmitted by Spiking Neurons. J. Neurophysiol. 79, 1219–1229 (1998)

    Google Scholar 

  32. Manwani, A., Koh, C.: Detecting and Estimating Signals over Noisy and Unreliable Synapses: Information-Theoretic Analysis. Neural Comp. 13, 1–33 (2001)

    Article  MATH  Google Scholar 

  33. Levy, W.B., Baxter, R.A.: Energy-efficient Neuronal Computation via Quantal Synaptic Failures. J. Neurosci. 22, 4746–4755 (2002)

    Google Scholar 

  34. Joachim, C., Ratner, M.: Molecular Electronics: Some Views on Transport Junctions and Beyond. PNAS 102, 8801–8808 (2005)

    Article  Google Scholar 

  35. Heimburg, T., Jackson, A.D.: On Soliton Propagation in Biomembranes and Nerves. PNAS 102, 9790–9795 (2005)

    Article  Google Scholar 

  36. Ricketts, D.S., Li, X., Sun, N., Woo, K., Ham, D.: On the Self-generation of Electrical Soliton Pulses. IEEE J. Solid-State Circ. 42, 1657–1668 (2007)

    Article  Google Scholar 

  37. Tuffy, F., McDaid, L.J., Kwan, V.W., Alderman, J., McGinnity, T.M., Santos, J.A., Kelly, P.M., Sayers, H.: Inter-neuron Communication Strategies for Spiking Neural Networks. Neurocomp. 71, 30–44 (2007)

    Article  Google Scholar 

  38. Beausoleil, R.G., Kuekes, P.J., Snider, G.S., Wang, S.-Y., Williams, R.S.: Nanoelectronic and Nanophotonic Interconnect. Proc. IEEE 96, 230–247 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Beiu, V., Madappuram, B.A.M., Kelly, P.M., McDaid, L.J. (2009). On Two-Layer Hierarchical Networks How Does the Brain Do This?. In: Schmid, A., Goel, S., Wang, W., Beiu, V., Carrara, S. (eds) Nano-Net. NanoNet 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04850-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04850-0_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04849-4

  • Online ISBN: 978-3-642-04850-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics