Skip to main content

On Wires Holding a Handful of Electrons

  • Conference paper

Abstract

When analyzing reliability, wires have in most cases been ignored, with gates (and devices) taking the lion’s share. With scaling, this “only computing fails” approach is not going to be accurate enough as communication (wires) will also start to err. Trying to do justice to wires, this paper details a statistical failure analysis of wires following on the few papers which have made wires’ reliability their concern. We will use a classical particle-like probabilistic approach to enhance on the accuracy of wires’ length-dependent probabilities of failure due to the discreetness of charge. Covering some of the intrinsic noises, such an approach leads to “lower bound”-like wire reliability estimates, as ignoring other intrinsic noises, as well as extrinsic noises, variations, and defects. These results should have implications for multi-/many-cores and networks-on-chip, as well as forward-looking investigations on emerging nano-architectures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Topinka, M.A., LeRoy, B.J., Westervelt, R.M., Shaw, S.E.J., Fleischmann, R., Heller, E.J.K., Maranowski, D., Gossard, A.C.: Coherent Branched Flow in a Two-dimensional Electron Gas. Nature 410, 183–186 (2001)

    Article  Google Scholar 

  2. Topinka, M.A., Westervelt, R.M., Heller, E.J.: Imaging Electron Flow. Phys. Today 56, 47–52 (2003)

    Google Scholar 

  3. Shaw, S.E.J.: Propagation in Smooth Random Potentials. PhD thesis, Harvard Univ., Cambridge, MA, USA (2002), http://www.physics.harvard.edu/Thesespdfs/sshaw.pdf

  4. Huang, J.: Theories of Imaging Electrons in Nanostructures. PhD thesis, Harvard Univ., Cambridge, MA, USA (2006), http://www.physics.harvard.edu/Thesespdfs/Huang2006.pdf

  5. SIA: International Technology Roadmap for Semiconductors. Austin, TX, USA (2007, 2008), http://public.itrs.net/

  6. Madappuram, B.A.M., Beiu, V., Kelly, P.M., McDaid, L.J.: On Brain-inspired Connectivity and Hybrid Network Topologies. In: IEEE/ACM NanoArch 2008, Anaheim, CA, USA, pp. 54–61 (2008)

    Google Scholar 

  7. Beiu, V.: Electrons Behaving Badly—Quo Vadis Nano-architectures? In: IES 2008, Sendai, Japan, pp. 24–27 (2008)

    Google Scholar 

  8. Cavin, R.K., Zhirnov, V.V., Herr, D.J.C., Avila, A., Hutchby, J.: Research Directions and Challenges in Nanoelectronics. J. Nanoparticle Res. 8, 841–858 (2006)

    Article  Google Scholar 

  9. Stanley Williams, R.: How We Found the Missing Memristor. IEEE Spectr. 45, 25–31 (2008)

    Google Scholar 

  10. Miller, D.A.B.: Optical for Low-energy Communication Inside Digital Processors: Quantum Detectors, Sources, and Modulators as Efficient Impedance Converters. Optics Lett. 14, 146–148 (1989)

    Article  Google Scholar 

  11. Yablonovitch, E.: The Impedance-matching Predicament: A Hurdle in the Race Toward Nano-electronics. In: Emerging Nanosystems (CeNS Workshop), Venice, Italy (2006), http://www.cens.de/uploads/media/CeNS_proceedings06.pdf

  12. Sakurai, T.: Design Challenges for 0.1μm and Beyond. In: ASP-DAC 2000, pp. 553–558 (2000)

    Google Scholar 

  13. Davis, J.A., Venkatesan, R., Kaloyeros, A., Beylansky, M., Souri, S.J., Banerjee, K., Saraswat, K.C., Rahman, A., Reif, R., Meindl, J.D.: Interconnect Limits on Gigascale Integration in the 21st Century. Proc. IEEE 89, 305–324 (2001)

    Article  Google Scholar 

  14. Davis, J.A., Meindl, J.: Interconnect Technology and Design for Gigascale Integration. Kluwer/Springer, New York/Heidelberg (2003)

    Google Scholar 

  15. Meindl, J.D.: Beyond Moore’s Law: The Interconnect Era. Comp. Sci. & Eng. 5, 20–24 (2003)

    Article  Google Scholar 

  16. Magen, N., Kolodny, A., Weiser, U.C., Shamir, N.: Interconnect-Power Dissipation in a Microprocessor. In: SLIP 2004, Paris, France, pp. 7–13 (2004)

    Google Scholar 

  17. Intel: Industry’s First 32nm Chip and Next-generation Nehalem Microprocessors. Intel News Release (2007), http://www.intel.com/pressroom/archive/releases/20070918corp_a.htm?iid=tech_arch_32nm+body_pressrelease

  18. Kuo, W.: Challenges Related to Reliability in Nano Electronics. IEEE Trans. Reliab. 55, 569–570 (2006)

    Article  Google Scholar 

  19. Beiu, V., Ibrahim, W.: On Computing Nano-architectures Using Unreliable Nano-devices. In: Lyshevski, S.E. (ed.) Handbook of Nano and Molecular Electronics, Ch. 12, pp. 1–49. Taylor & Francis, London (2007)

    Google Scholar 

  20. McKee, S.A.(ed.): Special Issue on Reliable Computing. ACM J. Emerg. Tech. Comp. Sys. 3 (2007)

    Google Scholar 

  21. Jeng, S.-L., Lu, J.-C., Wang, K.: A Review of Reliability Research on Nanotechnology. IEEE Trans. Reliab. 56, 401–410 (2007)

    Article  Google Scholar 

  22. Lau, C., Orailoglu, A., Roy, K. (ed.): Special Issue on Nano-electronic Circuits & Nano-architectures. IEEE Trans. Circ. & Sys. I 54 (2007)

    Google Scholar 

  23. Liu, R.C.: Quantum Noise in Mesoscopic Electron Transport. PhD thesis, Stanford Univ., Stanford, CA, USA (1997), http://www.worldcat.org/oclc/83328372

  24. Oberholzer, S.: Fluctuation Phenomena in Low Dimensional Conductors. PhD thesis, Univ. of Basel, Basel, Switzerland (2001), http://pages.unibas.ch/physmeso/Research/Theses/OberholzerPhDThesis.pdf

  25. Kish, L.B.: End of Moore’s Law: Thermal (Noise) Death of Integration in Micro and Nano Electronics. Phys. Lett. A 305, 144–149 (2002)

    Article  Google Scholar 

  26. De Los Santos, H.J.: Nanoelectromechanical Quantum Circuits and Systems. Proc. IEEE 91, 1907–1921 (2003)

    Article  Google Scholar 

  27. Kim, N.Y.: Correlated Electron Transport in One-dimensional Mesoscopic Conductors. PhD thesis, Stanford Univ., Stanford, CA, USA (2006), http://www.stanford.edu/group/yamamotogroup/Thesis/NYKthesis.pdf

  28. Vaishnav, J.Y., Itsara, A., Heller, E.J.: Hall of Mirrors Scattering from an Impurity in a Quantum Wire. Phys. Rev. B 73, 115331(1–17)(2006)

    Google Scholar 

  29. Matveev, K.A.: Conductance of a Quantum Wire at Low Electron Density. Phys. Rev. B 70, 245319(1–15) (2004)

    Article  Google Scholar 

  30. MASTAR = Model for Assessment of CMOS Technologies and Roadmaps. SIA, Austin, TX, USA, http://www.itrs.net/models.html

  31. Bohr, M.T., Chau, R.S., Ghani, T., Mistry, K.: The High-k Solution. IEEE Spectr. 44, 29–35 (2007)

    Article  Google Scholar 

  32. Lee, B.H., Song, S.C., Choi, R., Kirsch, P.: Metal Electrode/High-k Dielectric Gate-Stack Technology for Power Management. IEEE Trans. Electr. Dev. 55, 8–20 (2008)

    Article  Google Scholar 

  33. Adee, S.: The Ultimate Dielectric is ...Nothing. IEEE Spectr. 45, 31–34 (2008)

    Google Scholar 

  34. Arora, N.D., Raol, K.V., Schumann, R., Richardson, L.M.: Modeling and Extraction of Interconnect Capacitances for Multilayer VLSI Circuits. IEEE Trans. CAD 15, 58–67 (1996)

    Article  Google Scholar 

  35. Bansal, A., Paul, B.C., Roy, K.: An Analytical Fringe Capacitance Model for Interconnects Using Conformal Mapping. IEEE Trans. CAD 25, 2765–2774 (2006)

    Article  Google Scholar 

  36. Mead, C., Conway, L.: Introduction to VLSI Systems. Addison-Wesley/Pearson (1980)

    Google Scholar 

  37. Li, H., Mundy, J., Patterson, W., Kazazis, D., Zaslavsky, A., Bahar, R.I.: A Model for Soft Errors in the Subthreshold CMOS Inverter. In: SELSE 2006, Urbana-Champaign, IL, USA (2006), http://selse2.org/papers/li.pdf

  38. Li, H., Mundy, J., Patterson, W., Kazazis, D., Zaslavsky, A., Bahar, R.I.: Thermally-Induced Soft Errors in Nanoscale CMOS Circuits. In: IEEE/ACM NanoArch 2007, San Jose, CA, USA, pp. 62–69 (2007)

    Google Scholar 

  39. Huo, D., Yu, Q., Wolpert, D., Ampadu, P.: A Simulator for Ballistic Nanostructures in a 2-D Electron Gas. ACM J. Emerg Tech. Comp. Syst. 5, 1–21 (2009)

    Article  Google Scholar 

  40. Beiu, V., Ibrahim, W.: On CMOS Circuit Reliability from the MOSFETs and the Input Vectors. In: WDSN/DSN 2009, Estoril/Lisbon, Portugal (2009) (in press)

    Google Scholar 

  41. Sulieman, M.H.: On the Reliability of Interconnected CMOS Gates when Considering MOSFETs Threshold-Voltage Variations. In: Nano-Net 2009, Luzern, Switzerland (2009) (in press)

    Google Scholar 

  42. Ibrahim, W., Beiu, V., Amer, H.: How Much Input Vectors Affect Nano-Circuit’s Reliability Estimates. In: IEEE-NANO 2009, Genoa, Italy (2009) (in press)

    Google Scholar 

  43. Zhirnov, V.V., Cavin, R.K., Hutchby, J.A., Bourianoff, G.I.: Limits to Binary Logic Switching Scaling—A Gedanken Model. Proc. IEEE 91, 1934–1939 (2003)

    Article  Google Scholar 

  44. Ibrahim, W., Beiu, V., Sulieman, M.H.: On the Reliability of Majority Gates Full Adders. IEEE Trans. Nanotech. 7, 56–67 (2008)

    Article  Google Scholar 

  45. Kim, N.Y., Recher, P., Oliver, W.D., Yamamoto, Y., Kong, J., Dai, H.: Tomonaga-Luttinger Liquid Features in Ballistic Single-Walled Carbon Nanotubes: Conductance and Shot Noise. Phys. Rev. Lett. 99, 36802(1–4) (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Beiu, V., Ibrahim, W., Makki, R.Z. (2009). On Wires Holding a Handful of Electrons. In: Schmid, A., Goel, S., Wang, W., Beiu, V., Carrara, S. (eds) Nano-Net. NanoNet 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04850-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04850-0_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04849-4

  • Online ISBN: 978-3-642-04850-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics